

FEATURES

PRODUCT APPEARANCE

- Compliant with LIN 2.x, ISO 17987-4:2016 (12V) and SAE J2602
- ➤ AEC-Q100 qualified
- > 5V/3.3V voltage regulator output with high voltage LDO
- Integrated over-temperature protection function (thermal shutdown)
- > Integrated dominant timeout function
- ➤ Bus current limiting protection
- > 5V/3.3V voltage regulator and current limiting protection
- Voltage regulator output undervoltage detection
- Very low power consumption sleep mode
- ➤ Support remote wake-up
- LIN data transmission rate up to 20kbps
- ➤ Available in SOP8 and DFN3*3-8 packages

Fig. 1 Provide environmentally friendly lead-free package

DESCRIPTIO

The SIT1028Q is a Local Interconnect Network (LIN) physical layer transceiver with internal integrated high voltage LDO. It can provide stable 5V/3.3V power supply for external ECU (Electronic Control Unit) microcontroller or related peripherals. The LIN transceiver is compliant with LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A, ISO 17987-4:2016(12V) and SAE J2602 standards. It is mainly suitable for in-vehicle networks with a transmission rate of 1kbps to 20kbps. The LIN bus output pin of the SIT1028Q has an internal pull-up resistor with a bus output waveform shaping function to reduce electromagnetic radiation (EME). TXD pin is used as the input end to send the low-voltage signal of the microcontroller to LIN bus. Meanwhile, LIN pin receives the data stream on the bus, and the data is transmitted back to the microcontroller or to other microcontrollers by RXD output pin of the receiver.

The SIT1028Q can operate in the range of 5.5V~28V and supports 12V application. The SIT1028Q features extremely low current consumption in sleep mode, quickly minimizes power consumption in the event of failure, and can be remotely woken up via the LIN bus or placed in normal operating mode via a signal on the EN pin. SIT1028Q provides a 5V/3.3V voltage regulator power on and power off detection output pin RSTN to facilitate the microcontroller to monitor the power supply of the regulator.

PIN CONFIGURATION

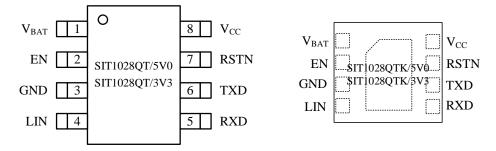


Fig. 2 SIT1028Q pin configuration diagrams

PIN DESCRIPTION

Table 1. SIT1028Q pin description

Pin	Symbol	Description
1	V_{BAT}	battery supply voltage
2	EN	enable input
3	GND	ground
4	LIN	LIN bus line input/output
5	RXD	receive data output; active LOW after a wake-up event
6	TXD	transmit data input
7	RSTN	voltage regulator reset signal output
8	V_{CC}	voltage regulator output

NOTE: In the DFN3*3-8 package, the pad on the back is connected to the GND pin of the chip. In order to obtain better heat dissipation performance, the pad on the back can be connected to a suitable "ground" on the PCB board.

LIMITING VALUES

Parameter	Symbol	Conditions	Value	Unit
battery supply voltage	V_{BAT}	with respect to GND	-0.3 ~ +40	V
	V_{CC}	with respect to GND	- 0.3 ∼ +7	V
	V_{RXD}	with respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
14	V_{EN}	with respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
voltage on pins	V _{RSTN}	with respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
	V_{TXD}	with respect to GND	$-0.3 \sim V_{CC} + 0.3$	V
	$V_{\rm LIN}$	with respect to GND and V_{BAT}	-40 ~ +40	V
virtual junction temperature	T_{j}		-40 ~ 150	°C
ambient temperature	T _{amb}		-40 ~ 125	°C
storage temperature	T_{stg}		-55 ∼ 150	°C

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

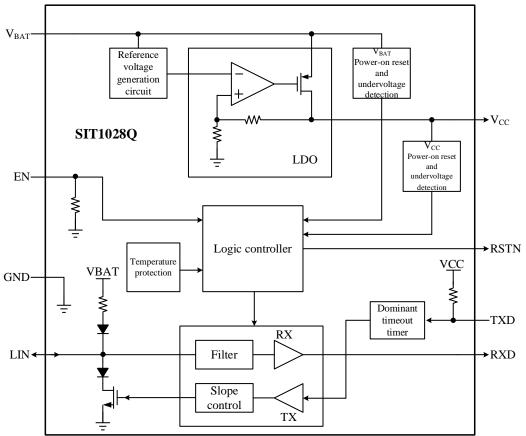


Fig. 3 SIT1028Q Block diagram

FEATURE DESCRIPTION

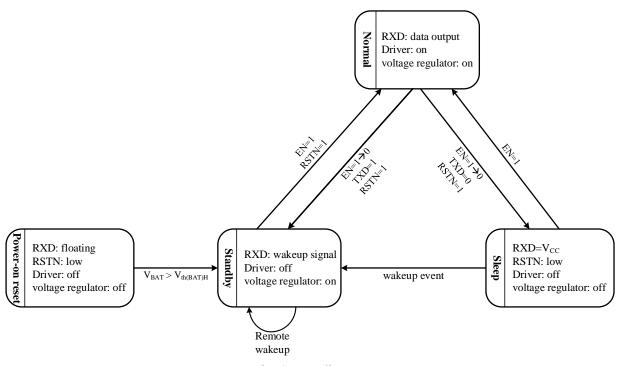


Fig. 4 State diagram

1 Overview

The SIT1028Q is an internally integrated high-voltage LDO chip that can be applied to the interface between the LIN protocol controller and the physical bus. It can be applied to the fields of in-vehicle and industrial control, and the transmission rate is up to 20kbps. The SIT1028Q receives the transmit data stream from the protocol controller at the TXD terminal and converts it into the bus signal with the best voltage swing rate and waveform shaping; The input data on the LIN bus is output from the RXD port of the receiver to the external microcontroller. This device is compatible with the "LIN 2.x/ISO 17987-4:2016 (12V)/SAE J2602" standard.

2 Operating modes

As shown in Fig 4, the SIT1028Q supports four operating modes for Power-on mode, Standby mode, Normal mode and Sleep mode.

2.1 Power-on mode

If the voltage on V_{BAT} is less than the power-on detection threshold $V_{th(det)off}$ or an overtemperature event occurs, the SIT1028Q will be in Power-on mode and both the voltage regulator and LIN transceiver will be off, RSTN = 0.

2.2 Standby mode

The SIT1028Q can switch to Standby mode via other three operating modes and the voltage regulator remains on. LIN transceiver is off and bus remote wake up function is enable (RXD = 0 as wake up flag).

When V_{BAT} voltage is greater than the power on detection threshold $V_{th(det)pon}$ and no over temperature event, SIT1028Q will automatically switch from Power-on mode to Standby mode.

When SIT1028Q is in normal mode, during the mode selection window, if EN = 0, TXD = 1 and RSTN = 1, SIT1028Q will switch from Normal mode to Standby mode (as shown in Fig. 5).

When SIT1028Q is in sleep mode, it can switch to standby mode through the bus remote wake-up, the remote wake up behavior as shown in Fig. 6.

2.3 Normal mode

After the SIT1028Q is powered on and started normally, SIT1028Q enters Standby mode firstly. When the EN is raised at RSTN = 1, SIT1028Q switches from Standby mode to Normal mode. If SIT1028Q is in Sleep mode, it can switch to Normal mode after raising the EN.

In normal mode, SIT1028Q can normally send and receive data through LIN bus with the voltage regulator and LIN transceiver on. At this time, the microcontroller can send data to LIN bus through TXD input pins to convert low level logic level signals into high level V_{BAT} (battery) level signals (high level represents recessive, low level represents dominant), and perform bus waveform shaping to inhibit electromagnetic emission (EME). At the same time, the signal on the bus can be received by the pin LIN and output to the pin RXD via the SIT1028Q receiver, which can be converted into low level logic level data for processing by the external microcontroller.

2.4 Sleep mode

It is the mode with the lowest power consumption of SIT1028Q. In this case, both the voltage regulator and LIN transceiver are shut down, and RSTN is forced to pull down, which can be remotely awakened through LIN bus.

As shown in <u>Fig. 4</u>, only Normal mode can switch to Sleep mode. During the mode selection window, if EN = 0, TXD = 0 and RSTN = 1, SIT1028Q will switch from Normal mode to Sleep mode (as shown in Fig. 5).

2.5 Switch from Normal to Sleep/Standby mode

As shown in Fig 5, SIT1028Q first blocks the transmission path from TXD to LIN after EN is pulled down, and then enters the mode selection window after waiting for $t_{msel(min)}$. At this time, if TXD = 1, it enters the Standby mode, and if TXD = 0, it enters the Sleep mode. The total mode selection time after EN is pulled down is $t_{msel(max)}$.

3 Internal integrated voltage regulator V_{CC}

The SIT1028Q is powered by a single power supply. With the pin V_{BAT} as the input, the internal integrated high voltage LDO (input voltage withstand 40V) provides stable 5V/3.3V to the external microcontroller and related peripherals through the pin V_{CC} , and the output current can reach 70mA. The undervoltage of V_{CC}

can be reflected by the output signal of RSTN. When the V_{CC} is lower than the undervoltage detection threshold V_{UVD} , the RSTN output is low.

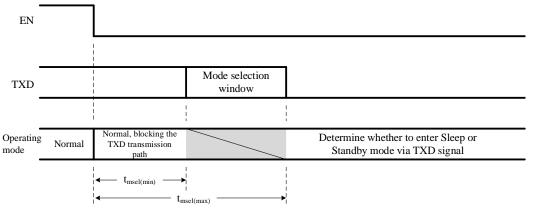


Fig. 5 Timing waveform of switching Normal to Standby/Sleep

4 Remote wake-up

Remote wake up on the LIN pin: When the LIN pin is pulled down to the low level through a falling edge, a rising edge appears at the next time, and the low-level maintenance time between the rising edge and the previous falling edge is greater than $t_{wake(busdom)min}$, then the process is regarded as an effective remote wake up (as shown in Fig 6). RXD is set to a low level to indicate the wake-up flag after a remote wake up occurs.

5 Dominant time-out function

If the TXD pin due to hardware and/or software application failure is forced to permanent low level, the integrated TXD dominant timeout timer circuit can prevent the bus line are driven to permanent dominant status (blocking all network communication). The timer is triggered by the falling edge on the pin TXD. If the low level on the pin TXD maintain time longer than the internal timer ($t_{to (dom) TXD}$), the transmitter will be disabled, to drive the bus into the recessive state. The timer is reset by the rising edge on the pin TXD.

6 Overtemperature protection function

If an overtemperature event occurs when the SIT1028Q is in normal or standby mode, it will be switched to Power-on mode, and the voltage regulator and LIN transceiver module will be shut down. When the temperature drops below the overtemperature protection recovery threshold, the SIT1028Q switches from the Power-on mode to the standby mode.

7 Fail-safe feature

- ➤ A pull-up to V_{CC} on pin TXD ensures that when the pin TXD is virtual welded or the microcontroller pin is floating, it remains bus recessive level.
- The current in the transmitter output stage is limited in order to protect the transmitter against burning driver or affecting function when bus short circuits to pins V_{BAT}.

- A loss of power has no impact on the bus port and there is no reverse current on it.
- ➤ When EN or RSTN is low, the LIN driver will shut down automatically.
- After switching to normal mode, the LIN driver is enabled only if high level is detected in TXD.

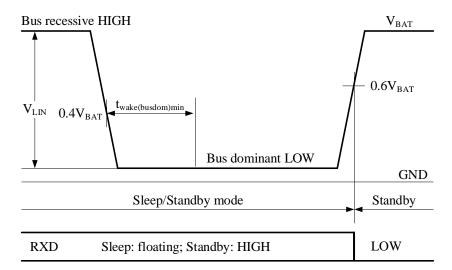


Fig. 6 Remote wake-up behavior

STATIC CHARACTERISTICS

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Power consumption	on					
		$\begin{aligned} & \text{Sleep mode} \\ & (V_{\text{LIN}} = V_{\text{BAT}}) \end{aligned}$	-	10	-	μΑ
		Standby mode $(V_{LIN} = V_{BAT})$	-	40	-	μА
Battery supply current	${ m I}_{ m BAT}$	Normal mode (recessive) $(V_{LIN} = V_{BAT};$ $V_{TXD} = V_{CC};$ $V_{RSTN} = HIGH)$	-	200	-	μΑ
		Normal mode (dominant) $(V_{BAT} = 12V;$ $V_{TXD} = 0V;$ $V_{RSTN} = HIGH)$	-	2.5	-	mA
Power-on reset						
V _{BAT} reset threshold voltage	$V_{\text{th(BAT)L}}$		3	-	4.7	V
V_{BAT} reset threshold voltage	$V_{\text{th}(\text{BAT})\text{H}}$		ı	-	5.25	V
V _{BAT} hysteresis voltage	$V_{\mathrm{hys}(\mathrm{BAT})}$		50	-	-	mV
Pin V _{CC}						
Voltage regulator	Vcc	$V_{CC(nom)} = 5V;$ $I_{CC} = -70mA \sim 0$	4.9	5	5.1	V
output voltage	V CC	$V_{CC(nom)} = 3.3V;$ $I_{CC} = -70mA \sim 0$	3.234	3.3	3.366	V
Current limitation for voltage regulator	${ m I}_{ m Olim}$	$V_{CC} = 0 \sim 5.5 \text{ V}$	-250	-	-70	mA
Undervoltage	17	$V_{CC(nom)} = 5V$	4	-	4.7	V
detection voltage	V_{UVD}	$V_{\rm CC(nom)} = 3.3 \rm V$	2.3	-	2.9	V
Undervoltage	N/	$V_{\text{CC(nom)}} = 5V$	4.2	-	4.9	V
Recover voltage	$ m V_{UVR}$	$V_{\text{CC(nom)}} = 3.3 \text{V}$	2.6	-	3.2	V
V _{BAT} to V _{CC} conduction resistance	R _(VBAT-VCC) ^[1]	$V_{CC(nom)} = 5 \text{ V};$ $V_{BAT} = 4.5 \text{V} \sim 5.5 \text{V}$ $I_{V1} = -70 \text{ mA} \sim -5 \text{mA}$	-	-	5	Ω
Output	Co ^[1]	$ESR < 5\Omega$	2.2	10	-	μF

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
capacitance							
Pin TXD			•				
Input threshold voltage	V _{th(SW)}	$V_{CC} = 2.97 \text{ V} \sim 5.5 \text{ V}$	0.3 V _{CC}	-	0.7 V _{CC}	V	
Input hysteresis voltage	$V_{hys(i)}$	$V_{CC} = 2.97 \text{ V} \sim 5.5 \text{ V}$	200	-	-	mV	
Pull-up resistance	R_{pu}		5	12	25	kΩ	
Pin RXD							
HIGH-level input voltage	I _{OH}	Normal mode $V_{LIN} = V_{BAT};$ $V_{RXD} = V_{CC} - 0.4 \text{ V}$	-	-	-0.4	mA	
LOW-level input voltage	I_{OL}	Normal mode $V_{LIN} = 0$; $V_{RXD} = 0.4 \text{ V}$	0.4	-	-	mA	
Pin EN							
Input threshold voltage	V _{th(SW)}		0.8	-	2	V	
Pull-down resistance	R_{pd}		50	130	400	kΩ	
Pin RSTN							
Pull-up resistance	R _{pu}	$V_{RSTN} = V_{CC} - 0.4 \text{ V}$ $V_{CC} = 2.97 \text{ V} \sim 5.5 \text{ V}$	3	-	12	kΩ	
LOW-level output current	I_{OL}	$V_{RSTN} = 0.4 \text{ V}$ $V_{CC} = 2.97 \text{ V} \sim 5.5 \text{ V}$ $-40 \text{ °C} < T_j < 195 \text{ °C}$	3.2	-	40	mA	
LOW-level output voltage	V _{OL}	$V_{CC} = 2.5 \text{ V} \sim 5.5 \text{ V}$ -40 °C < T _j < 195 °C	0	-	0.5	V	
HIGH-level output voltage	V_{OH}	$-40 ^{\circ}\mathrm{C} < \mathrm{T_{j}} < 195 ^{\circ}\mathrm{C}$	$0.8~\mathrm{V_{CC}}$	-	$V_{CC} + 0.3$	V	
Pin LIN							
Current limitation for driver dominant state	I _{BUS_LIM}	$V_{TXD} = 0V;$ $V_{LIN} = V_{BAT} = 18V$	40	-	100	mA	
Receiver recessive input leakage current	IBUS_PAS_rec	$V_{TXD} = V_{CC};$ $V_{LIN} = 18V;$ $V_{BAT} = 5.5V$	-	-	20	μΑ	
Receiver dominant input	I _{BUS_PAS_dom}	Normal mode $V_{TXD} = V_{CC}$;	-1000	-	-	μΑ	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
leakage current		$V_{LIN} = 0V; V_{BAT} = 12V$				
Loss-of-ground bus leakage current	$I_{L(\log)}$	$V_{BAT} = 18V; V_{LIN} = 0V$	-1000	-	10	μΑ
Loss-of-power bus leakage current	I _{L(lob)}	$V_{BAT} = 0V$; $V_{LIN} = 18V$	-	-	20	μΑ
Receiver dominant reverse threshold voltage	$V_{\text{th(dom)RX}}$	$V_{BAT} = 5.5 \text{ V} \sim 18 \text{ V}$	-	-	$0.4 m V_{BAT}$	V
Receiver recessive reverse threshold voltage	$V_{\text{th(rec)RX}}$	$V_{BAT} = 5.5 \text{ V} \sim 18 \text{ V}$	$0.6 m V_{BAT}$	-	-	V
Receiver center reverse threshold voltage	V _{th(RX)cntr}	$V_{BAT} = 5.5 \text{ V} \sim 18 \text{ V}$ $V_{th(RX) \text{ cntr}} = (V_{th(rec)RX} + V_{th(dom)RX})/2$	0.475V _{BAT}	0.5 V _{BAT}	0.525V _{BAT}	V
Receiver hysteresis threshold voltage	$V_{\text{th(hys)RX}}$	$V_{BAT} = 5.5 \text{ V} \sim 18 \text{ V}$ $V_{th(hys)RX} =$ $V_{th(rec)RX} - V_{th(dom)RX}$	-	-	0.175V _{BAT}	V
Slave resistance	R _{slave}	equivalent resistance between pins LIN and VBAT; $V_{LIN} = 0V; V_{BAT} = 12V$	20	30	60	kΩ
Capacitance on pin LIN	C _{LIN} [1]		-	-	30	pF
Dominant output	T.	Normal mode $V_{TXD} = 0V$; $V_{BAT} = 7V$	-	-	1.4	V
voltage	$V_{o(dom)}$	Normal mode $V_{TXD} = 0V; V_{BAT} = 18V$	-	-	2.0	V
Overtemperature	protection					
Overtemperature protection	T _{th(act)otp} [1]		165	180	195	°C
Overtemperature recovery	T _{th(rel)otp} [1]		125	140	155	°C

 $(Unless \ specified \ otherwise; 5.5 V \leq V_{BAT} \leq 18 V, \ -40 ^{\circ} C \leq T_{j} \leq 150 ^{\circ} C; \ typical \ in \ V_{BAT} = 13 V, \ T_{amb} = 25 ^{\circ} C.)$

^[1] Not tested in production; guaranteed by design.

SWITCH CHARACTERISTICS

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Duty cycles						
duty cycle 1	δ1 ^{[1][2]}	$\begin{split} &V_{th(rec)(max)}\!\!=\!\!0.744\!\times\!V_{BAT};\\ &V_{th(dom)(max)}\!\!=\!\!0.581\!\times\!V_{BAT};\\ &t_{bit}\!\!=\!\!50\mu s;\\ &V_{BAT}\!\!=\!\!7V\!\!\sim\!\!18V\underline{Fig.7/9} \end{split}$	0.396			
duty cycle 1	01 2 3 3	$\begin{split} &V_{th(rec)(max)}\!\!=\!\!0.76\!\times\!V_{BAT};\\ &V_{th(dom)(max)}\!\!=\!\!0.593\!\times\!V_{BAT};\\ &t_{bit}\!\!=\!\!50\mu s;\\ &V_{BAT}\!\!=\!\!5.5V\!\!\sim\!\!7V\;\underline{Fig.\;7/9} \end{split}$	0.396			
duty cycle 1	82 [2][3]	$\begin{split} &V_{th(rec)(min)}{=}0.422{\times}V_{BAT};\\ &V_{th(dom)(min)}{=}0.284{\times}V_{BAT};\\ &t_{bit}{=}50\mu s;\\ &V_{BAT}{=}7.6V{\sim}18V~\underline{Fig.~7/9} \end{split}$			0.581	
daty cycle 1	02	$\begin{split} &V_{th(rec)(min)}{=}0.41{\times}V_{BAT};\\ &V_{th(dom)(min)}{=}0.275{\times}V_{BAT};\\ &t_{bit}{=}50\mu s;\\ &V_{BAT}{=}6.1V{\sim}7.6V~\underline{Fig.~7/9} \end{split}$			0.581	
duta and 2	83 [1][2]	$\begin{split} &V_{th(rec)(max)}\!\!=\!\!0.778\!\times\!V_{BAT};\\ &V_{th(dom)(max)}\!\!=\!\!0.616\!\times\!V_{BAT};\\ &t_{bit}\!\!=\!\!96\mu s;\\ &V_{BAT}\!\!=\!\!7V\!\!\sim\!\!18V\underline{Fig.7/9} \end{split}$	0.417			
duty cycle 3	03 (-16-)	$\begin{split} &V_{th(rec)(max)}\!\!=\!\!0.797\!\times\!V_{BAT};\\ &V_{th(dom)(max)}\!\!=\!\!0.630\!\times\!V_{BAT};\\ &t_{bit}\!\!=\!\!96\mu s;\\ &V_{BAT}\!\!=\!\!5.5V\!\!\sim\!\!7V\underline{Fig.7/9} \end{split}$	0.417			
	δ4 [2][3]	$\begin{split} &V_{th(rec)(min)}{=}0.389{\times}V_{BAT};\\ &V_{th(dom)(min)}{=}0.251{\times}V_{BAT};\\ &t_{bit}{=}96\mu s;\\ &V_{BAT}{=}7.6V{\sim}18V~\underline{Fig.~7/9} \end{split}$			0.590	
duty cycle 4	04 [2][2]	$\begin{split} &V_{th(rec)(min)}\!\!=\!\!0.378\!\times\!V_{BAT};\\ &V_{th(dom)(min)}\!\!=\!\!0.242\!\times\!V_{BAT};\\ &t_{bit}\!\!=\!\!96\mu s;\\ &V_{BAT}\!\!=\!\!6.1V\!\!\sim\!\!7.6V~\underline{Fig.~7/9} \end{split}$			0.590	
Timing characteristi	cs					·
receiver propagation delay	t _{PD(RX)}	$C_{RXD} = 20 \text{ pF}$			6	μs
receiver propagation delay symmetry	t _{PD(RX)sym}	$C_{RXD} = 20 \text{ pF}$	-2		2	μs

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Bus dominant wake-up time	twake(busdom)min	Sleep mode	30	80	150	μs
TXD dominant time-out time	t _{to(dom)TXD}	V _{TXD} =0V	6	-	20	ms
mode selection time	t _{msel}		3	-	30	μs
Pin RSTN						
reset time	t _{rst}		2	1	-	ms

 $(Unless \ specified \ otherwise; 5.5 V \leq V_{BAT} \leq 18 V, \ -40 ^{\circ} C \leq T_{j} \leq 150 ^{\circ} C; \ typical \ in \ V_{BAT} = 13 V, \ T_{amb} = 25 ^{\circ} C.)$

[1]
$$\delta 1, \delta 3 = \frac{t_{bus(rec)(min)}}{2 \times t_{bit}}$$
.

[2] Bus load conditions: (1) $C_L=1nF$, $R_L=1k\Omega$; (2) $C_L=6.8nF$, $R_L=660\Omega$; (3) $C_L=10nF$, $R_L=500\Omega$.

[3]
$$\delta 2, \delta 4 = \frac{t_{bus(rec)(max)}}{2 \times t_{bit}}$$
.

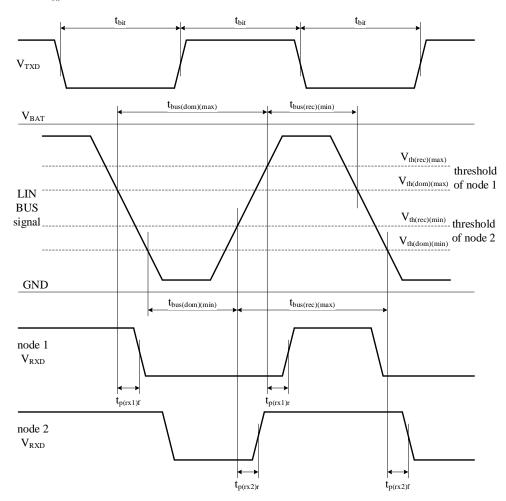


Fig. 7 Timing diagram of LIN transceiver duty cycle

TYPICAL APPLICATION

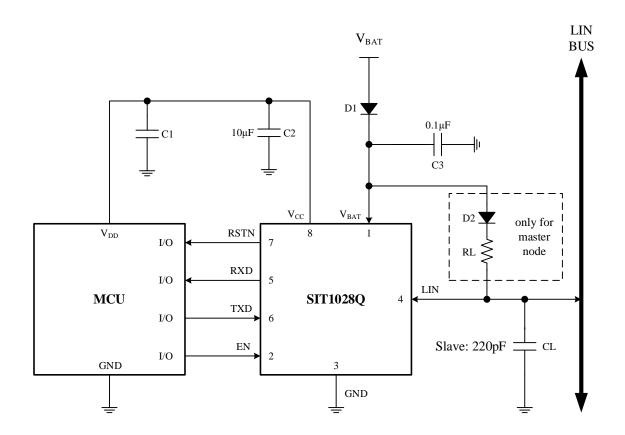


Fig. 8 Typical application of the of SIT1028Q

Note: R_L/C_L combination of $660\Omega/6.8nF$ is recommended when the master node is used to obtain a slower bus waveform slope.

TEST MODEL

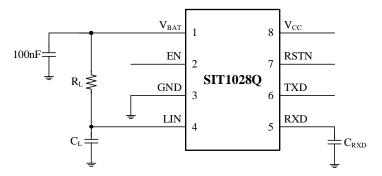
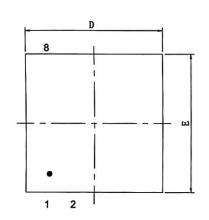
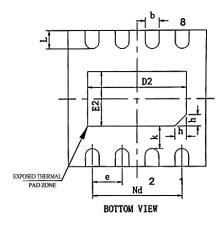
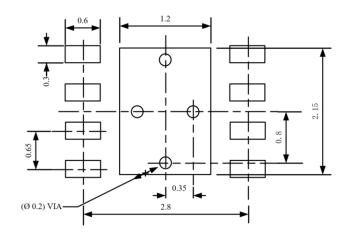
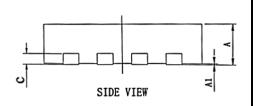


Fig. 9 Switching characteristic test circuit

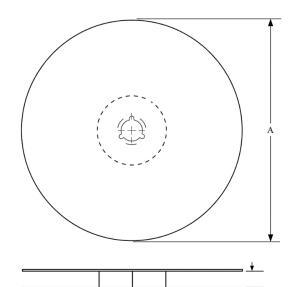

SOP8 DIMENSIONS

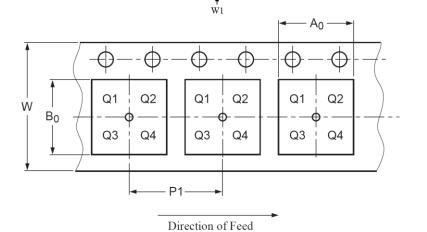

PACKAGE SIZE SYMBOL MIN./mm TYP./mm MAX./mm A 1.40 1.80 **A**1 0.10 0.25 A2 1.30 1.40 1.50 Εl 0.60 0.65 0.70 **A3** b 0.38 0.51 D 4.80 4.90 5.00 Е 5.80 6.00 6.20 3.90 4.00 E1 3.80 1.27BSC e 0.25 0.50 h L 0.40 0.60 0.80 1.05REF L1 c0.20 0.25 0° 8° θ 5.4 LAND PATTERN EXAMPLE (Unit: mm)




DFN3*3-8 DIMENSIONS

SYMBOL	MIN/mm	TYP/mm	MAX/mm
A	0.70	0.75	0.80
A1	0	0.02	0.05
С		0.203 REF	
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D2	2.05	2.15	2.25
Nd		1.95BSC	
E2	1.10	1.20	1.30
b	0.25	0.30	0.35
e		0.65 TYP	
k	0.50REF		
L	0.35	0.4	0.45
h	0.20	0.25	0.30




LAND PATTERN EXAMPLE (Unit: mm)

TAPE AND REEL INFORMATION

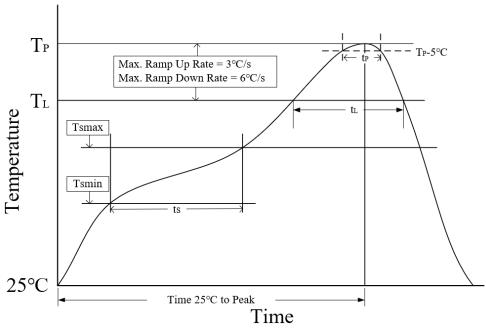
A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Package type	Reel diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT1028QT/5V0	SOP8	Tape and reel
SIT1028QT/3V3	SOP8	Tape and reel
SIT1028QTK/5V0	DFN3*3-8, small outline, no leads	Tape and reel
SIT1028QTK/3V3	DFN3*3-8, small outline, no leads	Tape and reel


SOP8 is packed with 2500 pieces/disc in braided packaging. Leadless DFN3*3-8 is package with 6000 pieces/disc in braided packaging.

Note: SIT1028QT/5V0 and SIT1028QTK/5V0 are 5V voltage regulator versions;

SIT1028QT/3V3 and SIT1028QTK/3V3 are 3.3V voltage regulator versions.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate (T _L to T _P)	3 °C/second max	
Preheat time ts (T _{smin} =150 °C to T _{smax} =200 °C)	60-120 seconds	
Melting time t _L (T _L =217 °C)	60-150 seconds	
Peak temp T _P	260-265 °C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate (T _P to T _L)	6 °C/second max	
Normal temperature 25° C to peak temperature T_P time	8 minutes max	

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0	Initial version.	November 2022
V1.1	Added ambient temperature T_{amb} range; Updated state diagram; Updated the parameters of V_{UVD} and V_{UVR} ; Deleted the parameters of thermal shutdown; Added the parameters of overtemperature protection.	March 2023
V1.2	Added AEC-Q100 qualified.	October 2023