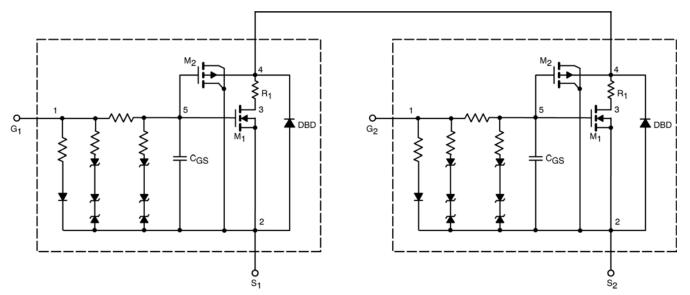


Vishay Siliconix

Bi-Directional N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

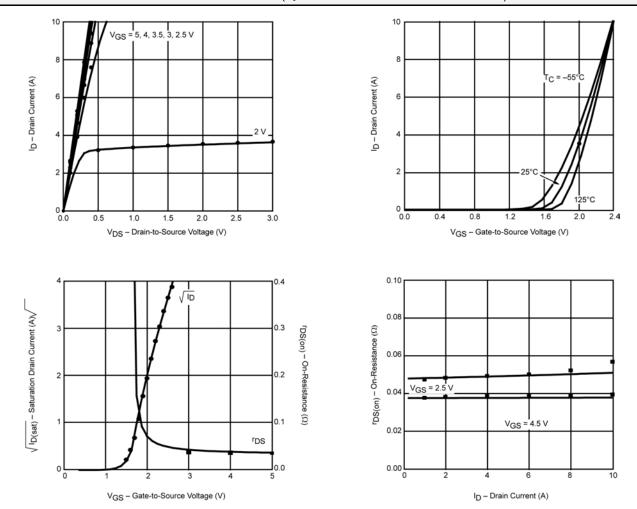
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model Si8904EDB Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERN	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{SS} = V_{GS} , I_D = 250 μ A	1.1		V
On-State Drain Current ^a	I _{SS(on)}	$V_{\rm SS}$ = 5 V, $V_{\rm GS}$ = 4.5 V	68		А
Drain-Source On-State Resistance ^a	R _{SS(on)}	V_{GS} = 4.5 V, I _{SS} = 1 A	0.038	0.037	Ω
		V_{GS} = 2.5 V, I_{SS} = 1 A	0.049	0.048	
Forward Transconductance ^a	G _{fs}	V _{SS} = 10 V, I _{SS} = 1 A	23	12	S
Dynamic ^b					
Turn-On Delay Time	t _{d(on)}	V_{SS} = 10 V, R_L = 10 Ω $I_{SS}\cong$ 1 A, V_{GEN} = 4.5 V, R_G = 6 Ω	1.4	1.6	μs
Rise Time	tr		2.5	2	
Turn-Off Delay Time	$t_{d(off)}$		1.1	1.5	
Fall Time	t _f		3.3	3.7	

Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si8904EDB

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.