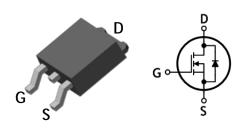


Super Junction MOSFET

N-Channel Super Junction MOSFET

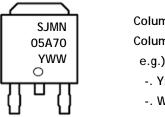

Package

Features

- Drain-Source voltage: V_{DS}=750V (@T_J=150°C)
- Low drain-source On resistance: $R_{DS(on)}=0.81\Omega$ (Typ.)
- Ultra low gate charge: Qg=10nC (Typ.)
- RoHS compliant device
- 100% avalanche tested

Ordering Information

Part Number



TO-252

SJMN05A70D SJMN05A70 TO-252

Marking

Marking Information

Column 1, 2: Device Code Column 3: Production Information e.g.) YWW -. Y: Year Code -. WW : Week Code

Absolute maximum ratings (Tc=25°C unless otherwise noted)

Characteristic		Symbol	Rating	Unit
Drain-source voltage		V _{DSS}	700	V
Gate-source voltage		V _{GSS}	±30	V
Drain current (DC) ^(Note 1)		T _c =25°C	5	А
	ID	T _c =100°C	3.2	А
Drain current (Pulsed) (Note 1)		I _{DM}	15	А
Single pulsed avalanche energy (Note 2)		E _{AS}	130	mJ
Repetitive avalanche current (Note 1)	I _{AR}		5	А
Repetitive avalanche energy (Note 1)		E _{AR}	0.4	mJ
Power dissipation		P _D	50	W
Junction temperature		TJ	150	°C
Storage temperature range		T _{stg}	-55~150	°C

* Limited only maximum junction temperature

Thermal Characteristics

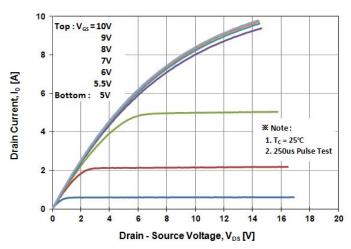
Characteristic	Symbol	Rating	Unit
Thermal resistance, junction to case	R _{th(j-c)}	Max. 2.5	°C/W
Thermal resistance, junction to ambient	$R_{th(j-a)}$	Max. 62	-C/ W

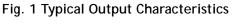
Electrical Characteristics (T_A=25°C unless otherwise noted)

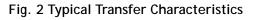
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BV _{DSS}	I _D =250uA, V _{GS} =0V	700	-	-	V
Gate threshold voltage	V _{GS(th)}	$I_D=250uA, V_{DS}=V_{GS}$	2.5	3.5	4.5	V
Drain-source cut-off current		V_{DS} =700V, V_{GS} =0V	-	-	1	uA
Drain-source cut-off current	I _{DSS}	V _{DS} =560V, T _J =125°C	-	-	10	uA
Gate leakage current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 30V$	-	-	±100	nA
Drain-source on-resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.5A	-	0.81	0.92	Ω
Gate resistance	R _G	f=1MHz, Open drain	-	2.0	-	Ω
Input capacitance	C _{iss}	V _{DS} =25V, V _{GS} =0V, f=1MHz	-	450	-	pF
Output capacitance	C _{oss}		-	320	-	
Reverse transfer capacitance	C _{rss}		-	9	-	
Turn-on delay time (Note 3)	t _{d(on)}		-	13	-	
Rise time (Note 3)	t _r	V_{DS} =300V, I_{D} =2A,	-	12	-	
Turn-off delay time (Note 3)	t _{d(off)}	$R_{G}=12\Omega$, $V_{GS}=10V$	-	31	-	ns
Fall time (Note 3)	t _f		-	9	-	
Total gate charge (Note 4)	Qg		-	10	-	
Gate-source charge (Note 4)	Q _{gs}	$V_{DS}=480V, V_{GS}=10V,$ $I_{D}=2A$	-	3.5	-	nC
Gate-drain charge (Note 4)	Q_{gd}		-	3	-	Ţ

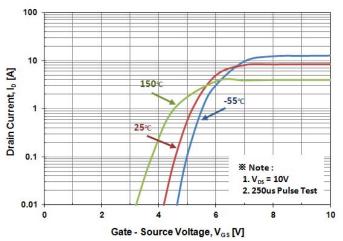
Source-Drain Diode Ratings and Characteristics (Tc=25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Source current (DC)	ls	Integral reverse diode	-	-	5	А
Source current (Pulsed)	I _{SM}	in the MOSFET	-	-	15	А
Forward voltage	V _{SD}	$V_{GS}=0V$, $I_S=2A$	-	-	1.2	V
Reverse recovery time (Note 3,4)	t _{rr}	I _s =4A, V _R =50V,	-	220	-	ns
Reverse recovery charge (Note 3,4)	Q _{rr}	dl _s /dt=100A/us	-	1.6	-	uC

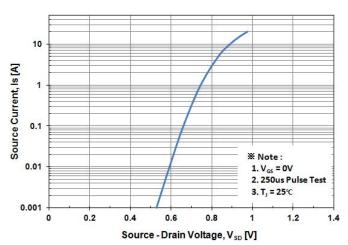

Note:

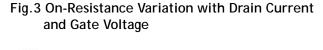

1. Calculated continuous current based on maximum allowable junction temperature

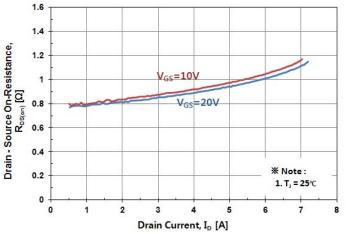

2. L=60mH, I_{AS} =2A, V_{DD} =60V, R_G =25 Ω , Starting T_J =25°C 3. Guaranteed by design, not subject to production testing

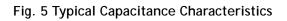

4. Pulse test: Pulse width≤300us, Duty cycle≤2%

Typical Electrical Characteristics Curves









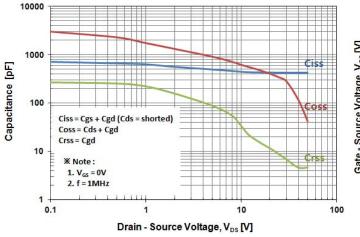
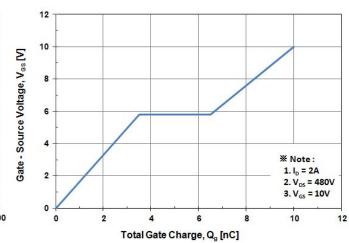



Fig. 6 Typical Total Gate Charge Characteristics

X Note :

125

1. V_{GS} = 10V

2. I_D = 1.5A

150

175

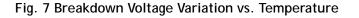
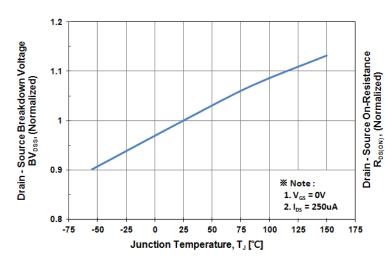
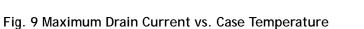
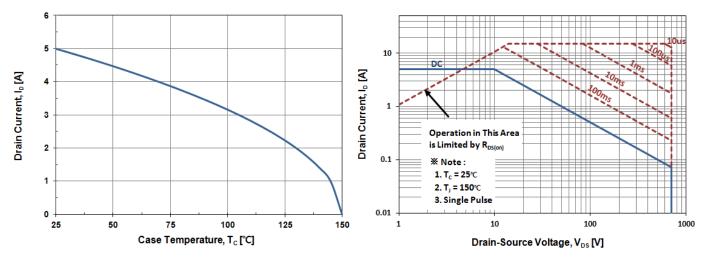




Fig. 8 On-Resistance Variation vs. Temperature

25


Junction Temperature, T_J [°C]

0

50

75

100

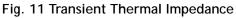
3

2.5

2

1.5

1


0.5

0

-75

-50

-25

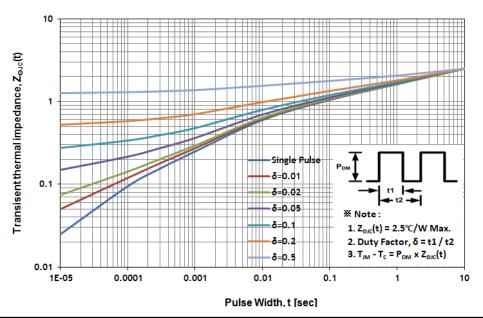
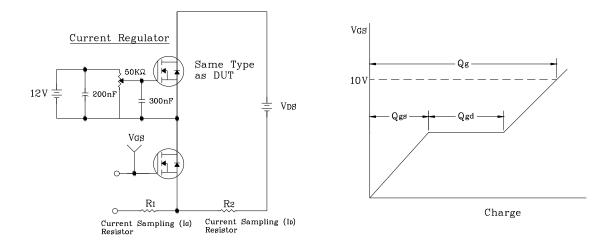
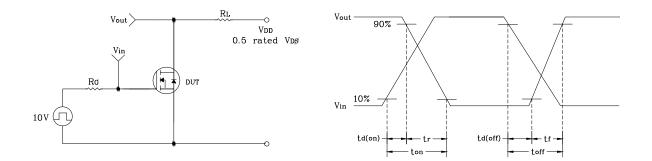
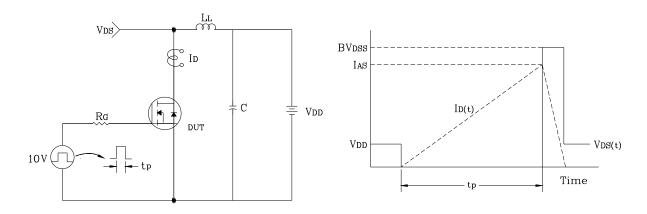
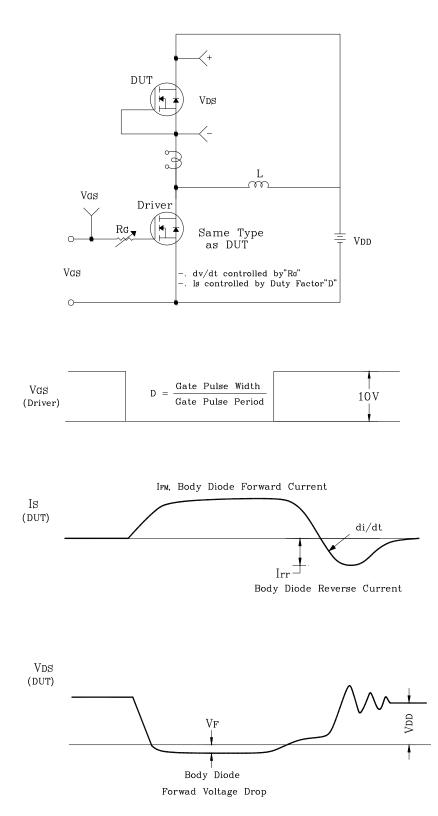
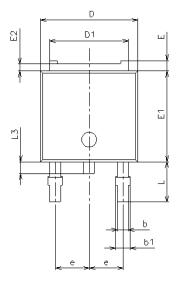
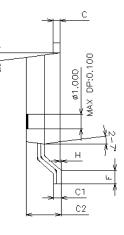
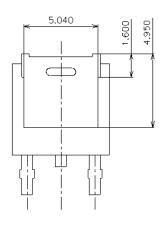




Fig. 12 Gate Charge Test Circuit & Waveform

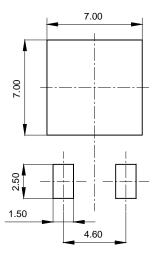
Fig. 13 Resistive Switching Test Circuit & Waveform

Fig. 14 E_{AS} Test Circuit & Waveform


Fig. 15 Diode Reverse Recovery Time Test Circuit & Waveform

Package Outline Dimensions (Unit: mm)



A-7°		
\triangleleft		
V		
		Ā

SYMBOL	MILLIMETERS			
STINIBUL	MINIMUM	NOMINAL	MAXIMUM	NOTE
D	6.40	6.60	6.80	
D1	5.14	5.34	5.54	
E	0.50	0.70	0.90	
E1	5.90	6.10	6.30	
E2		0.50 TYP		
Α	2.20	2.30	2.40	
A1	0.87	1.07	1.27	
С	0.40	0.50	0.60	
C1	0.40	0.50	0.60	
C2	2.10	2.30	2.50	
L	2.50	2.70	2.90	
L3	0.60	0.80	1.00	
b	0.66	0.76	0.86	
b1	0.96 MAX			
e	2.10	2.30	2.50	
F	0.80 MIN			
н	0.00	-	0.10	

Recommended Land Pattern (Unit: mm)

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.