

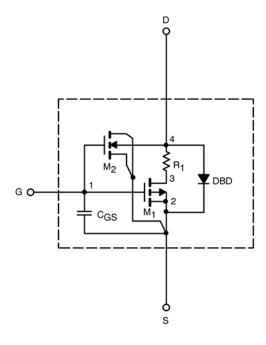
SPICE Device Model Si7941DP

Vishay Siliconix

Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

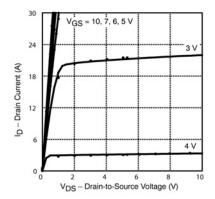
SUBCIRCUIT MODEL SCHEMATIC

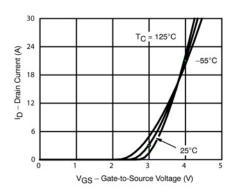
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

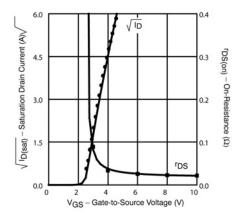
Document Number: 71669 www.vishay.com

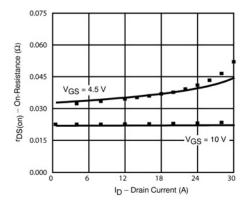
SPICE Device Model Si7941DP

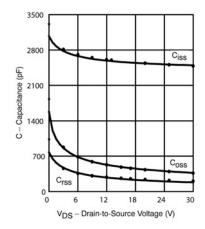
Vishay Siliconix

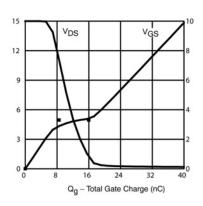

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	205		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -9 \text{ A}$	0.022	0.022	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -5 \text{ A}$	0.033	0.032	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15 \text{ V}, I_D = -2.5 \text{ A}$	10	14	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -2.9 \text{ A}, V_{GS} = 0 \text{ V}$	-0.82	-0.80	V
Dynamic ^b					
Total Gate Charge	Qg	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -9 \text{ A}$	41	42	nC
Gate-Source Charge	Q_{gs}		8.5	8.5	
Gate-Drain Charge	Q_{gd}		7.5	7.5	
Turn-On Delay Time	t _{d(on)}	V_{DD} = -15 V, R_{L} = 15 Ω $I_{D} \cong$ -1 A, V_{GEN} = -10 V, R_{G} = 6 Ω I_{F} = -2.9 A, di/dt = 100 A/ μ s	20	18	ns
Rise Time	t _r		28	29	
Turn-Off Delay Time	$t_{d(off)}$		32	65	
Fall Time	t _f		58	27	
Source-Drain Reverse Recovery Time	t _{rr}		40	50	


- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.