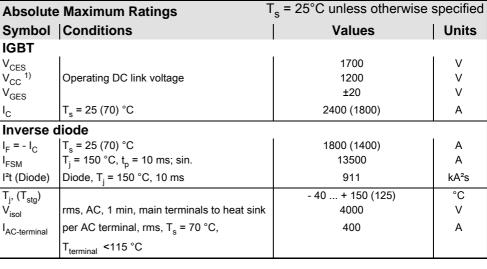
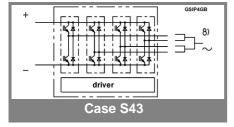

SKiiP 2403GB172-4DW

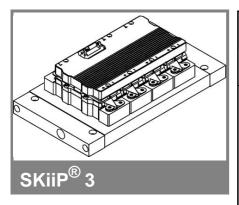

2-pack-integrated intelligent Power System

Power section SKiiP 2403GB172-4DW


Preliminary Data

Features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request



Characteristics				T _s = 25°C unless otherwise specified					
Symbol Conditions				min.	typ.	max.	Units		
IGBT									
V _{CEsat}	I _C = 1200 measured at	A, T _j = 25 terminal	(125) °C;			1,9 (2,2)	2,4	V	
V_{CEO}	T _i = 25 (1	25) °C; at t	erminal			1 (0,9)	1,2 (1,1)	V	
r _{CE}	T _i = 25 (125) °C; at terminal					0,8 (1)	1 (1,3)	mΩ	
I _{CES}	$V'_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}C$					mA			
$E_{on} + E_{off}$	I _C = 1200 A, V _{CC} = 900 V				mJ				
	T _j = 125 °C, V _{CC} = 1200 V					mJ			
R _{CC+EE}	terminal o	terminal chip, T _i = 25 °C				0,13			
L _{CE}	top, bottom					nΗ			
C _{CHC}	per phase	e, AC-side				4		nF	
Inverse o	Inverse diode								
$V_F = V_{EC}$	I _F = 1200 measured at	A, T _j = 25 (terminal	(125) °C			2 (1,8)	2,15	V	
V_{TO}	T _i = 25 (1	25) °C				1,1 (0,8)	1,2 (0,9)	V	
r _T	$T_i = 25 (1)$	25) °C				0,8 (0,8)	0,8 (0,9)	mΩ	
Ėrr		A, V _{CC} = 9	00 V			144		mJ	
	T _j = 125 °	C, V _{CC} = 1	200 V			171		mJ	
Mechani	cal data							•	
M _{dc}	DC termin	nals, SI Uni	ts		6		8	Nm	
M_{ac}		nals, SI Uni			13		15	Nm	
W	SKiiP® 3 System w/o heat sink					3,1		kg	
w	heat sink					6,2		kg	
	Thermal characteristics (NWK 40; 8l/min; 50%glyc.); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)								
R _{th(j-s)l}	per IGBT			•		,	0,013	K/W	
R _{th(j-s)D}	per diode						0,025	K/W	
Z _{th}	R _i (mK/W) (max. values)					tau	_i (s)	•	
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	1,2	5	5,8	0	69	0,35	0,02	1	
$Z_{th(j-r)D}$	2	3	13,5	13,5	50	5	0,25	0,04	
Z _{th(r-a)}	2,7	4,6	1,1	0,6	48	15	2,8	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

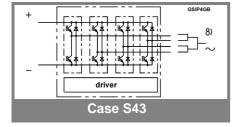
SKiiP 2403GB172-4DW

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 2403GB172-4DW

Preliminary Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlick of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	Γ _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	7	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	ristics	(T _a = 25°			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	430+45*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	12		12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		2500		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);		not implemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

