

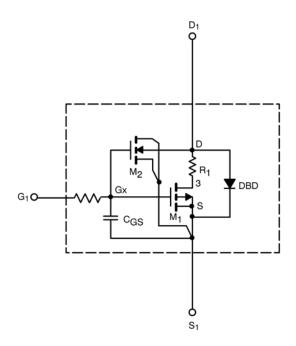
SPICE Device Model Si5943DU

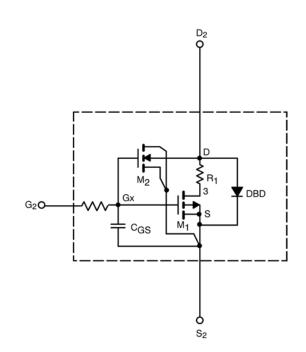
Vishay Siliconix

Dual P-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

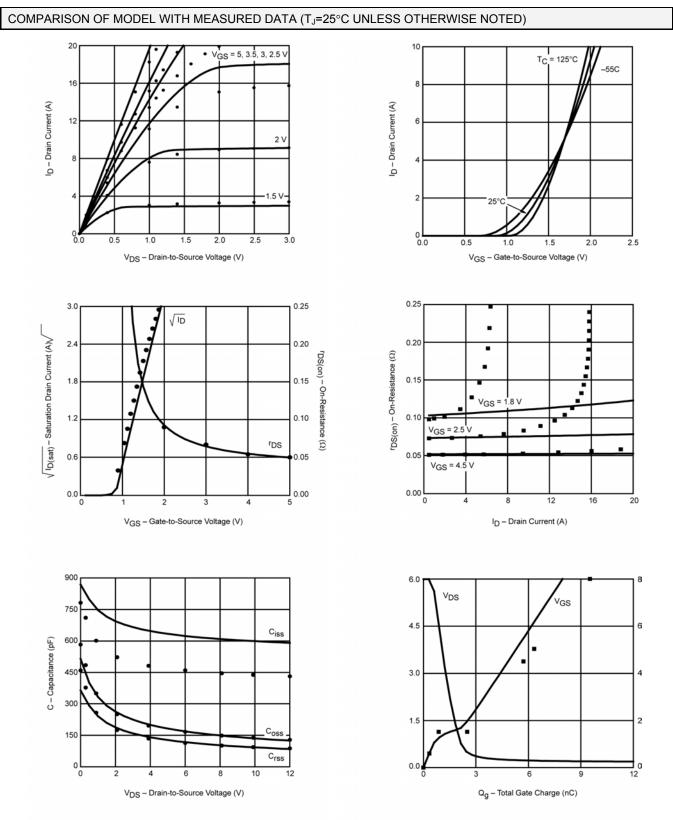
The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERW	ISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.75		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \leq -5$ V, V_{GS} = -4.5 V	73		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = -4.5 V, I _D = -3.6 A	0.052	0.053	Ω
		V_{GS} = -2.5 V, I _D = -3.1 A	0.075	0.073	
		V_{GS} = -1.8 V, I _D = -0.83 A	0.106	0.098	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -6 V$, $I_{D} = -3.6 A$	18	11	S
Diode Forward Voltage ^a	V _{SD}	I _S = -4 A	-0.85	-0.80	V
Dynamic ^b			-		
Input Capacitance	C _{iss}	V_{DS} = -6 V, V_{GS} = 0 V, f = 1 MHz	624	460	pF
Output Capacitance	C _{oss}		169	170	
Reverse Transfer Capacitance	C _{rss}		118	115	
Total Gate Charge	Qg	$V_{DS} = -6 V, V_{GS} = -8 V, I_{D} = -5A$	8	10	nC
		V_{DS} = -6 V, V_{GS} = -4.5 V, I_{D} = -5 A	5	6	
Gate-Source Charge	Q _{gs}		0.90	0.90	
Gate-Drain Charge	Q_{gd}		1.65	1.65	


Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si5943DU

Vishay Siliconix

Note: Dots and squares represent measured data.