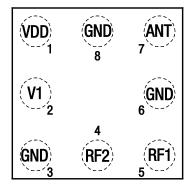


#### PRELIMINARY DATA SHEET

# SKY13448-001: 0.1 – 3.0 GHz SPDT High Power Switch (Single Bit Control) in a WLCSP Package

## **Applications**

- LTE TDD/FDD transmit/receive
- · GSM transmit
- Embedded modules


#### **Features**

- Broadband frequency range: 0.1 to 3.0 GHz
- Low insertion loss: 0.5 dB @ 2.7 GHz
- High isolation: 25 dB up to 2.7 GHz
- No external DC blocking capacitors required
- Single GPIO control line with VDD voltage regulator:
  - $V_{CTL} = 1.65 \text{ to } 2.70 \text{ V}$
  - $V_{DD} = 2.45 \text{ to } 3.00 \text{ V}$
- Small, 8-bump WLCSP, 200 μm diameter, 400 μm pitch (1.1 x 1.1 x 0.36 mm) package (MSL1, 260 °C per JEDEC J-STD-020)



-

Skyworks Green<sup>TM</sup> products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*  $^{TM}$ , document number SQ04-0074.



S3005

Figure 2. SKY13448-001 Pinout (Top View, Bumps Facing Down)

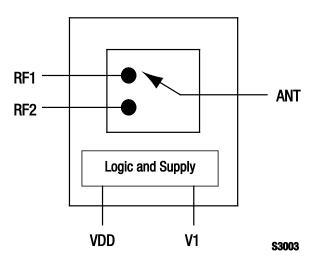



Figure 1. SKY13448-001 Block Diagram

### **Description**

The SKY13448-001 is a Single-Pole, Double-Throw (SPDT) LTE/WCDMA/GSM transmit switch. Switching is controlled by an integrated GPIO interface with a single control pin. Depending on the logic voltage level applied to the control pin, the antenna port is connected to one of the switched RF outputs (RF1 or RF2) through a low insertion loss path, while the path between the antenna port and the other RF port is in a high isolation state.

No external DC blocking capacitors are required as long as no DC voltage is applied on any RF path.

The SKY13448-001 is provided in a compact 8-bump, 1.1 x 1.1 x 0.36 mm Wafer Level Chip Scale Package (WLCSP) that meets requirements for board-level assembly. Bump diameters are 200 microns with a minimum bump pitch of 400 microns.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Table 1. SKY13448-001 Signal Descriptions

| Pin # | Name | Description                    | Pin# | Name | Description                    |
|-------|------|--------------------------------|------|------|--------------------------------|
| 1     | VDD  | Supply voltage                 | 5    | RF1  | RF I/O. Throw 1 of the switch. |
| 2     | V1   | Digital control input          | 6    | GND  | Ground                         |
| 3     | GND  | Ground                         | 7    | ANT  | Antenna                        |
| 4     | RF2  | RF I/O. Throw 2 of the switch. | 8    | GND  | Ground                         |

#### **Table 2. SKY13448-001 Absolute Maximum Ratings**

| Parameter                                                                                   | Symbol | Minimum     | Maximum     | Units      |
|---------------------------------------------------------------------------------------------|--------|-------------|-------------|------------|
| Supply voltage                                                                              | VDD    | 2.4         | 3.5         | V          |
| Digital control voltage                                                                     | VCTL   | -0.5        | +3.0        | V          |
| RF input power                                                                              | Pin    |             | +39         | dBm        |
| GSM RF input power:<br>Low band<br>High band                                                | Pin    |             | +36<br>+34  | dBm<br>dBm |
| WCDMA/CDMA2000/LTE TDD/FDD RF input power at ANT port                                       | Pin    |             | +26         | dBm        |
| Supply ripple                                                                               | VPP    |             | 20          | mVpp       |
| Operating temperature                                                                       | Тор    | -35         | +90         | °C         |
| Storage temperature                                                                         | TSTG   | <b>-</b> 55 | +150        | °C         |
| Electrostatic Discharge:<br>Human Body Model (HBM), Class 1C<br>Machine Model (MM), Class A | ESD    |             | 1000<br>100 | V<br>V     |

**Note:** Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

**CAUTION**: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

## **Electrical and Mechanical Specifications**

The absolute maximum ratings of the SKY13448-001 are provided in Table 2. Electrical specifications are provided in Tables 3 through 7.

The state of the SKY13448-001 is determined by the logic provided in Table 8.

Table 3. SKY13448-001 Electrical Specifications (1 of 2) (Note 1) (VoD = 2.85 V, ToP = +25 °C, Characteristic Impedance [Zo] = 50  $\Omega$ , Unless Otherwise Noted)

| Parameter                                      | Symbol           | Test Condition<br>(Note 2)                                                                                                          | Min            | Typical              | Max                  | Units                      |
|------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------------|----------------------------|
| DC Specifications                              |                  |                                                                                                                                     |                |                      |                      |                            |
| Supply voltage                                 | VDD              |                                                                                                                                     | 2.45           | 2.65                 | 3.00                 | V                          |
| Control voltage:<br>Low<br>High                | VCTL_L<br>VCTL_H | PIN = +35 dBm                                                                                                                       | 0<br>+1.65     | 0<br>+1.80           | +0.45<br>+2.70       | V<br>V                     |
| Current on V1 pin                              | I_CTL            |                                                                                                                                     |                |                      | 10                   | μΑ                         |
| Supply current                                 | IDD              | VDD = 2.65 V, V1 = VCTL_H                                                                                                           |                | 35                   |                      | μА                         |
| DC supply turn-on/turn-off time                | ton              | Measured from 50% of final VDD supply voltage to final RF power ± 1 dB                                                              |                |                      | 20                   | μs                         |
| RF path switching time                         | tsw              | From one active state to another active state transition, measured from 50% of final control voltage to final RF input power ± 1 dB |                |                      | 2                    | μѕ                         |
| RF Specifications                              |                  |                                                                                                                                     |                |                      |                      |                            |
| Insertion loss (RF1 or RF2 to ANT pin)         | IL               | 0.8 to 1.0 GHz<br>0.8 to 1.0 GHz (ETC)<br>1.0 to 2.2 GHz<br>1.0 to 2.2 GHz (ETC)<br>2.2 to 2.7 GHz<br>2.2 to 2.7 GHz (ETC)          |                | 0.35<br>0.40<br>0.50 | 0.55<br>0.60<br>0.70 | dB<br>dB<br>dB<br>dB<br>dB |
| Noise Figure (RF1 or RF2 to ANT pin)           | NF               | 0.8 to 1.0 GHz (ETC)<br>1.0 to 2.2 GHz (ETC)<br>2.2 to 2.7 GHz (ETC)                                                                |                |                      | 0.55<br>0.60<br>0.70 | dB<br>dB<br>dB             |
| Isolation                                      | ISO              | 0.8 to 1.0 GHz (ETC)<br>1.0 to 2.2 GHz (ETC)<br>2.2 to 2.7 GHz (ETC)                                                                | 32<br>27<br>25 | 37<br>30<br>27       |                      | dB<br>dB<br>db             |
| Voltage Standing Wave Ratio, all ports         | VSWR             | Referenced to 50 $\Omega$ , 0.8 to 6.0 GHz                                                                                          |                | 1.15:1               | 1.3:1                | -                          |
| Large Signal Specifications                    |                  |                                                                                                                                     |                |                      |                      |                            |
| LTE/WCDMA harmonics<br>(RF1 or RF2 to ANT pin) |                  | fo = 815 to 915 MHz,<br>PIN = +24 dBm,<br>VSWR = 2.5:1:                                                                             |                |                      |                      |                            |
|                                                |                  | 3 <sup>rd</sup> harmonics                                                                                                           |                | -80                  |                      | dBm                        |
|                                                |                  | All other harmonics up to 12.75 GHz                                                                                                 |                | -65                  |                      | dBm                        |

Table 3. SKY13448-001 Electrical Specifications (2 of 2) (Note 1) (VoD = 2.85 V, ToP = +25 °C, Characteristic Impedance [Zo] = 50  $\Omega$ , Unless Otherwise Noted)

| Parameter                                          | Symbol | Test Condition<br>(Note 2)                                                                                                                                   | Min | Typical     | Max        | Units |
|----------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|------------|-------|
| Large Signal Specifications (continued)            |        |                                                                                                                                                              |     |             |            |       |
| GSM harmonics (RF1 or RF2 to ANT pin):<br>Low band |        | fo = 824 to 915 MHz,<br>PIN = +34 dBm, load<br>VSWR = 2.5:1, all other<br>harmonics up to<br>12.75 GHz                                                       |     | -50         | -45        | dBm   |
| High band                                          |        | fo = 1710 to 1910 MHz,<br>PIN = +31 dBm, load<br>VSWR = 2.5:1, all other<br>harmonics up to<br>12.75 GHz                                                     |     | <b>–</b> 50 | <b>-45</b> | dBm   |
|                                                    |        | CW carrier = $+20$ dBm;<br>Bands 1, 2, 3, 5, 8, CW<br>blocker on ANT port with<br>PIN = $-15$ dBm (see<br>Table 4 for carrier and<br>interferer frequencies) |     | -110        |            | dBm   |
| 3 <sup>rd</sup> Order Intermodulation Distortion   | IMD3   | CW carrier = +24 dBm;<br>Bands 1 & 2, WLAN CW<br>blocker = -20 dBm (see<br>Table 5 for carrier and<br>interferer frequencies)                                |     | -100        |            | dBm   |
|                                                    |        | CW carrier = +23 dBm;<br>Band 7, WLAN CW blocker<br>= -5 dBm (see Table 5 for<br>carrier and interferer<br>frequencies)                                      |     | <b>-110</b> |            | dBm   |
|                                                    |        | ftx: CW carrier = +20 dBm, Bands 1, 2, 3, 5, 8, CW blocker on ANT port with PIN = -15 dBm (see Table 6 for carrier and interferer frequencies)               |     | -100        |            | dBm   |
| 2 <sup>nd</sup> Order Intermodulation Distortion   | IMD2   | ftx: CW carrier = +24 dBm; bands 5 & 8, WLAN CW blocker on ANT port with PIN = 0 dBm (see Table 7 for carrier and interferer frequencies)                    |     | -100        |            | dBm   |
|                                                    |        | ftx: CW carrier = +23 dBm; band 7, WLAN CW blocker on ANT port = -30 dBm (see Table 7 for carrier and interferer frequencies)                                |     | -110        |            | dBm   |

Note 1: Performance is guaranteed only under the conditions listed in this Table.

Note 2: ETC = Extreme Test Conditions (VDD = 2.45 V to 3.00 V and ToP = -20 °C to +85 °C)

Table 4. 3rd Order Intermodulation Distortion Frequencies, No WLAN Blocker

| IMD3 Band | ftx<br>(MHz) |         | fblock 1<br>(MHz) |         | fblock 2<br>(MHz) | fblo<br>(M | ск 3<br>Hz) |
|-----------|--------------|---------|-------------------|---------|-------------------|------------|-------------|
|           | Minimum      | Maximum | Minimum           | Maximum | (WITZ)            | Minimum    | Maximum     |
| Band 1    | 1920         | 1980    | 1730              | 1790    | 95.0              | 5950       | 6130        |
| Band 2    | 1850         | 1910    | 1770              | 1830    | 40.0              | 5630       | 5810        |
| Band 3    | 1710         | 1785    | 1615              | 1690    | 47.5              | 5225       | 5450        |
| Band 5    | 824          | 849     | 779               | 804     | 22.5              | 2517       | 2592        |
| Band 8    | 880          | 915     | 835               | 870     | 22.5              | 2685       | 2790        |

## Table 5. 3rd Order Intermodulation Distortion Frequencies, WLAN Blocker

| IMD3 WLAN                                                                                                                                           | fτx<br>(MHz) |         | fblock 1<br>(MHz) |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-------------------|---------|
|                                                                                                                                                     | Minimum      | Maximum | Minimum           | Maximum |
| Band 1 (measured at frequencies where $2\text{fTX} - \text{fBLOCK} = 1575 \text{ MHz}$ , PBLOCK = $-20 \text{ dBm}$ , and PTX = $+24 \text{ dBm}$ ) | 1920         | 1980    | 5150              | 5850    |
| Band 2 (measured at frequencies where $2\text{fTX} - \text{fBLOCK} = 1575 \text{ MHz}$ , PBLOCK = $-20 \text{ dBm}$ , and PTX = $+24 \text{ dBm}$ ) | 1850         | 1910    | 5150              | 5850    |
| Band 7 (measured at frequencies where 2620 MHz $<$ 2ftx $-$ fblock $<$ 2690 MHz, Pblock $=$ $-$ 5 dBm, and Ptx $=$ $+$ 23 dBm)                      | 2500         | 2570    | 2400              | 2485    |

#### Table 6. 2<sup>nd</sup> Order Intermodulation Distortion Frequencies, No WLAN Blocker

| IMD2 Band | ftx<br>(MHz) |         | fBLOCK 1 Minimum | fblock 2<br>(MHz) |         |
|-----------|--------------|---------|------------------|-------------------|---------|
|           | Minimum      | Maximum | (MHz)            | Minimum           | Maximum |
| Band 1    | 1920         | 1980    | 190              | 3650              | 3770    |
| Band 2    | 1850         | 1910    | 80               | 3620              | 3740    |
| Band 3    | 1710         | 1785    | 95               | 3325              | 3475    |
| Band 5    | 824          | 849     | 45               | 1603              | 1653    |
| Band 7    | 2500         | 2570    | 120              | 4880              | 5020    |
| Band 8    | 880          | 915     | 45               | 1715              | 1785    |
| Band 10   | 1710         | 1770    | 400              | 3020              | 3140    |

#### Table 7. 2<sup>nd</sup> Order Intermodulation Distortion Frequencies, WLAN Blocker

| IMD3 WLAN                                                                                                                      | fī<br>(M |         | fblock 1<br>(MHz) |         |
|--------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------------|---------|
|                                                                                                                                | Minimum  | Maximum | Minimum           | Maximum |
| Band 5 (WLAN: measured IMD2 at fBLOCK – fTX = 1575 MHz)                                                                        | 824      | 849     | 2400              | 2485    |
| Band 7 (WLAN: measured IMD2 at fBLOCK – fTx = 1575 MHz, PBLOCK = 0 dBm, and PTx = $\pm$ 24 dBm )                               | 880      | 915     | 2400              | 2485    |
| Band 8 (measured at frequencies where 2620 MHz $<$ fbLock $-$ ftx $<$ 2690 MHz, PbLock $=$ $-$ 30 dBm, and Ptx $=$ $+$ 23 dBm) | 2500     | 2570    | 5150              | 5850    |

Table 8. SKY13448-001 Truth Table

| State | Active Path | V1<br>(Bump 2) |
|-------|-------------|----------------|
| 0     | ANT to RF1  | 0              |
| 1     | ANT to RF2  | 1              |

**Note**: "1" = 1.65 V to 2.70 V. "0" = -0 V to +0.45 V.

# **Evaluation Board Description**

The SKY13448-001 Evaluation Board is used to test the performance of the SKY13448-001 SPDT Switch. An Evaluation Board schematic diagram is provided in Figure 3. An assembly drawing for the Evaluation Board is shown in Figure 4.

## **Package and Handling Information**

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY13448-001 is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note,

Wafer Level Chip Scale Packages: SMT Process Guidelines and Handling Considerations, document number 201676.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

### **Package Dimensions**

Package dimensions for the SKY13448-001 die are shown in Figure 5, and tape and reel dimensions are provided in Figure 6.

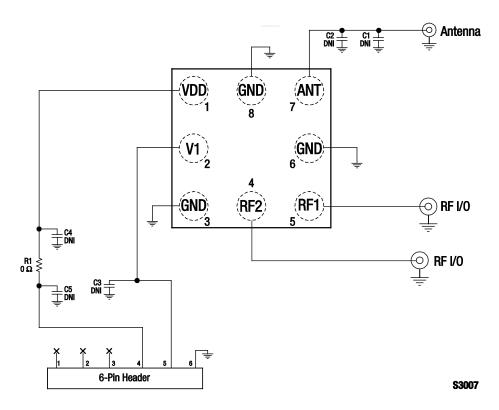



Figure 3. SKY13448-001 Evaluation Board Schematic

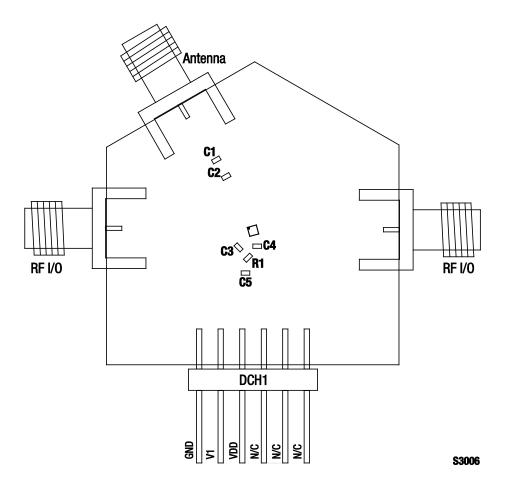



Figure 4. SKY13448-001 Evaluation Board Assembly Diagram

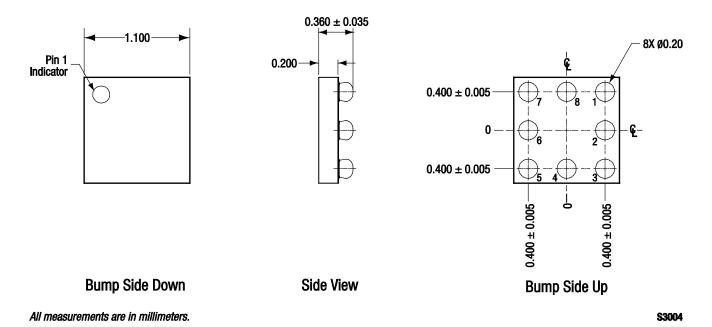
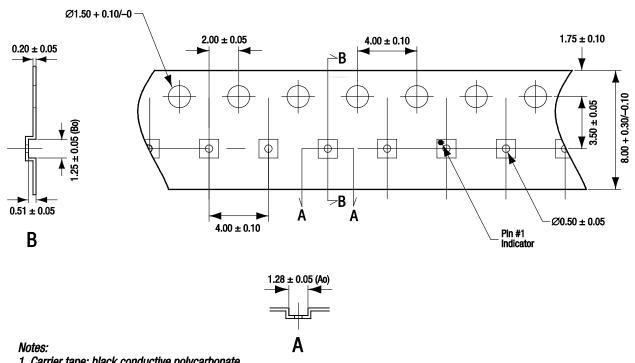




Figure 5. SKY13448-001 Package Dimensions



- 1. Carrier tape: black conductive polycarbonate.
- 2. Cover tape material: transparent conductive material.
- 3.10 sprocket hole pitch cumulative tolerance: ±0.20 mm. 4.Ao and Bo measured on plane 0.30 mm from bottom pocket.
- 5. All measurements are in millimeters.

S3283

Figure 6. SKY13448-001 Tape and Reel Dimensions

# **Ordering Information**

| Model Name                                                   | Manufacturing Part Number | Evaluation Board Part Number |
|--------------------------------------------------------------|---------------------------|------------------------------|
| SKY13448-001 0.1-2.7 GHz GPIO SPDT Switch in a WLCSP Package | SKY13448-001              | SKY13448-001-EVB             |

Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.