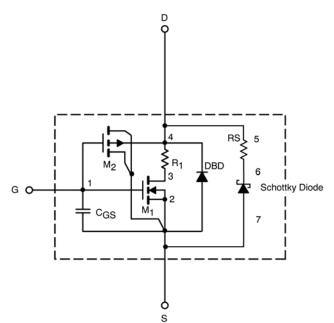


Vishay Siliconix

N-Channel 30-V (D-S) MOSFET With Schottky Diode

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

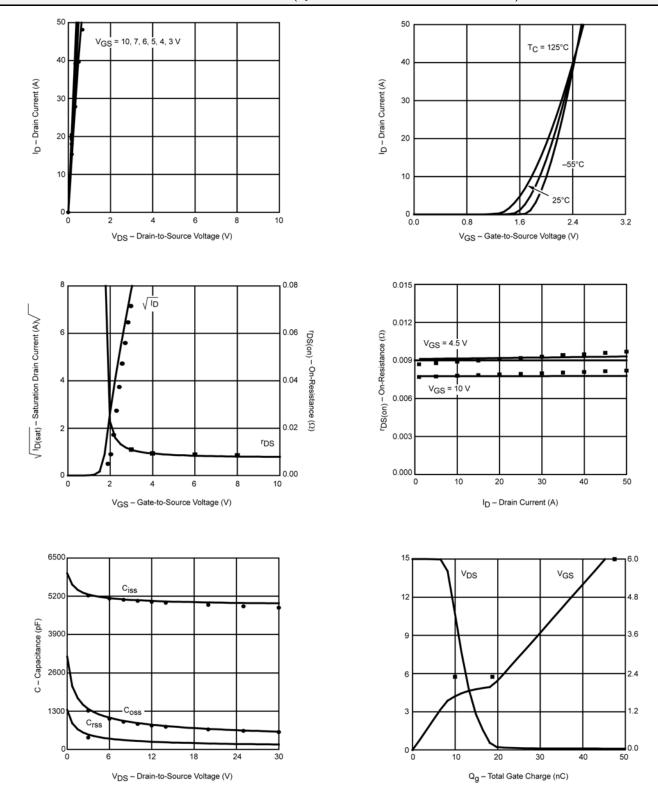
SPICE Device Model Si4736DY

Vishay Siliconix

VISHAY

SPECIFICATIONS ($T_J = 25^{\circ}C$ UN		NGE NOTED)			1
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = 250 \ \mu\text{A}$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} = 10 \text{ V}$	596		А
Drain-Source On-State Resistance ^a	۲ _{DS(on)}	$V_{GS}=10~V,~I_D=13~A$	0.0079	0.0070	Ω
		V_{GS} = 4.5 V, I_D = 12 A	0.0090	0.0083	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	62	56	S
Schottky Diode Forward Voltage ^a	V _{SD}	$I_S = 3 \text{ A}, V_{GS} = 0 \text{ V}$	0.76	0.495	V
		$I_{S} = 3 \text{ A}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$	0.61	0.43	
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 13 A	37	37	nC
Gate-Source Charge	Q _{gs}		10	10	
Gate-Drain Charge	Q_{gd}		8.8	8.8	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 15 \text{ V}, \text{R}_{\text{L}} = 15 \Omega$ $\text{I}_{\text{D}} \cong 1 \text{ A}, \text{V}_{\text{GEN}} = 10 \text{ V}, \text{R}_{\text{G}} = 6 \Omega$ $\text{I}_{\text{F}} = 3 \text{ A}, \text{di/dt} = 100 \text{ A/}\mu\text{s}$	17	17	ns
Rise Time	tr		6	14	
Turn-Off Delay Time	t _{d(off)}		83	102	
Fall Time	t _f		37	26	
Source-Drain Reverse Recovery Time	t _{rr}		34	42	

Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4736DY

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.