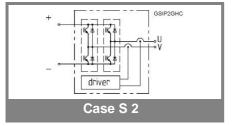

SKiiP 292GH170-273CTV ...

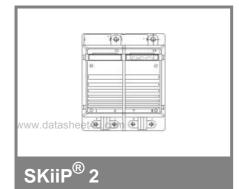
4-pack - integrated intelligent Power System

Power section


SKiiP 292GH170-273CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	250 (187,5)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	250 (187,5)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	2160	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	23	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics T _s = 25 °C unless otherwise spe							specified		
Symbol Conditions				min.			Units		
	Condition	OHS			1111111.	typ.	max.	Ullits	
IGBT V_{CEsat} I_C = 200 A, T_i = 25 (125) °C 3,3 (4,3) 3,9 V									
V _{CEsat}			25) °C			3,3 (4,3)	3,9 2 (2,3)	V	
V _{CEO}	$T_j = 25 (12)$ $T_i = 25 (12)$						2 (2,3) 9,6 (13,2)	=	
r _{CE}	,							mΩ	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES},$				(15)	1	mA		
	$T_j = 25 (12)$								
$E_{on} + E_{off}$	I _C = 200 A, V _{CC} = 900 V						173	mJ	
	T _j = 125 °C	C, V _{CC} = 12	200 V				254	mJ	
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,5		mΩ	
L _{CE}	top, botton	n ,				15		nΗ	
C _{CHC}	per phase	, AC-side				0,8		nF	
Inverse o	diode							•	
$V_F = V_{EC}$	I _F = 200 A	, T _i = 25 (1	25) °C			2,3 (2,1)	2,9	V	
V _{TO}	$T_i = 25 (12)$					1,3 (1)	1,6 (1,3)	V	
r _T		T _i = 25 (125) °C				5 (5,6)	6,3 (7)	mΩ	
E _{rr}	$I_{\rm C} = 200 \text{A}$	$V_{CC} = 900$) V				21	mJ	
	T _j = 125 °C	C, V _{CC} = 12	200 V				25	mJ	
Mechani	cal data								
M _{dc}	DC termina	als, SI Unit	S		6		8	Nm	
M _{ac}	AC terminals, SI Units				13		15	Nm	
w	SKiiP® 2 System w/o heat sink					1,9		kg	
w	heat sink					4,7		kg	
Thermal	characte	ristics (P16 hea	t sink; 3	10m ³ /h);	", " refer	ence to	•	
temperat					•	Γ			
R _{th(j-s)I}	per IGBT						0,08	K/W	
R _{th(j-s)D}	per diode						0,267	K/W	
R _{th(s-a)}	per module	е					0,044	K/W	
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	9	62	10		1	0,13	0,001		
$Z_{th(j-r)D}$	29	205	32		1	0,13	0,001		
$Z_{th(r-a)}$	14,2	19,3	6,8	3,7	262	50	5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

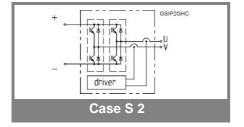
SKiiP 292GH170-273CTV ...

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 292GH170-273CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1} V_{S2}	stabilized 15 V power supply unstabilized 24 V power supply	18 30	V V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
	secondary to primary side input / output (AC, r.m.s., 2s) output 1 / output 2 (AC, r.m.s., 2s) switching frequency operating / storage temperature	75 4000 1500 20 - 25 + 85	kV/µs Vac Vac kHz °C		

Characte	Characteristics			(T _a = 25		
	Conditions	min.	typ.	max.	Units	
V_{S1}	supply voltage stabilized	14,4	15	15,6	V	
V_{S2}	supply voltage non stabilized	20	24	30	V	
I _{S1}	V _{S1} = 15 V	230+36	230+360*f/f _{max} +1,3*(I _{AC} /A)			
I _{S2}	V _{S2} = 24 V	170+25	170+250*f/f _{max} +1,0*(I _{AC} /A)			
V_{iT+}	input threshold voltage (High)	11,2			V	
V_{iT-}	input threshold voltage (Low)			5,4	V	
R _{IN}	input resistance		10		kΩ	
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs	
t _{d(off)IO}	input-output turn-off propagation time		3		μs	
tpERRRESET	error memory reset time	9			μs	
t_{TD}	top / bottom switch : interlock time		2,3		μs	
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		250		Α	
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA	
I _{A0max}	output current at pin 15/16/18/19			5	mA	
V _{OI}	logic low output voltage			0,6	V	
V _{0H}	logic high output voltage			30	V	
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		313		Α	
I _{TRIPLG}	ground fault protection		72		Α	
T _{tp}	over temperature protection	110		120	°C	
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V	
	(U _{analog OUT} = 9 V); (option)					

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

