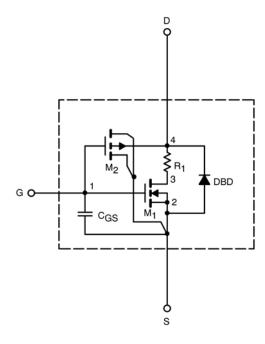


SPICE Device Model Si7464DP Vishay Siliconix

N-Channel 6-V (D-S) Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

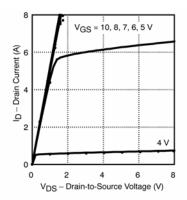
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

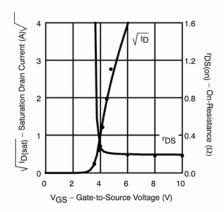
Document Number: 70326 www.vishay.com

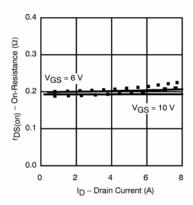
SPICE Device Model Si7464DP

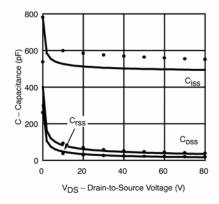
Vishay Siliconix

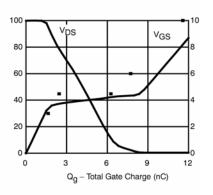

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V	26		Α
Drain-Source On-State Resistance ^a	r	V _{GS} = 10 V, I _D = 2.8 A	0.192	0.195	Ω
	r _{DS(on)}	V_{GS} = 6 V, I_{D} = 2.7 A	0.199	0.210	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 2.8 A	6.1	8	S
Diode Forward Voltage ^a	V _{SD}	$I_S = 3.5 \text{ A}, V_{GS} = 0 \text{ V}$	0.74	0.8	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 100 V, V_{GS} = 10 V, I_{D} = 2.8 A	13	12	nC
Gate-Source Charge	Q_{gs}		2.5	2.5	
Gate-Drain Charge	Q_{gd}		3.8	3.8	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = 100 \text{ V}, \text{ R}_L = 100 \Omega$ $I_D \cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = 3.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	14	10	Ns
Rise Time	t _r		12	12	
Turn-Off Delay Time	t _{d(off)}		8	15	
Fall Time	t _f		10	15	
Source-Drain Reverse Recovery Time	t _{rr}		53	60	


- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.