

SiW1721B BLUETOOTH® RADIO MODEM

Features

- Integrated RF transceiver and modem for Bluetooth wireless technology.
- Manufactured using low-power 0.18-micron CMOS process technology.
- Digital baseband interface connects directly to an integrated Bluetooth controller.
- Direct conversion RF architecture improves receiver-blocking performance.
- Low out-of-band spurious emissions minimize interference with mobile phone operations.
- Hardware AGC dynamically adjusts receiver performance in changing environments.
- 50 Ω RF I/O does not need additional external impedance matching components.
- On-chip voltage regulation simplifies system design.
- -88 dBm receiver sensitivity and +2 dBm transmitter power typical performance specifications.
- Bluetooth Specification V2.0 qualified. Complies with Bluetooth specifications V1.1, V1.2 and V2.0.

Applications

• Mobile phones with integrated controller for Bluetooth wireless technology.

Bluetooth Subsystem Using the SiW1721B Radio Modem

Summary

The SiW1721B is a 2.4-GHz radio transceiver for Bluetooth wireless technology. This highly integrated transceiver is specifically designed for use with a third party Bluetooth baseband controller chipset requiring an external Bluetooth RF transceiver. Due to its low power CMOS process, the design minimizes current draw in both active and standby modes.

The SiW1721B combines a radio transceiver and Gaussian Frequency Shift Keying (GFSK) modem with digital control and interface logic. The IC also incorporates analog and digital voltage regulators and a reference Phase Lock Loop (PLL) capable of accepting various reference clock frequencies. The level of integration enables a low system cost with fewer external components.

The SiW1721B is packaged in a 5-by-5-mm, Pb-free, 32-pin QFN package that meets RoHS (Green) requirements. Operating temperature range is guaranteed from -40°C to +85°C.

Optimum Technology Matching® Applied

•		
🔄 Si BJT	🗌 GaAs HBT	GaAs MESFET
Si Bi-CMOS	SiGe HBT	Si CMOS
GaInP/HBT	GaN HEMT	SiGe Bi-CMOS
Si Bi-CMOS	SiGe HBT	Si CMOS

60 0076 R00F SiW1721B Radio Modem IC DS www.DataSheet4U.com

Ordering Information

SiW1721B Bluetooth® Radio Modem

See page 12 for details.

RF Micro Devices, Inc. 7628 Thorndike Road Greensboro, NC 27409, USA

Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

SiW1721B

Description

The following figure shows the SiW1721B Radio Modem functional block diagram. During the receive process, the radio signal is taken from the single-ended RF input pin that feeds into the low noise amplifier (LNA). The signal from the LNA is directly down-converted to I/Q baseband, filtered with an anti-aliasing filter, and converted to a digital signal with a high resolution analog-to-digital converter. The critical channel filtering is done in the digital domain for stable and repeatable performance. The signal is then processed by a high performance GFSK demodulator. The IC has multiple internal self-calibration circuits to maintain stable and repeatable performance from part-to-part as well as over the full temperature range.

The IC has two fully integrated regulators: one for the radio (analog regulator) and one for the digital logic (digital regulator). The digital regulator can be used to supply a Bluetooth baseband controller. Both regulators can be bypassed if external regulation is desired.

Note: When bypassing the analog regulator, the VBATT_ANA and VCC_OUT pins must be tied together and the external analog voltage (1.8 V) should be applied to the VBATT_ANA pin. When bypassing the digital regulator, the VBATT_DIG pin should be left unconnected and the external digital voltage (1.8 V) should be applied to the VBB_OUT pin.

The IC also provides power on reset and glitch-free clock start-up. A reference PLL can be enabled to support a number of different reference frequencies.

Digital control functions and a programming interface provide radio modem control and a flexible interface to external Bluetooth link controllers.

SiW1721B Block Diagram

Radio Interface

An internal power control loop maintains a very stable RF_IO signal level over the full temperature range and from part to part. This means predictable and repeatable range at any temperature.

Modem Interface

The modem interface transfers the Bluetooth data between the SiW1721B Radio Modem and the ASIC. For reference purposes, the pin description table (Table 1) provides a brief description of typical interface modes.

Clock Signals

Multiple reference clock frequencies can be used as a reference for the RF circuits, to synthesize clocks for most of the internal digital circuits, and to supply external processors with timing signals.

Serial Programming Interface (SPI)

The serial programming interface (SPI) is used to access the internal registers of the SiW1721B Radio Modem. The SPI is a synchronous serial interface that can be clocked to a nominal speed of 8MHz.

Power

The SiW1721B Radio Modem includes both analog and digital voltage regulators. Input options are based on factors such as voltage source, where internal regulators are used, and I/O voltage.

Pin Description

The SiW1721B Radio Modem's radio and modem interface (SPI), a single clock input, and supply voltage are required for proper operation.

Name	Pad Type	Description
Radio Interface Sig	nal Descriptio	n
RF_IO	Analog	Combined 50 Ω input and output pin in normal mode. Rx only in power class 1 mode.
IDAC	Analog	Power control to external power amplifier. This output provides a variable current source that can be used to control the external power amp. Leave unconnected if not used.
TX_RX_SWITCH	CMOS output	Output signal to indicate the current state of the radio. The polarity is programmable with the default set as: Low=Transmit mode. High=Non-transmit mode.
TX_BIAS	Analog	Bias for the output driver in normal mode, transmit output in power class 1 mode.
Modem Interface D	escription	
RX_TX_DATA	CMOS bi-directional	Received sliced-mode data from radio; or transmit data to radio.
CD_TXEN	CMOS bi-directional	Dual function carrier detect and transmit enable. This bi-directional signal can be enabled through internal registers. During transmit, this pin can be used as an INPUT to indicate valid transmit data (TXEN). During receive, this pin can be used as an OUTPUT to indicate carrier detect (CD). Input only, output, or bi-directional.
ENABLE_RM	CMOS input	Sleep/wake control signal from baseband controller. Used to command the SiW1721B Radio Modem from idle to sleep mode, and to awaken the SiW1721B Radio Modem from sleep mode.
HOP_STROBE	CMOS input	Signal generated by the baseband to indicate the start of TX or RX ramp-up.
RESET_N	CMOS input	Reset for digital circuits only. State machines and internal registers reset to their default state. This signal is an asynchronous input with a minimum pulse width requirement of 10 μ s.
Clock Signals Desc	ription	
XTAL_P/CLK	Analog	System clock crystal positive input or reference clock input. For additional information see the "Crystal Requirements" and "External Reference Requirements" sections.
XTAL_N	Analog	System clock crystal negative input. If a reference clock frequency is used, this pin should be left unconnected.
BB_CLK	CMOS output	Selectable clock output to external baseband controller. Five frequencies are supported (in MHz): reference frequency, reference frequency/2, 12, 13, 16, 32, 48, and 52. BB_CLK stops oscillating when ENABLE_RM is de-asserted (low).
Serial Programming	g Interface Des	scription
SPI_TXD	CMOS output	SPI data output from SiW1721B.
SPI_RXD	CMOS input	SPI data input to SiW1721B.
SPI_CLK	CMOS input	Clock input used for synchronous data transfer on the SPI bus.
SPI_SS	CMOS input	SPI slave select that enables the SiW1721B Radio Modem as the target.
Power Signals Des	cription	
VBATT_ANA	Power	Supply voltage to internal analog voltage regulator.
VBATT_DIG	Power	Supply voltage to internal digital voltage regulator.
VCC_OUT	Power	Regulated output from internal analog regulator.
VBB_OUT	Power	Regulated output from internal digital regulator.
VCC	Power	Supply voltage to on-chip analog circuits.
VDD_IO	Power	Supply voltage to on-chip I/O interface. I/O pins: BB_CLK, CD_TXEN, ENABLE_RM, HOP_STROBE, RESET_N, RX_TX_DATA, SPI_CLK, SPI_RXD, SPI_SS, SPI_TXD, TX_RX_SWITCH.
VBB_RDY	CMOS output	This signal is used to indicate that the internal digital regulator is stable (VBB_OUT).
Other I/O Descriptie	on	
VREFP_CAP	Analog	Decoupling capacitor for voltage reference for the internal A/D converter.
VREFN_CAP	Analog	Decoupling capacitor for voltage reference for the internal A/D converter.
VTUNE	Analog	Pin for reference PLL loop filter.
CHG_PUMP	Analog	Pin for RF PLL loop filter.

Table 1. SiW1721B Radio Modem Pin List

System Specifications Absolute Maximum Ratings

Parameter	Description		Max	Unit
V _{CC}	Analog circuit supply voltage	-0.3	3.63	V
V _{DD_IO}	I/O supply voltage	-0.3	3.63	V
V _{BATT_ANA}	Analog regulator supply voltage	-0.3	3.63	V
V _{BATT_DIG}	Digital regulator supply voltage	-0.3	3.63	V
T _{ST}	Storage temperature	-55	+125	°C
RF _{MAX}	Maximum RF input level	-	+5	dBm

Note: Absolute maximum ratings indicate limits beyond which the useful life of the device may be impaired or damage may occur.

Recommended Operating Conditions

Parameter	Description	Min	Max	Unit
T _{OP}	Operating temperature (industrial grade)	-40	+85	°C
V _{BATT_ANA}	Supply for internal analog voltage regulator	2.3	3.63	V
V _{BATT_DIG}	Supply for internal digital voltage regulator	2.3	3.63	V
V _{CC}	Analog supply voltage	1.71	1.89	V
V _{DD_IO}	Digital interface I/O supply voltage	1.62	3.63	V

ESD Rating

Symbol	Description	Rating
ESD	ESD protection - all pins ¹	2000 V

¹This device is a high performance RF integrated circuit with an ESD rating of 2,000 volts (HBM conditions per Mil-Std-883, Method 3015). Handling and assembly of this device should only be done using appropriate ESD controlled processes.

Electrical Characteristics

DC Specification (T_{OP}=+25°C, V_{DD_IO}=3.0V)

Symbol	Description	Min.	Тур.	Max.	Unit
V _{IL}	Input low voltage	GND-0.1	_	0.3*V _{DD_IO}	V
V _{IH}	Input high voltage	0.7*V _{DD_IO}	_	V _{DD_IO}	V
V _{OL}	Output low voltage	GND	_	0.2*V _{DD_IO}	V
V _{OH}	Output high voltage	0.8*V _{DD_IO}	-	V _{DD_IO}	V
lau	Output high current	-	500	-	μA
ЮН	Output high current (pins 16, 19)	-	4	-	mA
I _{OL}	Output low current	-	500	-	μA
	Output low current (pins 16, 19)	-	4	-	mA
I	Input leakage current	-	<1	1	μA

AC Characteristics (T_{OP} =+25°C, $V_{DD_{1O}}$ =3.0V, C_{LOAD} =15pF)

Symbol	Description	Min.	Тур.	Max.	Unit
t	Rise time	_	_	30	ns
Y	Rise time (pins 16, 19)	_	_	16	ns
t,	Fall time	_	-	24	ns
4	Fall time (pins 16, 19)	-	-	13	ns

Current Consumption (T_{OP}=+25°C, V_{BATT_ANA}, V_{BATT_DIG} = 3.3 V)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_SLEEP}	Current during sleep mode	_	15	25	μA
I _{DD_IDLE}	Current during idle, synthesizer not running	_	2	_	mA
IDD_TRANSMIT	Current during continuous transmit	_	41	45	mA
IDD_RECEIVE	Current during continuous receive	-	41	45	mA

Radio Specification

Parameter	Description	Min	Тур	Max	Unit
VCO operating range	Frequency	2402	_	2480	MHz
PLL lock time	-		55	100	μs

Receiver Specification¹ (V_{BATT_ANA} , V_{BATT_DIG} =3.3V, V_{CC} =int. analog reg. output, and nominal² Bluetooth test conditions)

Parameter	Description	Min	Тур	Max	Unit
Receiver sensitivity	Measured based on BER<0.1%	-	-88	-82	dBm
Maximum usable signal	Measured based on BER<0.1%	-10	+5	-	dBm
C/I co-channel (0.1% BER)	Co-channel selectivity	_	8.0	11.0	dB
C/I 1MHz (0.1% BER)	Adjacent channel selectivity	_	-4.0	0	dB
C/I 2MHz (0.1% BER)	2nd adjacent channel selectivity	-	-38.0	-35.0	dB
C/I≥3MHz (0.1% BER)	3rd adjacent channel selectivity	_	-43	-40	dB
	30 MHz to 2000 MHz	-10	_	-	dBm
Out-of-band	2000 MHz to 2399 MHz	-27	_	-	dBm
blocking ³	2498 MHz to 3000 MHz	-27	_	-	dBm
	3000 MHz to 12.75 GHz	-10	_	_	dBm
Intermodulation	Max interferer level to maintain 0.1% BER, interference signals at 3 MHz and 6 MHz offset.	-39	-36	-	dBm
Receiver spurious	30MHz to 1GHz	_	_	-57	dBm
emission	1 GHz to 12.75 GHz	_	_	-47	dBm

¹Measured into the chip with a 50 Ω source and no band pass filter.

²Nominal and extreme Bluetooth test conditions as defined by the Bluetooth Test Specification.

³Out-of-band blocking guaranteed by design.

Transmitter Specification¹

(V _B	ATT_ANA	V _{BATT_DIG} = 3.3 V	[/] , V _{CC} = int. analog reg	. output, and nominal	Bluetooth test conditions)
-----------------	---------	-------------------------------	--	-----------------------	----------------------------

Parameter	Description	Min	Тур	Max	Units
Output RF transmit power	At maximum power output level	-2	+2	+6	dBm
Modulation	Δf1 _{avg}	140	155	175	kHz
characteristics ²	$\Delta f2_{max}$ (For at least 99.9% of all $\Delta f2_{max}$)	115	_	-	kHz
characteristics	$\Delta f1_{avg}/\Delta f2_{avg}$	0.8	-	_	kHz
Initial carrier frequency accuracy	-	-75.0	_	+75.0	kHz
	One slot packet	-25.0	_	+25.0	kHz
Carrier frequency	Two slot packet	-40.0	-	+40.0	kHz
drift	Five slot packet	-40.0	-	+40.0	kHz
	Max drift rate	-	-	400	Hz/μs
20 dB occupied bandwidth	Bluetooth specification	_	900	1000	kHz
In-band spurious	2 MHz offset	-	-74	-55.0	dBm
emission	>3 MHz offset	-	-74	-55.0	dBm
	30 MHz to 1 GHz, operating mode	-	-70	-55.0	dBm
Out-of-band	1 GHz to 12.75 GHz, operating mode ³	-	-70	-50.0	dBm
emission	1.8 GHz to 1.9 GHz	_	_	-62.0	dBm
	5.15 GHz to 5.3 GHz	-	_	-47.0	dBm

 $^1\text{Measured}$ into the chip with a 50 Ω source and no band pass filter.

²The modulation characteristic is measured as per test TRM/CA/07/C defined in the Bluetooth Test Specification.

³Except transmit harmonics.

Industrial Temperature Performance¹ ($V_{BATT_ANA'}$, V_{BATT_DIG} =3.3V and extreme Bluetooth test conditions)

Parameter	Description	Min	Тур	Max	Unit
Receiver sensitivity	Measured based on BER<0.1%	_	-88	-78	dBm
Output RF transmit power	At maximum power output level	-4	+2	+6	dBm
Madulation	Δf1 _{avg}	140	155	175	kHz
characteristics ²	$\Delta f2_{max}$ (For at least 99.9% of all $\Delta f2_{max}$)	115	_	_	kHz
onaraotonotios	$\Delta f1_{avg}/\Delta f2_{avg}$	0.8	-	_	kHz
Initial carrier frequency accuracy	-	-75.0	-	+75.0	kHz
	One slot packet	-25.0	-	+25.0	kHz
Carrier frequency	Two slot packet	-40.0	-	+40.0	kHz
drift	Five slot packet	-40.0	-	+40.0	kHz
	Max drift rate	-	-	+400	Hz/µs
20 dB occupied bandwidth	Bluetooth specification	_	900	1000	kHz
In-band spurious emission	2MHz offset	-	-74	-40.0	dBm
	>3MHz offset	-	-74	-55.0	dBm
Out-of-band spurious emission	30MHz to 1GHz, operating mode	-	-70	-55.0	dBm
	1GHz to 12.75GHz, operating mode ³	_	-70	-40.0	dBm
	1.8GHz to 1.9GHz	_	_	-62.0	dBm
	5.15GHz to 5.3GHz	-	-	-47.0	dBm

 $^{1}\text{Measured}$ into the chip with a 50 Ω source and no band pass filter.

²The modulation characteristic is measured as per test TRM/CA/07/C defined in the Bluetooth Test Specification.

³Except transmit harmonics.

External Reference Requirements

It is possible to provide a number of reference frequencies that are typical on most cellular phones directly into pin 26 (XTAL_P/CLK) of the SiW1721BFIG. The following reference frequencies (in MHz) can be used: 3.84, 9.6, 12, 12.8, 13, 14.4, 15.36, 16, 16.8, 19.2, 19.68, 19.8, 26, 32, 38.4, and 48. For other frequencies, please contact applications support.

Parameter	Description	Min	Max	Unit
Phase noise	100 kHz offset	_	-100	dBc/Hz
	1 kHz offset	_	-120	dBc/Hz
	10 kHz offset	_	-140	dBc/Hz
Drive level	AC coupled amplitude	0.5	V _{CC}	V _{P-P}
	DC coupled low peak voltage	0	0.3	V
	DC coupled high peak voltage	V _{CC} - 0.3	V _{CC}	V

Pin Out

Pin Assignments

Pin	Pin Name	Pin	Pin Name
1	IDAC	17	VBB_OUT
2	VREFP_CAP	18	VBATT_DIG
3	VREFN_CAP	19	RX_TX_DATA
4	VCC_OUT	20	VBB_READY
5	VBATT_ANA	21	CD_TXEN
6	VCC	22	SPI_SS
7	VCC	23	HOP_STROBE
8	CHG_PUMP	24	NC
9	ENABLE_RM	25	XTAL_N
10	TX_RX_SWITCH	26	XTAL_P/CLK
11	RESET_N	27	VCC
12	SPI_RXD	28	VTUNE
13	SPI_CLK	29	VCC
14	SPI_TXD	30	TX_BIAS
15	VDD_IO	31	RF_IO
16	BB_CLK	32	VCC

Note: NC indicates no connect.

Radio Modem Application Circuit for Plastic QFN Package (SiW1721BFIG)

Packaging and Product Marking Package Drawing

32-Pin QFN Drawing and Dimensions

NOTES: 1. SHADED AREA INDICATES PIN 1 LOCATION. 2. ALL UNITS ARE IN MILLIMETERS.

- 3. TOLERANCES: $XX = \pm AS$ SHOWN
 - $.XXX = \pm AS SHOWN$

Product Marking

32-Pin QFN Drawing

5 x 5 mm, 32-Pin QFN

Carriers Tape and Reel SiW1721BFIG, 5 X 5 mm, 32-Pin QFN, Tape and Reel Details

Carrier tape basic dimensions are based on EIA 481. The pocket is designed to hold the part for shipping and loading onto SMT manufacturing equipment, while protecting the body and the solder terminals from damaging stresses. The individual pocket design can vary from vendor to vendor, but width and pitch will be consistent.

Carrier tape is wound or placed onto a shipping reel either 330 mm (13 inches) in diameter or 178 mm (7 inches) in diameter. The center hub design is large enough to ensure the radius formed by the carrier tape around it does not put unnecessary stress on the parts.

Prior to shipping, moisture sensitive parts (MSL level 2a-5a) are baked and placed into the pockets of the carrier tape. A cover tape is sealed over the top of the entire length of the carrier tape. The reel is sealed in a moisture barrier ESD bag, which is placed in a cardboard shipping box. It is important to note that unused moisture sensitive parts need to be resealed in the moisture barrier bag. If the reels exceed the exposure limit and need to be baked, most carrier tape and shipping reels are not rated as bakeable at 125°C. If baking is required, devices may be baked according to section 4, table 4-1, column 8, of the Joint Industry Standard IPC/JEDEC J-STD-033A.

The following tables provide useful information for carrier tape and reels used for shipping the devices described in this document.

RFMD Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units
SiW1721BFIG-TR13	13 (330)	4 (102)	12	8	Single	2500/reel
SiW1721BFIGSR	7 (178)	2.4 (61)	12	8	Single	100/reel

Peel Test	Peel Angle	Cover Tape	Leader	Trailer	Peel Speed
10–50 grams	165-180°	RS Standard (anti-static)	500 mm (minimum 400 mm)	250 mm (minimum 160 mm)	300 mm/minute

Ao = 5.30 ±.10 1. All dimensions are in millimeters (mm). Bo = 5.30 ±.10 2. Unless otherwise specified, all dimension tolerances per EIA-481. $F = 5.50 \pm .05$ Ko = 1.83 ±.10 P = 8.00 ±.10 W = 12.00 +.30/-.10 $4.00 \pm .10$ ۵ 2.00 ±.05 Ø1.50±.10 0.330±.020 $1.75 \pm .10$ 15-inch Trailer 15-inch Leader Top View Pin 1 Location Sprocket holes toward W rear of reel Во Ko – Ao **Direction of Feed**

Ordering Information

Part Number	Operational Temperature Range ¹	Package	Ordering Quantity
SiW1721BFIG-T13	Industrial	32-pin QFN	2500/reel
SiW1721BFIGSR	Industrial	32-pin QFN	100/reel
SiW1721BFIG	Industrial	32-pin QFN	25/sample bag
SiW1721BFIGSB	Industrial	32-pin QFN	5/sample bag

¹ Industrial temperature range: -40°C to +85°C.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RF Micro Devices, Inc. RF Micro Devices reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, UltimateBlue™, and the SiW product name prefix are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RF Micro Devices, Inc. All other trade names, trademarks and registered trademarks are the property of their respective owners.