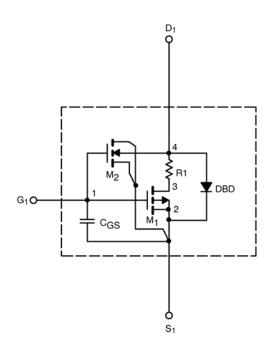
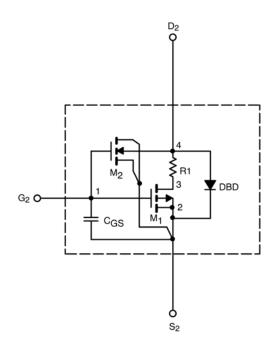


Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

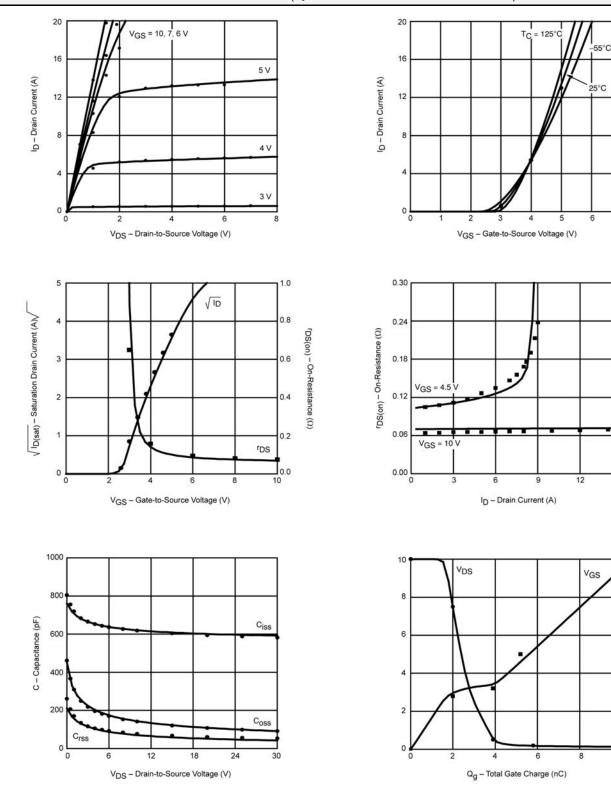
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Parameter	Symbol	Test Condition	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = -250 μ A	2.2	V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = -5 V, V_{GS} = -10 V	61	А
Drain-Source On-State Resistance ^a	۲ _{DS(on)}	V_{GS} = -10 V, I _D = -2.9 A	0.070	Ω
		V_{GS} = -4.5 V, I _D = -2.2 A	0.108	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15 \text{ V}, \text{ I}_{D} = -2.9 \text{ A}$	5.5	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -1 A, $V_{\rm GS}$ = 0 V	0.8	V
Dynamic ^b	•			
Total Gate Charge ^b	Qg	V_{DS} = -10 V, V_{GS} = -5 V, I _D = -2.9 A	4.5	nC
Gate-Source Charge ^b	Q _{gs}		2	
Gate-Drain Charge [♭]	Q _{gd}		1.9	
Turn-On Delay Time [♭]	t _{d(on)}	V_{DD} = -10 V, R _L = 10 Ω I _D \cong -1 A, V _{GEN} = -10 V, R _G = 6 Ω	9	ns
Rise Time [♭]	t _r		12	
Turn-Off Delay Time ^b	$t_{d(off)}$		18	
Fall Time ^b	t _f		24	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = –1 A, di/dt = 100 A/μs	29	

Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si6955ADQ

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

15

10

2

0

10