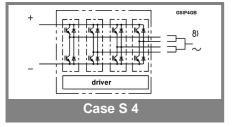
SKiiP 1602GB061-459CTV ...

2-pack - integrated intelligent Power System

Power section


SKiiP 1602GB061-459CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP® 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request

Absolute	Maximum Ratings	T _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		600	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	400	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1600 (1200)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	1600 (1200)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	16000	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	1280	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	2500	V			

Characteristics $T_s = 25$ °C unless otherwise specified								
	mbol Conditions				min.	typ.	max.	Units
IGBT	Conditio	113			111111.	typ.	max.	Units
V _{CEsat}	I _C = 1600 A	T. = 25 (125) °C		İ	2,3 (2,6)	2,6	ΙV
V _{CEO}			123) 0			0,8 (0,7)		V
r _{CE}	$T_j = 25 (125) \degree C$ $T_i = 25 (125) \degree C$					0,9 (1,2)		mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(80)	1.6	mA
CES	$T_i = 25 (125)$		ΞS'			(00)	1,0	
E _{on} + E _{off}	I _C = 1600 A		00 V				144	mJ
011 011	T _i = 125 °C,						211	mJ
R _{CC' + EE'}	terminal chip, T _i = 125 °C					0,13		mΩ
L_{CE}	top, bottom	,				3,8		nH
C _{CHC}	per phase,	AC-side				3,2		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 1600 A	, T _i = 25 (125) °C			1,5 (1,5)	1,8	V
V _{TO}	$T_i = 25 (125)$	6) °C				0,8 (0,6)	1 (0,8)	V
r_T	$T_i = 25 (125)$					0,4 (0,5)	0,5 (0,6)	mΩ
E _{rr}	I _C = 1600 A	$V_{CC} = 3$	00 V				51	mJ
	$T_{j} = 125 ^{\circ}\text{C},$	$V_{CC} = 40$	00 V				61	mJ
Mechani	cal data							
M_{dc}	DC termina	ls, SI Unit	s		6		8	Nm
M _{ac}	AC terminal	s, SI Unit	s		13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
w	heat sink	heat sink				8,5		kg
Thermal	character	istics (P 16 hea	at sink; 2	75 m ³ /h));	rence to	
temperat	ture senso	or				ı		
$R_{th(j-s)I}$	per IGBT						0,028	K/W
$R_{th(j-s)D}$	per diode						0,05	K/W
$R_{th(s-a)}$	per module						0,033	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	3	21	3		1	0,13	0,001	
$Z_{th(j-r)D}$	6	39	6		1	0,13	0,001	
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

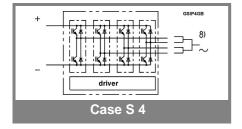
SKiiP 1602GB061-459CTV ...

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1602GB061-459CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S1} V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	2500	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f _{max}	switching frequency	15	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characteristics			(T _a = 25 °C)		
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+47	290+470*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	220+320	220+320*f/f _{max} +1,0*(I _{AC} /A)		
V_{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,4		μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		1322		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{OI}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1652		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	400			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

