SKT 100

Stud Thyristor

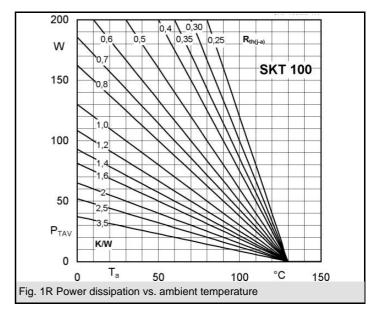
Line Thyristor

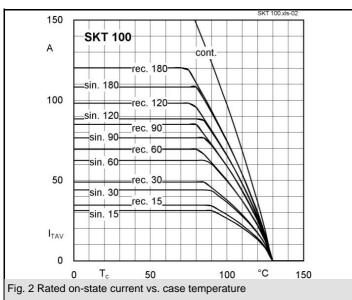
SKT 100

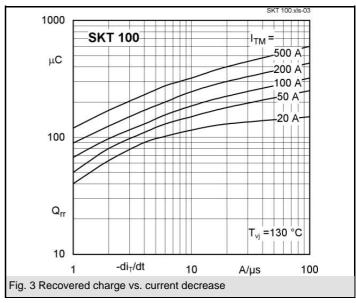
Features

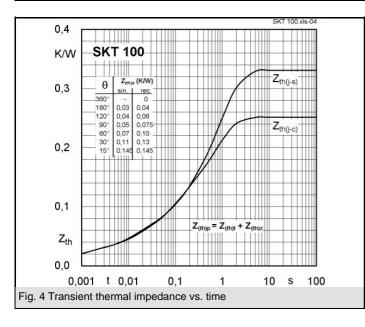
- Hermetic metal case with glass insulator
- Threaded stud ISO M12 or UNF 1/2-20
- Interchangeable with international standard case

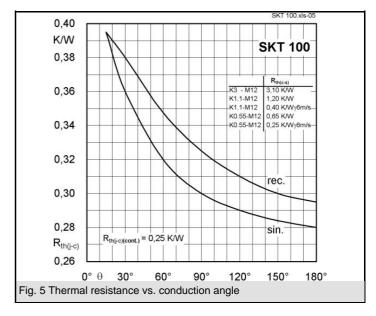

Typical Applications*

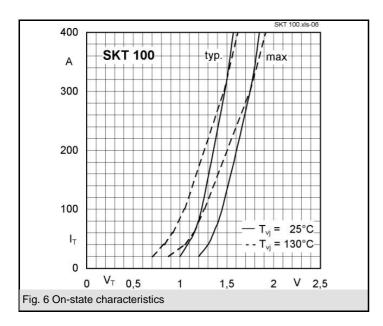

- DC motor control (e. g. for machines tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers(e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 47 $\Omega/10 \text{ W}$, C = 0,22 μF
- 1) Available with UNF thread 1/2-20 UNF2A, e. g. SKT 100/08D UNF

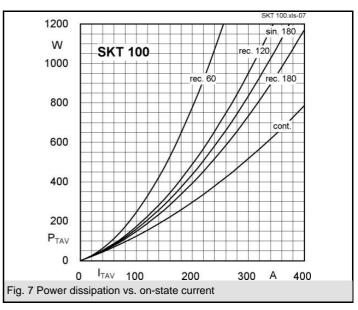

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 175 A (maximum value for continuous operation)		
V	V	I _{TAV} = 100 A (sin. 180; T _c = 85 °C)		
500	400	SKT 100/04D		
900	800	SKT 100/08D ¹⁾		
1300	1200	SKT 100/12E ¹⁾		
1500	1400	SKT 100/14E ¹⁾		
1700	1600	SKT 100/16E ¹⁾		
1900	1800	SKT 100/18E		

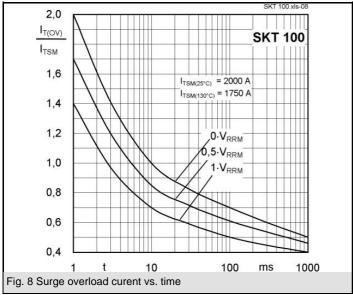

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	74 (100)	Α
I _D	K1,1; T _a = 45 °C; B2 / B6	90 / 125	Α
	K0,55; T _a = 45 °C; B2 / B6	130 /180	Α
I _{RMS}	K1,1; T _a = 45 °C; W1C	100	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	2000	Α
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	1750	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,35 \dots 10 \text{ms}$	20000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	15000	A²s
V _T	T _{vi} = 25 °C; I _T = 300 A	max. 1,75	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1	V
r _T	T _{vj} = 130 °C	max. 2,4	mΩ
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 30	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$,	100	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 250	mA
I_{L}	T _{vj} = 25 °C; typ. / max.	300 / 600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.	0,25	K/W
R _{th(j-c)}	sin. 180	0,28	K/W
$R_{th(j-c)}$	rec. 120	0,31	K/W
$R_{th(c-s)}$		0,08	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 55 + 150	°C
V_{isol}		-	V~
M_s	to heatsink	16	Nm
а		5 * 9,81	m/s²
m	approx.	100	g
Case		B 5	

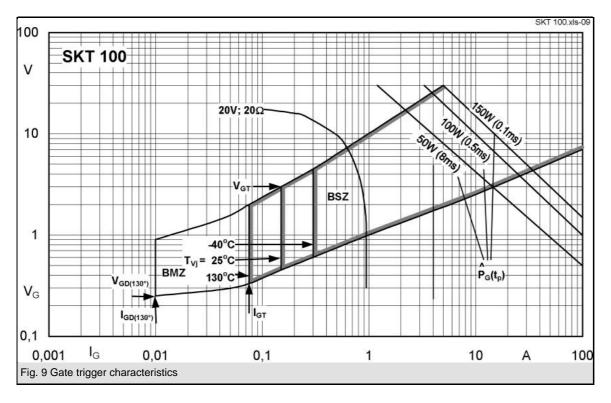


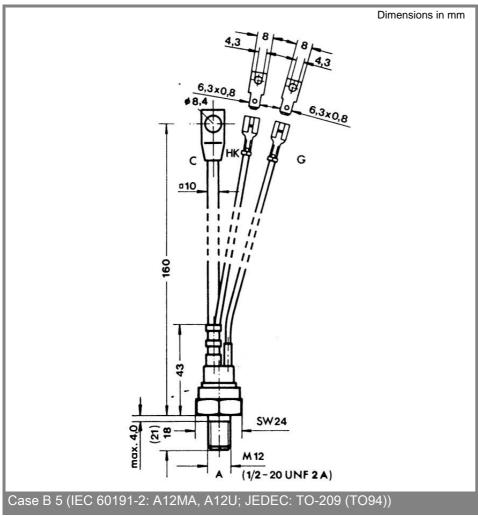











SKT 100

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 100

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

5 12-02-2010 CRG © by SEMIKRON