SK 75 TAA

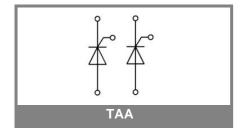
SEMITOP®2

Two separated thyristors

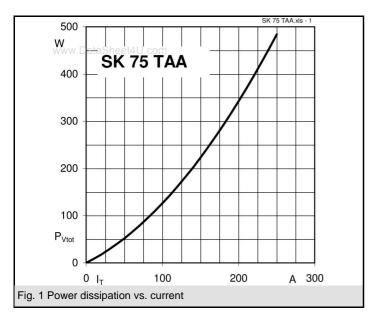
SK 75 TAA

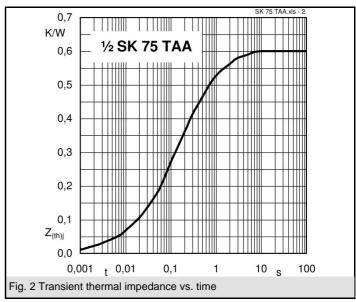
Target Data

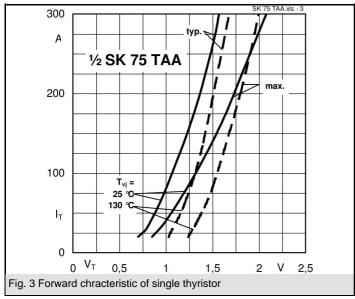
Features

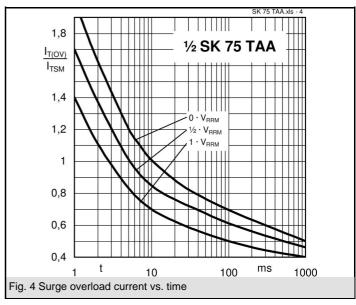

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Up to 1600 reverse voltage
- High surge currents

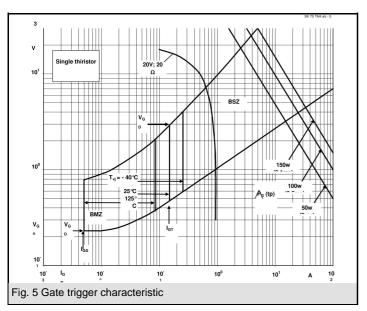
Typical Applications

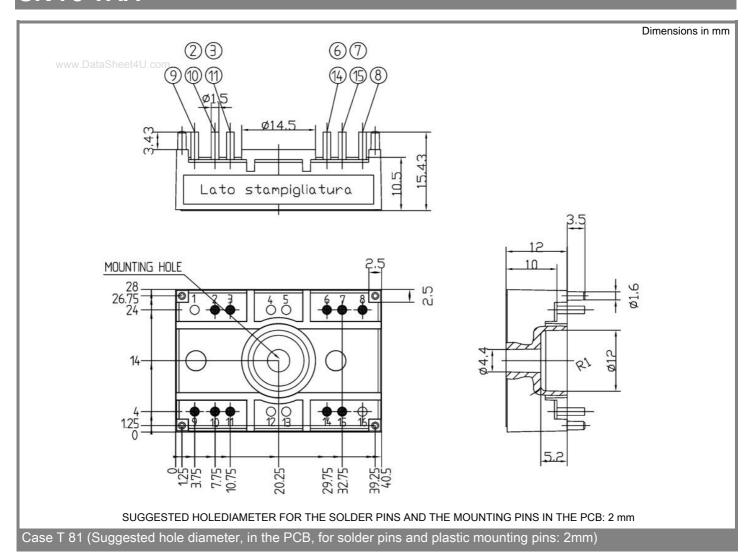

- Brake chopper
- Soft starters

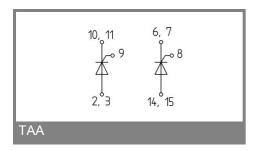

V _{RSM} V	V _{RRM} , V _{DRM} V	I _T = 75 A (T _s = 80 °C)
900	800	SK75TAA08
1300	1200	SK75TAA12
1700	1600	SK75TAA16


Characteristics		Ts = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
I _T	Ts = 100°C	47	Α	
I _T	Ts = 80°C	75	Α	
			Α	
I _{TSM} /I _{FSM}	T _{vj} = 25 (125) °C; 10 ms	1500 (1350)	Α	
l²t	$T_{vj} = 25 (125) ^{\circ}\text{C}$; half sine wave, 10 ms	11250 (9100)	A²s	
T _{stg}		-40 + 125	°C	
T _{solder}	terminals, 10 s	260	°C	
Thyristor				
(dv/dt) _{cr}	T _{vj} = 125 °C	1000	V/µs	
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 60 Hz	50	A/µs	
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs	
I _H	$T_{vi} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA	
IL	$T_{v_i} = 25 \text{ °C}; R_G = 33 \Omega; \text{ typ. / max.}$	200 / 500	mA	
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_{T} = 200 \text{A}); \text{max}.$	1,8	V	
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V	
r _T	T _{vi} = 125 °C	max. 4,5	mΩ	
I _{DD} ; I _{RD}	$T_{vj}^{yj} = 125 \text{ °C; } V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 20	mA	
R _{th(j-s)}	cont. per thyristor	0,6	K/W	
T _{vi}		-40 + 125	°C	
V _{GT}	T _{vi} = 25 °C; d.c.	2	V	
I _{GT}	$T_{vi}^{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA	
V _{GD}	$T_{vi}^{yj} = 125 ^{\circ}\text{C}; \text{d.c.}$	0,25	V	
I _{GD}	$T_{vi} = 125 ^{\circ}\text{C}; \text{d.c.}$	5	mA	
Diode	1 9			
V_{F}	$T_{vi} = {^{\circ}C}; (I_F = A); max.$		V	
V _(TO)	$T_{vi} = {^{\circ}C}$		V	
r _T	$T_{vi}^{vj} = {^{\circ}C}$		mΩ	
I _{RD}	$T_{vj}^{yj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA	
R _{th(j-s)}	vj 100 mm		K/W	
T _{vi}			°C	
Mechanical data				
V_{isol}	AC 50Hz, r.m.s. 1min (1sec)	2500 (3000)	V	
M ₁	mounting torque	2	Nm	
w		19	g	
Case	SEMITOP®2	T 81		




SK 75 TAA





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.