

SH79F1622

8051 Microcontroller with 20 channels Touch-key input and TONE

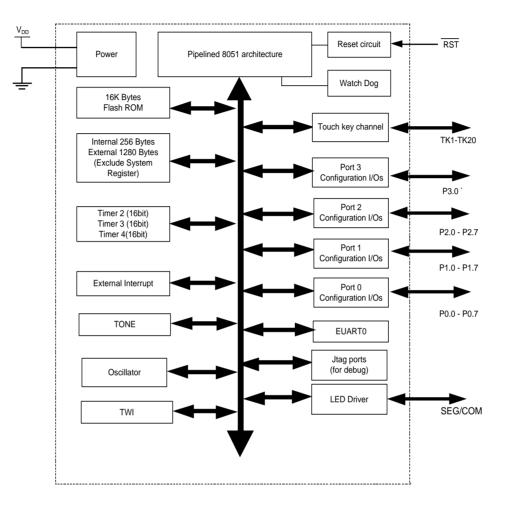
1. Features

- 8bits micro-controller with Pipe-line structured 8051 compatible instruction set
- Flash ROM: 16K Bytes
- RAM: internal 256 Bytes, external 1280 Bytes
- Operation Voltage: 2.7V 5.5V
- Oscillator:
 - Internal RC: 27MHz (±2%)
 - External crystal oscillator: 32.768kHz
- 28pin: 25 CMOS bi-directional I/O pins 20pin: 17 CMOS bi-directional I/O pins
- Built-in pull-up resistor for input pin
- Three 16-bit timer/counters T2, T3 & T4
- 20 channels Touch Key input
- Built-in Touch Key comparison voltage: 1V, 1.5V, 2V, 2.5V
- 7 COM 16 SEG LED drive

- Touch Key sharing with LED drive
- Powerful interrupt sources:
 - Timer2, 3, 4
 - INT0, INT1, INT2, INT4
 - EUART
 - Touch Key
 - TWI
- EUART with Baud-rate generator
- TWI communication interface
- Built-in 2 channels programmable tone generator
- CPU Machine cycle: 1 oscillator cycle
- Watch Dog Timer (WDT)
- Flash Type
- Package: SOP28 SOP20 SOP16

2. General Description

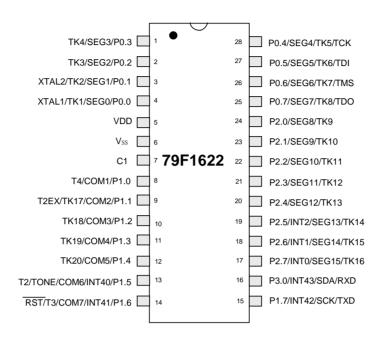
The SH79F1622 is a high performance 8051 compatible micro-controller, regard to its build-in Pipe-line instruction fetch structure, that helps the SH79F1622 can perform more fast operation speed and higher calculation performance, if compare SH79F1622 with standard 8051 at same clock speed.

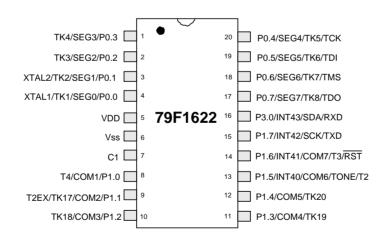

The SH79F1622 retains most features of the standard 8051. These features include internal 256 bytes RAM, three 16-bit Timer/Counter. In addition, SH79F1622 provides external 1280 bytes RAM, It also contains 16K bytes Flash memory block for storing programs.

SH79F1622 also integrate double channels tone generation module, LVR, TWI and Touch Key sharing with LED for saving pins. SH79F1622 is very suitable for the application and control of Touch Key.

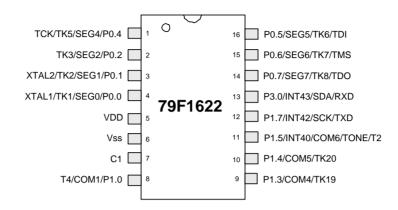
Also WDT and EUART are incorporated in SH79F1622.

3. Block Diagram




4. Pin Configuration

SOP 28



SOP 20

Pin Configuration Diagram SOP 16

Note:

1. SH79F1622 (SOP16) I/O (20PIN P0.3, P1.2, P1.6, P1.1), which is set to output low level, to avoid functional conflicts.

2. The out most pin function has the highest priority, and the inner most pin function has the lowest priority (Refer to Pin Configuration Diagram). This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin, even when the lower priority function is also enabled. Until the higher priority function is closed by software, can the corresponding pin be released for the lower priority function use.

Table 4.1 28 Pin Function

Pin No.	Pin Name	Default Function	Pin No.	Pin Name	Default Function
1	TK4/SEG3/P0.3	P0.3	15	P1.7/INT42/SCK/TXD	P1.7
2	TK3/SEG2/P0.2	P0.2	16	P3.0/INT43/SDA/RXD	P3.0
3	XTAL2/TK2/SEG1/P0.1	P0.1	17	P2.7/INT0/SEG15/TK16	P2.7
4	XTAL1/TK1/SEG0/P0.0	P0.0	18	P2.6/INT1/SEG14/TK15	P2.6
5	V _{DD}		19	P2.5/INT2/SEG13/TK14	P2.5
6	V _{SS}		20	P2.4/SEG12/TK13	P2.4
7	C1		21	P2.3/SEG11/TK12	P2.3
8	T4/COM1/P1.0	P1.0	22	P2.2/SEG10/TK11	P2.2
9	T2EX/TK17/COM2/P1.1	P1.1	23	P2.1/SEG9/TK10	P2.1
10	TK18/COM3/P1.2	P1.2	24	P2.0/SEG8/TK9	P2.0
11	TK19/COM4/P1.3	P1.3	25	P0.7/SEG7/TK8/TDO	P0.7
12	TK20/COM5/P1.4	P1.4	26	P0.6/SEG6/TK7/TMS	P0.6
13	T2/TONE/COM6/INT40/P1.5	P1.5	27	P0.5/SEG5/TK5/TDI	P0.5
14	RST/T3/COM7/INT41/P1.6	P1.6	28	P0.4/SEG4/TK5/TCK	P0.4

Table 4.2 20 Pin Function

Pin No.	Pin Name	Default Function	Pin No.	Pin Name	Default Function
1	TK4/SEG3/P0.3	P0.3	11	P1.3/COM4/TK19	P1.3
2	TK3/SEG2/P0.2	P0.2	12	P1.4/COM5/TK20	P1.4
3	XTAL2/TK2/SEG1/P0.1	P0.1	13	P1.5/INT40/COM6/TONE/T2	P1.5
4	XTAL1/TK2/SEG0/P0.0	P0.0	14	P1.6/INT41/COM7/T3/RST	P1.6
5	V _{DD}		15	P1.7/INT42/SCK/TXD	P1.7
6	V _{SS}		16	P3.0/INT43/SDA/RXD	P3.0
7	C1		17	P0.7/SEG7/TK8/TDO	P0.7
8	T4/COM1/P1.0	P1.0	18	P0.6/SEG6/TK7/TMS	P0.6
9	T2EX/TK17/COM2/P1.1	P1.1	19	P0.5/SEG5/TK6/TDI	P0.5
10	TK18/COM3/P1.2	P1.2	20	P0.4/SEG4/TK5/TCK	P0.4

Table 4.3 16 Pin Function

Pin No.	Pin Name	Default Function	Pin No.	Pin Name	Default Function
1	TCK/TK5/SEG4/P0.4	P0.4	9	TK19/COM4/P1.3	P1.3
2	TK3/SEG2/P0.2	P0.2	10	TK20/COM5/P1.4	P1.4
3	XTAL2/TK2/SEG1/P0.1	P0.1	11	T2/TONE/COM6/INT40/P1.5	P1.5
4	XTAL1/TK2/SEG0/P0.0	P0.0	12	TXD/SCK/INT42/P1.7	P1.7
5	V _{DD}		13	RXD/SDA/INT43/P3.0	P3.0
6	V _{SS}		14	TDO/TK8/SEG7/P0.7	P0.7
7	C1		15	TMS/TK7/SEG6/P0.6	P0.6
8	T4/COM1/P1.0	P1.0	16	TDI/TK5/SEG5/P0.5	P0.5

Note:

SH79F1622 (SOP16) I/O (20PIN P0.3, P1.2, P1.6, P1.1), which is set to output low level, to avoid functional conflicts.

5. Pin Description

Pin No.	Туре	Description
I/O PORT	•	·
P0.0 - P0.7	I/O	8 bit General purpose CMOS I/O
P1.0 - P1.7	I/O	8 bit General purpose CMOS I/O
P2.0 - P2.7	I/O	8 bit General purpose CMOS I/O
P3.0	I/O	General purpose CMOS I/O
Touch Key		
TK1 - TK20	I	Touch Key pin
C1	I	External capacitor pin of Touch Key
Timer		
T2	I/O	Timer2 external input/Baud-Rate generator
Т3	I	Timer3 external input
T4	I	Timer4 external input
T2EX	I	Timer2 Reload/Capture/Direction Control
TONE		
TONE	0	Tone output pin
LED		
SEG1 - SEG16	0	Segment signal output for LED display
COM1 - COM7	0	Common signal output for LED display
EUART		
RXD	I	EUART0 data input
TXD	0	EUART0 data output
тwi		
SDA	I/O	TWI data input/output
SCK	I/O	TWI clock
Interrupt & Reset & C	lock & Po	wer
INT0 - INT2, INT4	I	External interrupt 0-2, external interrupt 4 input source
RST	I	The device will be reset by A low voltage on this pin longer than 10us, an internal resistor about $30k\Omega$ to V _{DD} , So using only an external capacitor to GND can cause a power-on reset.
V _{SS}	Р	Ground
V _{DD}	Р	Power supply (2.7 - 5.5V)
XTAL1	I	Oscillator input
XTAL2	0	Oscillator output
Programmer		
TDO (P0.7)	0	Debug interface: Test data out
TMS (P0.6)	I	Debug interface: Test mode select
TDI (P0.5)	I	Debug interface: Test data in
TCK (P0.4)	I	Debug interface: Test clock in
		bug interface, functions of P0.4-0.7 are blocked.

6. SFR Mapping

The SH79F1622 provides 256 bytes of internal RAM to contain general-purpose data memory and Special Function Register (SFR). The SFR of the SH79F1622 fall into the following categories: **CPU Core Registers:** ACC, B, PSW, SP, DPL, DPH

CPU Core Registers:	ACC, B, PSW, SP, DPL, DPH
Enhanced CPU Core Registers:	AUXC, DPL1, DPH1, INSCON, XPAGE
Power and Clock Control Registers:	PCON, SUSLO, CLKLO, CLKRCO, CLKRC1
Flash Registers:	IB_OFFSET, IB_DATA, IB_CON1, IB_CON2, IB_CON3, IB_CON4, IB_CON5
Data Memory Register:	XPAGE
Hardware Watchdog Timer Registers:	RSTSTAT
System Clock Control Register:	CLKCON
Interrupt System Registers:	IEN0, IEN1, IENC, IPH0, IPL0, IPH1, IPL1, EXF1
I/O Port Registers:	P0, P1, P2, P3, P4, P5, P0CR, P1CR, P2CR, P3CR, P4CR, P5CR, P0PCR, P1PCR, P2PCR, P3PCR, P4PCR, P5PCR, P1OS, P0SS, P1SS, P2SS
Timer Registers:	TCON, T2CON, T2MOD, TH2, TL2, RCAP2L, RCAP2H, T3CON, TH3, TL3, T4CON, TH4, TL4
EUART Registers:	SCON, SBUF, SADEN, SADDR, PCON, SBRTL, SBRTH, BFINE
TONE Registers:	TVCR1, TVCR2, TGCR11, TGCR12, TGCR21, TGCR22
TK Registers:	TKCON1, TKF0, TKU1, TKU2, TKDIV01, TKDIV02, TKDIV03, TKDIV04, TKVREF, TKST, TKRANDOM, TKCOUNT, TKW
LED Registers:	DISPCON, SEG01, SEG02, DISPCLK, LEDCOM, DISCOM, LIGHTCOM
TWI Registers:	TWIDAT, TWIADR, TWISTA, TWICON

SH79F1622

Table 6.1 CPU Core SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ACC	E0H	Accumulator	00000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0H	B Register	0000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
AUXC	F1H	C Register	0000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW	D0H	Program Status Word	0000000	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81H	Stack Pointer	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82H	Data Pointer Low byte	0000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
DPH	83H	Data Pointer High byte	0000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84H	Data Pointer 1 Low byte	0000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85H	Data Pointer 1 High byte	0000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON	86H	Data pointer select	-000-0	-	BKS0	-	-	DIV	MUL	-	DPS

Table 6.2 Power and Clock control SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	87H	Power Control	000000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
SUSLO	8EH	Suspend Mode Control	00000000	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0

SH79F1622

Table 6.3 Flash control SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_OFF SET	FBH	Low byte offset of flash memory for programming	00000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA	FCH	Data Register for programming flash memory	00000000	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
IB_CON1	F2H	Flash Memory Control Register 1	00000000	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
IB_CON2	F3H	Flash Memory Control Register 2	0000	-	-	-	-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
IB_CON3	F4H	Flash Memory Control Register 3	0000	-	-	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
IB_CON4	F5H	Flash Memory Control Register 4	0000	-	-	-	-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
IB_CON5	F6H	Flash Memory Control Register 5	0000	-	-	-	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
XPAGE	F7H	Memory Page	00000000	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
FLASHCON	A7H	Flash access control	0	-	-	-	-	-	-	-	FAC

Table 6.4 WDT SFR

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	BIT/	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSTSTAT	B1H	Watchdog Timer Control	0-000000*	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0

*Note: RSTSTAT initial value is determined by different RESET, refer to "Watchdog Timer (WDT)" section for details.

Table 6.5 CLKCON SFR

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	B2H	System Clock Control Register	111-00	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	FS	-	-
Table 6.6	Interrup	t SFRs									
Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN0	A8H	Interrupt Enable Control 0	0-00-000	EA	-	ET2	ES	-	EX1	TKIE	EX0
IEN1	A9H	Interrupt Enable Control 1	0000-	-	-	-	ET3	ETWI	EX3	EX2	-
IENC	BAH	Interrupt 4channel enable control	0000	-	-	-	-	EXS43	EXS42	EXS41	EXS40
IENC1	BBH	Interrupt channel enable control 1	00	-	-	-	-	-	-	ESCM1	ELPD
IPH0	B4H	Interrupt Priority Control High 0	-0000000	-	PT4H	PT2H	PS0H	РТКН	PX1H	PTWH	PX0H
IPL0	B8H	Interrupt Priority Control Low 0	-0000000	-	PT4L	PT2L	PS0L	PTKL	PX1L	PTWL	PX0L
IPH1	B5H	Interrupt Priority Control High 1	0-00-	-	-	-	РТ3Н	-	PX4H	PX2H	-
IPL1	B9H	Interrupt Priority Control Low 1	0-00-	-	-	-	PT3L	-	PX4L	PX2L	-
EXF0	E8H	External interrupt Control 0	000000	IT4.1	IT4.0	-	-	IT2.1	IT2.0	IE3	IE2
EXF1	D8H	External interrupt Control 1	0000	-	-	-	-	IF43	IF42	IF41	IF40
EXCON0	ADH	External interrupt sampling time Control	000000	-	-	I2P1	I2P0	l1P1	I1P0	I0P1	10P0
EXCON1	AEH	External interrupt sampling time Control	0000000	I43P1	I43P0	I42P1	142P0	l41P1	I41P0	I40P1	I40P0

SH79F1622

Table 6.7 Port SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0	80H	8-bit Port 0	00000000	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1	90H	8-bit Port 1	00000000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2	A0H	8-bit Port 2	00000000	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3	B0H	8-bit Port 3	0	-	-	-	-	-	-	-	P3.0
P0CR	E1H	Port0 input/output direction control	00000000	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR	E2H	Port1 input/output direction control	00000000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR	E3H	Port2 input/output direction control	00000000	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR	E4H	Port3 input/output direction control	0	-	-	-	-	-	-	-	P3CR.0
P0PCR	E9H	Internal pull-high enable for Port0	00000000	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR	EAH	Internal pull-high enable for Port1	00000000	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR	EBH	Internal pull-high enable for Port2	00000000	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR	ECH	Internal pull-high enable for Port3	0	-	-	-	-	-	-	-	P3PCR.0
P1OS	EFH	Output mode control	-00	-	P10S.6	P10S.5	-	-	-	-	-
POSS	D9H	Function mode control	00000000	P0SS.7	P0SS.6	P0SS.5	P0SS.4	P0SS.3	P0SS.2	P0SS.1	P0SS.0
P1SS	DAH	Function mode control	0000-	-	-	-	P1SS.4	P1SS.3	P1SS.2	P1SS.1	-
P2SS	DBH	Function mode control	0000000	P2SS.7	P2SS.6	P2SS.5	P2SS.4	P2SS.3	P2SS.2	P2SS.1	P2SS.0

SH79F1622

Table 6.8 Timer SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCON	88H	Timer/Counter Control	0000	-	-	-	-	IE1	IT1	IE0	ІТО
T2CON	C8H	Timer/Counter 2 Control	00000000	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T 2	CP/RL2
T2MOD	C9H	Timer/Counter 2 Mode	000	TCLKP2	-	-	-	-	-	T2OE	DCEN
RCAP2L	CAH	Timer/Counter 2 Reload /Caprure Low Byte	00000000	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	CBH	Timer/Counter 2 Reload /Caprure High Byte	00000000	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	ССН	Timer/Counter 2 Low Byte	00000000	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	CDH	Timer/Counter 2 High Byte	00000000	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
T3CON	СОН	Timer/Counter 3 Control	0-00-000	TF3	-	T3PS.1	T3PS.0	-	TR3	T3CLKS.1	T3CLKS.0
TL3	C4H	Timer/Counter 3 Low Byte	00000000	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
ТНЗ	C5H	Timer/Counter 3 High Byte	00000000	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
T4CON	C2H	Timer/Counter 4 Control	00000000	TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS
TL4	D6H	Timer/Counter 4 Low Byte	00000000	TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0
TH4	D7H	Timer/Counter 4 High Byte	00000000	TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0

Table 6.9 EUART SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SCON	98H	Serial Control	00000000	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
SBUF	99H	Serial Data Buffer	00000000	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
SADEN	9BH	Slave Address Mask	0000000	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
SADDR	9AH	Slave Address	0000000	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
PCON	87H	Power & serial Control	000000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
SBRTH	9CH	Baudrate generator	00000000	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL	9DH	Baudrate generator	0000000	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
SFINE	9EH	Baudrate generator	0000	-	-	-	-	SFINE.3	SFINE.2	SFINE.1	SFINE.0

Table 6.10 TONE SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TVCR1	CFH	Tone generator 1 volume Control	00000000	TG1EN	TV1.6	TV1.5	TV1.4	TV1.3	TV1.2	TV1.1	TV1.0
TVCR2	D1H	Tone generator 2 volume Control	00000000	TG2EN	TV2.6	TV2.5	TV2.4	TV2.3	TV2.2	TV2.1	TV2.0
TGCR11	D2H	Tone generator 1	0000000	TG1.7	TG1.6	TG1.5	TG1.4	TG1.3	TG1.2	TG1.1	TG1.0
TGCR12	D3H	Tone generator 1	0000000	TG1.15	TG1.14	TG1.13	TG1.12	TG1.11	TG1.10	TG1.9	TG1.8
TGCR21	D4H	Tone generator 2	0000000	TG2.7	TG2.6	TG2.5	TG2.4	TG2.3	TG2.2	TG2.1	TG2.0
TGCR22	D5H	Tone generator 2	00000000	TG2.15	TG2.14	TG2.13	TG2.12	TG2.11	TG2.10	TG2.9	TG2.8

SH79F1622

Table 6.11 TK SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCON1	A1H	Touch Key Control	0-000000	TKCON	-	TKGO/ DONE	SHARE	MODE	OVDD	FSW1	FSW0
TKF0	A2H	Touch Key interrupt flag Register	-00000	-	IFERR	IFGO	IFAVE	IFCOUNT	IFTKOV	-	-
TKU1	A4H	Touch Key channel selection Register	00000000	TK8	ТК7	TK6	TK5	TK4	ТКЗ	TK2	TK1
TKU2	A5H	Touch Key channel choosing Register	00000000	TK16	TK15	TK14	TK13	TK12	TK11	TK10	TK9
ТКИЗ	A6H	Touch Key channel choosing Register	0000	-	-	-	-	TK20	TK19	TK18	TK17
TKDIV01	91H	Touch Key amplification coefficient Register	00000000	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
TKDIV02	92H	Touch Key amplification coefficient Register	0000000	DIV15	DIV14	DIV13	DIV12	DIV11	DIV10	DIV9	DIV8
TKDIV03	93H	Touch Key amplification coefficient Register	0000000	DIV23	DIV22	DIV21	DIV20	DIV19	DIV18	DIV17	DIV16
TKDIV04	94H	Touch Key amplification coefficient Register	0000	-	-	-	-	DIV27	DIV26	DIV25	DIV24
TKVREF	95H	Reference voltage source selection Register	0000000	VREF1	VREF0	CMPD1	CMPD0	VTK1	VTK0	TUNE1	TUNE0
ткэт	A3H	Touch Key frequency selection Register	-0000000	-	ST.6	ST.5	ST.4	ST.3	ST.2	ST.1	ST.0
TKRANDO M	96H	Touch Key frequency selection Register	000000	TKRADON	TKOFFSET	TKVDD	ткоит	-	-	RANDOM1	RANDOM1
TKCOUNT	97H	Touch Key clock width selection Register	00000000	COUNT0.7	COUNT0.6	COUNT0.5	COUNT0.4	COUNT0.3	COUNT0.2	COUNT0.1	COUNT0.0
TKW	BDH	Touch Key channel error display Register	00000	-	-	-	TW.4	TW.3	TW.2	TW.1	TW.0

Table 6.12 LED SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DISPCON	89H	LED Control	-000	-	LEDON	-	-	-	-	DUTY1	DUTY0
SEG01	8AH	SEG function selection Register	00000000	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
SEG02	8BH	SEG function selection Register	0000000	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
DISPCLK	8CH	LED clock frequency selection Register	00000000	DCK0.7	DCK0.6	DCK0.5	DCK0.4	DCK0.3	DCK0.2	DCK0.1	DCK0.0
LEDCOM	8FH	COM function selection Register	-0000000	-	COM7	COM6	COM5	COM4	COM3	COM2	COM1
DISCOM	9FH	LED COM sweep length Register	00000000	DCOM.7	DCOM.6	DCOM.5	DCOM.4	DCOM.3	DCOM.2	DCOM.1	DCOM.0
LIGHTCOM	8DH	LED COM brightness selection Register	000	-	-	-	-	-	CC3	CC2	CC1

Table 6.13 TWI SFRs

Mnem	Add	Name	POR/WDT/LVR /PIN Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TWICON	F8H	TWI setting Register	00000000	TOUT	ENTWI	STA	STO	TWINT	AA	TFREE	EFREE
TWISTA	E6H	TWI state Register	11111000	TWISTA.7	TWISTA.6	TWISTA.5	TWISTA.4	TWISTA.3	CR.1	CR.0	ETOT
TWIADR	E7H	TWI data address Register	00000000	TWA.6	TWA.5	TWA.4	TWA.3	TWA.2	TWA.1	TWA.0	GC
TWIDAT	DFH	TWI data input/output Register	00000000	TWIDAT.7	TWIDAT.6	TWIDAT.5	TWIDAT.4	TWIDAT.3	TWIDAT.2	TWIDAT.1	TWIDAT.0

SFR Map Bank0

	Bit addressable			Non	Bit address	able			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H	TWICON			IB_OFFSET	IB_DATA				FFH
F0H	В	AUXC	IB_CON1	IB_CON2	IB_CON3	IB_CON4	IB_CON5	XPAGE	F7H
E8H	EXF0	P0PCR	P1PCR	P2PCR	P3PCR			P1OS	EFH
E0H	ACC	P0CR	P1CR	P2CR	P3CR		TWISTA	TWIADR	E7H
D8H	EXF1	POSS	P1SS	P2SS				TWIDAT	DFH
D0H	PSW	TVCR2	TGCR11	TGCR12	TGCR21	TGCR22	TL4	TH4	D7H
C8H	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2		TVCR1	CFH
C0H	T3CON		T4CON		TL3	TH3			C7H
B8H	IPL0	IPL1	IENC	IENC1		TKW			BFH
B0H	P3	RSTSTAT	CLKCON		IPH0	IPH1			B7H
A8H	IEN0	IEN1				EXCON0	EXCON1		AFH
A0H	P2	TKCON1	TKF0	TKST	TKU1	TKU2	TKU3	FLASHCON	A7H
98H	SCON	SBUF	SADDR	SADEN	SBRTH	SBRTL	SFINE	DISCOM	9FH
90H	P1	TKDIV01	TKDIV02	TKDIV03	TKDIV04	TKVREF	TKRANDOM	TKCOUNT	97H
88H	TCON	DISPCON	SEG01	SEG02	DISPCLK	LIGHTCOM	SUSLO	LEDCOM	8FH
80H	P0	SP	DPL	DPH	DPL1	DPH1	INSCON	PCON	87H
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

7. Normal Function

7.1 CPU

7.1.1 CPU Core SFR

Feature

■ CPU core registers: ACC, B, PSW, SP, DPL, DPH

Accumulator

ACC is the Accumulator register. Instruction system adopts A as mnemonic symbol of accumulator.

B Register

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

Stack Pointer (SP)

The Stack Pointer Register is 8 bits special register, It is incremented before data is stored during PUSH, CALL executions and interrupt response. And it is decremented after data is out of stack during POP, RET, RETI executions. The stack may reside anywhere in on-chip internal RAM (00H-FFH). On reset, the Stack Pointer is initialized to 07H causing the stack to begin at location 08H.

Program Status Word Register (PSW)

The PSW register contains program status information.

Data Pointer Register (DPTR)

DPTR consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

Table 7.1 PSW Register

D0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	СҮ	Carry flag bit 0: no carry or borrow in an arithmetic or logic operation 1: a carry or borrow in an arithmetic or logic operation
6	AC	Auxiliary Carry flag bit 0: no auxiliary carry or borrow in an arithmetic or logic operation 1: an auxiliary carry or borrow in an arithmetic or logic operation
5	F0	F0 flag bit Available to the user for general purposes
4-3	RS[1:0]	R0-R7 Register bank select bits 00: Bank0 (Address to 00H-07H) 01: Bank1 (Address to 08H-0FH) 10: Bank2 (Address to 10H-17H) 11: Bank3 (Address to 18H-1FH)
2	ov	Overflow flag bit 0: no overflow happen 1: an overflow happen
1	F1	F1 flag bit Available to the user for general purposes
0	Р	Parity flag bit 0: In the Accumulator,the bits whose value is 1 is even number 1: In the Accumulator,the bits whose value is 1 is odd number

7.1.2 Enhanced CPU core SFRs

- Extended 'MUL' and 'DIV' instructions: 16bit*8bit, 16bit/8bit
- Dual Data Pointer
- Enhanced CPU core registers: AUXC, DPL1, DPH1, INSCON

The SH79F1622 has modified 'MUL' and 'DIV' instructions. These instructions support 16 bit operand. A new register - the register AUXC is applied to hold the upper part of the operand/result.

The AUXC register is used during 16 bit operand multiply and divide operations. For other instructions it can be treated as another scratch pad register.

After reset, the CPU is in standard mode, which means that the 'MUL' and 'DIV' instructions are operating like the standard 8051 instructions. To enable the 16 bit mode operation, the corresponding enable bit in the INSCON register must be set.

	Operation			Result	
	Operation		A	В	AUXC
MUL	INSCON.2 = 0; 8 bit mode	(A)*(B)	Low Byte	High Byte	
MOL	INSCON.2 = 1; 16 bit mode	(AUXC A)*(B)	Low Byte	Middle Byte	High Byte
DIV	INSCON.3 = 0; 8 bit mode	(A)/(B)	Quotient Low Byte	Remainder	
	INSCON.3 = 1; 16 bit mode	(AUXC A)/(B)	Quotient Low Byte	Remainder	Quotient High Byte

Dual Data Pointer

Using two data pointers can accelerate data memory moves. The standard data pointer is called DPTR and the new data pointer is called DPTR1.

DPTR1 is similar to DPTR, which consists of a high byte (DPH1) and a low byte (DPL1). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

The DPS bit in INSTCON register is used to choose the active pointer by setting 1 or 0. And all DPTR-related instructions will use the currently selected data pointer.

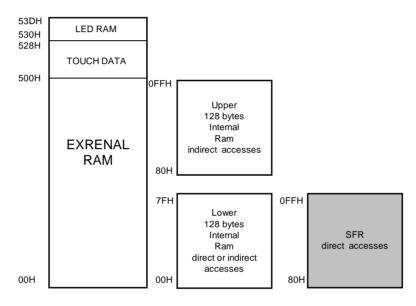
7.1.3 Register

Table 7.2 Data Pointer Select Register

86H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INSCON	-	-	-	-	DIV	MUL	-	DPS
R/W	-	-	-	-	R/W	R/W	-	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	-	0

Bit Number	Bit Mnemonic	Description
3	DIV	16 bit/8 bit Divide Selection Bit 0: 8 bit Divide 1: 16 bit Divide
2	MUL	16 bit/8 bit Multiply Selection Bit 0: 8 bit Multiply 1: 16 bit Multiply
0	DPS	Data Pointer Selection Bit 0: Data pointer 1: Data pointer1

7.2 RAM


7.2.1 Features

SH79F1622 provides both internal RAM and external RAM for random data storage. The internal data memory is mapped into four separated segments:

- The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable
- The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only
- The Special Function Registers (SFR, addresses 80H to FFH) are directly addressable only
- External RAM are indirectly accessed by MOVX instructions

The Upper 128 bytes occupy the same address space as SFR, but they are physically separate from SFR space. When an instruction accesses an internal location above address 7FH, the CPU can distinguish whether to access the upper 128 bytes data RAM or to access SFR by different addressing mode of the instruction.

SH79F1622 provides 1280 bytes RAM in external data space for supporting high-level language. SH79F1622 also configures 14 bytes LED RAM (530H - 53DH).

The Internal and External RAM Configuration

The SH79F1622 provides traditional method for accessing of external RAM. Use *MOVXA*, *@Ri* or *MOVX @Ri*, *A*; to access external low 256 bytes RAM; *MOVX A*, *@DPTR* or *MOVX @DPTR*, *A* also to access external 1280 bytes RAM.

7.3 Flash Program Memory

7.3.1 Features

- The program memory consists 16 X 1KB sectors, total 16KB
- 8 X 256 Bytes EEPROM-Like Built-in, total 2KB
- Programming and erase can be done over the full operation voltage range
- Supports 4 kinds of code protection
- Write, read and erase operation are all supported by In-Circuit Programming (ICP)
- Support overall/sector erase and programming
- Minimum program/erase cycles: Main program memory: 10,000 EEPROM like memory: 100,000
- Minimum years data retention: 10
- Low power consumption

The SH79F1622 embeds 16K flash program memory for program code. The flash program memory supports In-Circuit Programming (ICP) mode and Self-Sector Programming (SSP) mode. Every sector is 1024 bytes.

The SH79F1622 also embeds 2048 bytes EEPROM-like memory block for storing user data. Every sector is 256 bytes. It has 8 sectors.

Flash operation definition:

In-Circuit Programming(ICP): Through the Flash programmer to wipe the Flash memory, read and write operations.

Self-Sector Programming (SSP): User Program code run in Program Memory to wipe the Flash memory(including Flash program memory and EEPROM like memory), read and write operations.But it can't erase the sector which contains the code itself.

Flash memory supports the following operations:

(1) Code-Protect Control mode Programming

SH79F1622 code protection function provides a high-performance security measures for the user. Each partition has four modes are available.

Code-protect control mode 0: Used to enable/disable the write/read operation (except mass erase) from any programmer. 4K (4 sectors) as a unit which can be protected separately.

Code-protect control mode 1: Used to enable/disable the read operation through MOVC instruction from other sectors; or the sector erase/write operation through **SSP** Function. 4K (4 sectors) as a unit which can be protected separately.

Code-protect control mode 2: Used to enable/disable the erase/write EEPROM operation through SSP Function.

Code-protect control mode 3: Customer password, write by customer, consists of 6 bytes. To enable the wanted protect mode, the user must use the Flash Programmer to set the corresponding protect bit.

The user must use the following two ways to complete code protection control mode Settings:

1. Flash programmer in ICP mode is set to corresponding protection bit to enter the protected mode.

2. The SSP mode does not support code protection control mode programming.

(2) Mass Erase

The mass erase operation will erase all the contents of program code, code option, code protect bit and customer code ID, regardless the status of code-protect control mode. (The Flash Programmer supplies customer code ID setting function for customer to distinguish their product.)

Mass erase is only available in Flash Programmer.

(3) Sector Erase

The sector erase operation will erase the contents of program code of selected sector. This operation can be done by Flash Programmer or the user's program.

If done by the user's program, Code-protect control mode 1 and Code-protect control mode 2 of the selected sector must be disabled.

If done by the Flash Programmer, Code-protect control mode 0 of the selected sector must be disabled. If Code-protect control mode 3 is enabled, the password must be input correctly.

The user must use one of the following two ways to complete sector erasure:

1. Flash programmer in ICP mode send sector erasure instruction to run sector erasure.

2. Through the SSP function send sector erasure instruction to run sector erasure (see chapter SSP)

(4) EEPROM-like Memory Block Erasure

EEPROM-like memory block erasure operations will erase the content in EEPROM-like memory block. The user program (SSP) and Flash programmer can perform this operation.

The user must use one of the following two ways to complete EEPROM-like memory block erasure:

- 1. Flash programmer in ICP mode send EEPROM-like memory block erasure instruction to run EEPROM-like memory block erasure.
- 2. Through the SSP function send EEPROM-like memory block erasure instruction to run EEPROM-like memory block erasure (see chapter SSP).

(5) Write/Read Code

Write/read code operation can read or write code from flash memory block. The user program (SSP) and Flash programmer can perform this operation.

For user programs to perform read operation, code-protect control mode 1 of the selected sector must be forbidden.

Regardless of the security bit Settings or not, the user program can read/write the sector which contains program itself (1K/unit).

For user programs to perform write operation, code-protect control mode 1 and code-protect control mode 2 of the selected sector must be forbidden.

Note: If only use code-protect control mode 1 of the sector, the user programs can't write other sectors, but it can write the sector which contains program itself (1K/unit).

For Flash programmer to perform the operation, code-protect control mode 0 of the selected sector must be forbidden.

The user must use one of the following two ways to complete write/read code:

1. Flash programmer in ICP mode send write/read code instruction to write/read code.

2. Through the SSP function send write code instruction to write code; through MOVC instruction to perform read operation.

(6) Write/Read EEPROM-like Memory Block

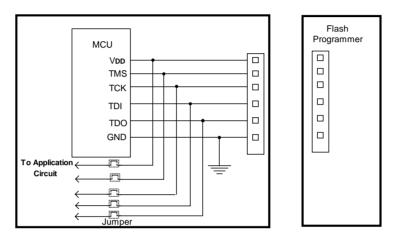
EEPROM-like memory block operation can read or write data from EEPROM-like memory block. The user program (SSP) and Flash programmer can perform this operation.

The user must use one of the following two ways to complete write/read EEPROM-like memory block:

- 1. Flash programmer in ICP mode send write/read EEPROM-like memory block instruction to run write/read EEPROM-like memory block.
- 2. Through the SSP function send write/read EEPROM-like memory block instruction to run write/read EEPROM-like memory block; through MOVC instruction to perform read EEPROM-like operation.

Flash Memory Block Operation Summary

Code Protection	Support	Non Support
Sector erasure	Support (no security bit)	Support (no security bit)
Overall erasure	Support	Non support
EEPROM-like memory block erasure	Support	Support
Write/read code	Support (no security bit)	Support (no security bit)
Read/write EEPROM-like memory block	Support	Support
Code protection	Support	Non support



7.3.2 Flash Operation in ICP Mode

ICP mode is performed without removing the micro-controller from the system. In ICP mode, the user system must be power-off, and the programmer can refresh the program memory through ICP programming interface. The ICP programming interface consists of 6 pins (V_{DD} , GND, TCK, TDI, TMS, TDO).

At first the four JTAG pins (TDO, TDI, TCK, TMS) are used to enter the programming mode. Only after the four pins are inputted the specified waveform, the CPU will enter the programming mode. For more detail description please refers to the FLASH Programmer's user guide.

In ICP mode, all the flash operations are completed by the programmer through 6-wire interface. Since the program signal is very sensitive, 6 jumpers are needed (V_{DD} , GND, TDO, TDI, TCK, TMS) to separate the program pins from the application circuit, as show in the following diagram.

When using ICP mode to do operations, the recommended steps are as following:

(1) The jumpers must be open to separate the programming pins from the application circuit before programming.

(2) Connect the programming interface with programmer and begin programming.

(3) Disconnect programmer interface and connect jumpers to recover application circuit after programming is complete.

If jump line is not used, need to ensure that the load capacitance on the power cord is not more than 100 uF, capacitive load of four signal lines is not more than 0.01 uf, resistance load not less than 1K value.

7.4 SSP Function

7.4.1 SSP Register

(1) Memory Page Register for Programming

The register is used to select area code which will be erased or programmed, using IB_OFFSET register to show the address offset of bytes which is waiting for programming in the sector.

For program memory block, a sector is 1024 bytes, registers are defined as follows:

Table 7.3 Memory Page Register for Programming

F7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-2	XPAGE[7:2]	Sector of the flash memory to be programmed, 0000 means sector 0, and so on
1-0	XPAGE[1:0]	High 2 Address of the flash memory sector to be erased/programmed

Table 7.4 Offset of Flash Memory for Programming

FBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_OFFSET[7:0]	Low 8 Address of the flash memory sector to be programmed

XPAGE[1:0] and IB_OFFSET[7:0] are total 10 bit, they can be used to express the offset of 1024 bytes in a program memorysector.

For EEPROM-like memory block, a sector is 256 bytes, it has 8 sectors, registers are defined as follows:

 Table 7.5 Memory Page Register for Programming/Erasing

F7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-3	XPAGE[7:3]	Meaningless in erase/program sector
2-0	XPAGE[2:0]	Sector select bit 000: Sector 0 001: Sector 1 111: Sector 7

The address to the EEPROM-Like block can be achieved by "MOVC A, @A+DPTR" or "MOVC A, @A+PC".

Note: FAC bit in FLASHCON register should be set.

Table 7.6 Offset of Flash Memory for Programming

FBH		Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0						
IB_OFFSET	Г	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0	
R/W		R/W	R/W	R/W R/W R/W R/W R/W R/W						
Reset Value (POR/WDT/LVR	-	0	0 0 0 0 0 0 0						0	
Bit Number	Bit N	Inemonic	Description							
7-0	IB_OF	FSET[7:0]	Address of t	he flash men	nory to be er	ased/prograr	mmed			

IB_OFFSET[7:0] is 8 bit, it can be used to express the offset of 256 bytes in a program memory sector.

(2) Data Register for Programming

Table 7.7 Data Register for Programming

FCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_DATA	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_DATA[7:0]	Data to be programmed

(3) SSP Type select Register

Table 7.8 SSP Type select Register

F2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON1	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_CON1[7:0]	SSP Type select 0xE6: Sector Erase 0x6E: Sector Programming

(4) SSP Flow Control Register1

 Table 7.9 SSP Flow Control Register1

IB_CON2 - - - IB_CON2.3 IB_CON2.2 IB_CON2.1 <	F3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Reset Value Image: Comparison of the	IB_CON2	-	-	-	-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
	R/W	-	-	-	-	R/W	R/W	R/W	R/W
	Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON2[3:0]	Must be 05H, otherwise Flash Programming will terminate

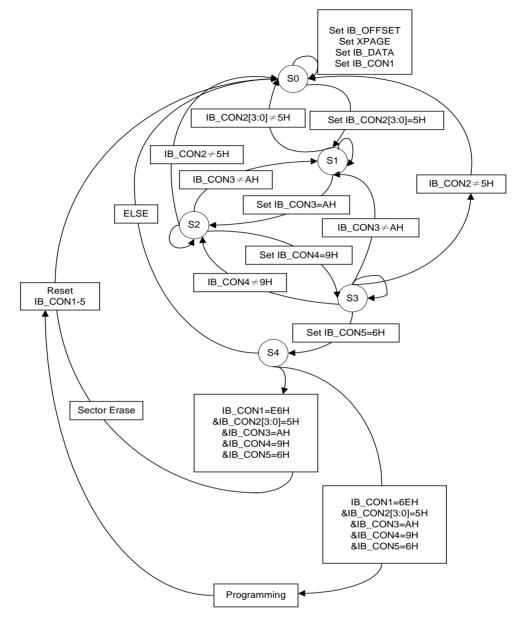
Table 7.10 SSP Flow Control Register2

F4H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON3		-	-	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
R/W		-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR	-	-	-	-	-	0	0	0	0
Bit Number	Bit N	Inemonic	Description						
3-0	IB_C	ON3[3:0]	Must be 0AH, otherwise Flash Programming will terminate						

Table 7.11 SSP Flow Control Register3

F5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON4	-	-	-	-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON4[3:0]	Must be 09H, otherwise Flash Programming will terminate


 Table 7.12 SSP Flow Control Register4

F6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON5	-	-	-	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON5[3:0]	Must be 06H, otherwise Flash Programming will terminate

7.4.2 Flash Control Flow

7.4.3 SSP Programming Notice

To successfully complete SSP programming, the user's software must be set as the following the steps:

(1) For Code/Data Programming: Note: must close Code-protect control mode 1 and Code-protect control mode 2.

- 1. Disable interrupt;
- 2. Fill in the XPAGE, IB_OFFSET for the corresponding address;
- 3. Fill in IB_DATA, if programming is wanted;
- 4. Fill in IB_CON1-5 sequentially;
- 5. Add 4 nops for more stable operation;
- 6. Code/Data programming, CPU will be in IDLE mode;
- 7. Go to Step 2, if more data are to be programmed;
- 8. Clear XPAGE; enable interrupt if necessary.

(2) For Sector Erase: Note: must close Code-protect control mode 1 and Code-protect control mode 2.

- 1. Disable interrupt;
- 2. Fill in the XPAGE for the corresponding sector;
- 3. Fill in IB_CON1-5 sequentially;
- 4. Add 4 NOPs for more stable operation;
- 5. Sector Erase, CPU will be in IDLE mode;
- 6. Go to step 2, if more sectors are to be erased;
- 7. Clear XPAGE; enable interrupt if necessary.

(3) For Code Reading:

Just Use "MOVC A, @A+DPTR" or "MOVC A, @A+PC".

(4) For EEPROM-Like: Note: The function is not controlled by code protect control mode.

- The operation for EEPROM-Like is similar to the operation for Flash memory, the differences are:
- 1. FAC bit in FLASHCON register must be set before wipe, read or write EEPROM-Like.
- 2. EEPROM-Like sector is 256 bytes, rather than 1024 bytes.

Note: FAC bit must be cleared when do not operate EEPROM-Like.

7.4.4 Readable Random Code

Every chip is cured an 24-bit readable random code after production. Readable random code is 0 - 0xffffff random value, and can not be erased, can be read by program or tools.

How to read random code: set FAC bit, Assigned to the DPTR as "0127DH - 127FH", clear A, then use "MOVC A, @A+DPTR" to read.

Note: It is needed to clear FAC after reading readable random code, otherwise it will influence on the instructions execution of reading program ROM.

FLASHCON register description is as follows:

A7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FLASHCON	-	-	-	-	-	-	-	FAC
R/W	-	-	-	-	-	-	-	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	-	-	-	0

Bit Number	Bit Mnemonic	Description
0	FAC	FAC: Flash access control 0: MOVC or SSP access Main Block 1: MOVC or SSP access EEPROM-like

7.5 System Clock and Oscillator

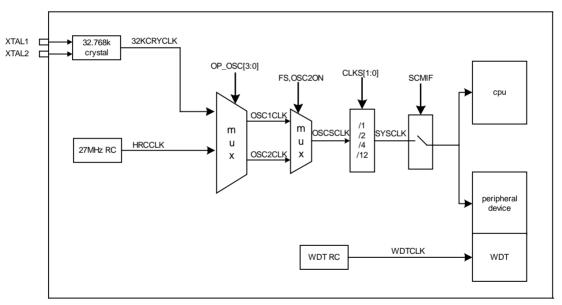
7.5.1 Features

- 2 oscillator types: 32.768kHz crystal, 27MHz internal RC
- Built-in 27MHz (±1%) internal RC (at normal temperature)
- Built-in 32.768kHz speed up circuit
- Built-in system clock prescaler

7.5.2 Clock Definition

SH79F1622 have several internal clocks defined as below: (Refer to the diagram)

32KCRYCLK: the oscillator clock is from 32.768kHz crystal which is input from XTAL. f_{32KCRY} is defined as the 32KCRYCLK frequency. t_{32KCRY} is defined as the 32KCRYCLK period.


RCCLK: the internal 27MHz RC clock. f_{HRC} is defined as the RCCLK frequency. t_{HRC} is defined as the RCCLK period.

WDTCLK: internal 2kHz WDT RC clock. f_{WDT} is defined as the WDTCLK frequency. t_{WDT} is defined as the WDTCLK period. *Note:*

1. When OP_OSC = 011 (refer to "Code Option" sector for details), OSC1CLK is 32.768kHz crystal, OSC2CLK is internal 27MHz RC.

2. When OP_OSC = 000 (refer to "Code Option" sector for details), OSC1CLK is internal 27MHz RC, OSC2CLK is disabled. OSCSCLK: the input clock of system clock prescaler. The clock can be OSC1CLK or OSC2CLK, selected by FS register. foscs is defined as the OSCSCLK frequency. toscs is defined as the OSCSCLK period.

SYSCLK: system clock, the output clock of system clock prescaler. It is the CPU instruction clock. f_{SYS} is defined as the SYSCLK frequency. t_{SYS} is defined as the SYSCLK period.

7.5.3 Description

SH79F1622 provides 2 oscillator types: 32.768kHz crystal, 27MHz internal RC. The clock source of OSC1CLK and OSC2CLK can be selected from the two oscillator types by configuring OP_OSC in code option (*refer to "Code Option" sector for details*).

The oscillator generates the basic clock pulse that provides the system clock to supply CPU and on-chip peripherals by setting CLKCON register and PLLCON register.

When selecting OSC1CLK as OSCSCLK, FS = 0.

When selecting OSC2CLK as OSCSCLK, FS = 1. When system is in Power-Down mode, OSC2CLK will be closed, OSC1CLK will still be opened for supporting on-chip peripherals (such as Timer3).

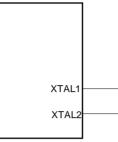
7.5.4 Register

Table 7.14 System Clock Control Register

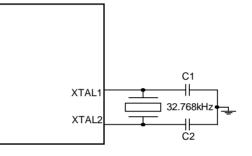
B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	FS	-	-
R/W	R/W	R/W	R/W	-	R/W	R/W	-	-
Reset Value (POR/WDT/LVR/PIN)	1	1	1	-	0	0	-	-

Bit Number	Bit Mnemonic	Description
7	32k_SPDUP	 32.768kHz oscillator speed up mode control bit 0: 32.768kHz oscillator normal mode, cleared by software. 1: 32.768kHz oscillator speed up mode, set by hardware or software. This control bit is set by hardware automatically in all kinds of RESET such as Power on reset, watch dog reset etc. to speed up the 32.768kHz Oscillator oscillating, shorten the 32.768kHz oscillator start-oscillating time. And this bit also can be set or cleared by software if necessary. Such as set before entering Power-down mode and cleared when Power-down mode wakes up. It should be noticed that turning off 32.768kHz oscillator speed up (clear this bit) could reduce the system power consumption. Only when code option OP_OSC is 011, this bit is valid. (32.768kHz oscillator is selected, Refer to code option section for details)
6-5	CLKS[1: 0]	SYSCLK Prescaler Register $00: f_{SYS} = f_{OSCS}$ $01: f_{SYS} = f_{OSCS}/2$ $10: f_{SYS} = f_{OSCS}/4$ $11: f_{SYS} = f_{OSCS}/12$ If 32.768kHz oscillator is selected as OSCSCLK, $f_{SYS} = f_{OSCS}$
3	OSC2ON	OSC2CLK On-Off Control Register 0: Disable OSC2CLK 1: Enable OSC2CLK
2	FS	Frequency Select Register 0: OSC1CLK is selected as OSCSCLK 1: OSC2CLK is selected as OSCSCLK

Note:


(1) Switch system clock, please refer to 7.5 chapter.

(2) System clock pre frequency divider, the proposed selection of CLKS[1:0] = 01 ($F_{SYS} = F_{OSCS}/2$) file, compared to the $F_{SYS} = F_{OSCS}$ file, can significantly improve the performance of EMC IC and system stability.



7.5.5 Oscillator Type

(1) OP_OSC = 000: internal RC, XTAL and XTALX share with I/O ports

(2) OP_OSC = 011: 32.768kHz from XTAL, internal RC, XTALX share with I/O port

7.5.6 Capacitor Selection for Oscillator

C	rystal Oscillato	or	Remark
Frequency	C1	C2	Performent to use a2v8 22 769kHz
32.768kHz	5 - 12.5pF	5 - 12.5pF	Recommend to use φ3x8 32.768kHz

Note:

(1) Capacitor values are used for design guidance only!

(2) These capacitors were tested with the crystals listed above for basic start-up and operation. They are not optimized.

(3) Be careful for the stray capacitance on PCB board, the user should test the performance of the oscillator over the expected VDD and the temperature range for the application.

Before selecting crystal/ceramic, the user should consult the crystal/ceramic manufacturer for appropriate value of external component to get best performance, visit <u>http://www.sinowealth.com</u> for more recommended manufactures.

7.6 I/O Port

7.6.1 Features

- 25 bi-directional I/O ports
- Share with alternative functions

The SH79F1622 has 25 bi-directional I/O ports. The PORT data is put in Px register. The PORT control register (PxCRy) controls the PORT as input or output. Each I/O port has an internal pull-high resistor, which is controlled by PxPCRy when the PORT is used as input (x = 0-5, y = 0-7).

For SH79F1622, some I/O pins can share with alternative functions. There exists a priority rule in CPU to avoid these functions conflicts when all the functions are enabled. (Refer to **Port Share** Section for details).

7.6.2 Register

Table 7.15 Port Control Register

E1H - E5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0CR (E1H)	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR (E2H)	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR (E3H)	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR (E4H)	-	-	-	-	-	-	-	P3CR.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	PxCRy x = 0-5, y = 0-7	Port input/output control Register 0: input mode 1: output mode

Table 7.16 Port Pull up Resistor Control Register

E9H - ECH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0PCR (E9H)	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR (EAH)	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR (EBH)	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR (ECH)	-	-	-	-	-	-	-	P3PCR.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	PxPCRy x = 0-5, y = 0-7	Input Port internal pull-high resistor enable/disable control 0: internal pull-high resistor disabled 1: internal pull-high resistor enabled

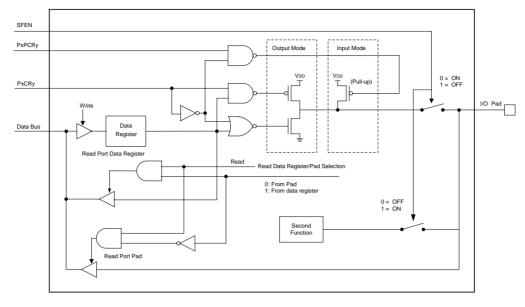
Table 7.17 Port Data Register

80H - C0H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0 (80H)	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1 (90H)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2 (A0H)	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3 (B0H)	-	-	-	-	-	-	-	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Minemonic	Description
7-0	Px.y x = 0-5, y = 0-7	Port Data Register

Table 7.18 Port mode select Register

EFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P10S	-	P10S.6	P10S.5	-	-	-	-	-
R/W	-	R/W	R/W	-	-	-	-	-
Reset Value (POR/WDT/LVR/PIN)	-	0	0	-	-	-	-	-


Bit Number	Bit Mnemonic	Description
5-4	P1OS.x x = 6-5	Port output mode select 0: Port output mode is CMOS 1: Port output mode is N-channel open drain

Note:

P1.7, P3.0 port as the N- channel for the open drain P1OS.5, I/O for the P1.7 open drain control bit, P1OS.6 for the P3.0 open drain control bit, as a function of the open drain port voltage shall not exceed V_{DD} + 0.3V.

7.6.3 Port Diagram

Note:

- (1) The input source of reading input port operation is from the input pin directly.
- (2) The input source of reading output port operation has two paths, one is from the port data Register, and the other is from the output pin directly. The read Instruction distinguishes which path is selected: The read-modify-write instruction is for the reading of the data register in output mode, and the other instructions are for reading of the output pin directly.

(3) The destination of writing port operation is the data register regardless the port shared as the second function or not.

7.6.4 Port Share

The 25 bi-directional I/O ports can also share second or third special function. But the share priority should obey the **Outer Most Inner Lest** rule:

The out most pin function in **Pin Configuration** has the highest priority, and the inner most pin function has the lowest priority. This means when one pin is occupied by a higher priority function (if enabled), it cannot be used as the lower priority functional pin, even the lower priority function is also enabled. Only until the higher priority function is closed by hardware or software, can the corresponding pin be released for the lower priority function use. Also the function that need pull up resister is also controlled by the same rule.

When port share function is enabled, the user can modify PxCR, PxPCR (x = 0.5), but these operations will have no effect on the port status until the second function was disabled.

When port share function is enabled, any read or write operation to port will only affect the data register while the port pin keeps unchanged until all the share functions are disabled.

PORT0:

- TK1-8: Touch Key channel 1-8 (P0.0-O0.7) - SEG0-SEG7: LED SEG 0-7 display output

Table 7.19 PORT0 Share Table

Pin No.	Priority	Function	Enable bit
	1	Tk1-TK8	Set P0SS.0-P0SS.7 bit in P0SS register
1-4 25-28	2	SEG0-SEG7	Set SEG0-SEG7 bit in SEG01 register
20 20	3	P0.0-0.7	Above condition is not met

PORT1:

- TXD: EUART data output (P1.7)
- T3: Timer3 external input (P1.6) T4: Timer4 external input (P1.0)
- T2EX: Timer2 external input (P1.1)
- INT41-INT42: External interrupt input (P1.5-P1.7)

- RST: Reset pin (P1.6)
 TK17-20: Touch Key channel (P1.1-P1.4)
 COM1-7: LED COM1-7 output (P1.0-P1.6)
 T2: Timer2 external input (P1.5)
- TONE: Tone generator output

Table 7.20 PORT1 Share Table

Pin No.	Priority	Function	Enable bit
	1	T4	Set TR4 bit and T4CLKS bit in T4CON register (Auto Pull up) or clear T4CLKS bit and set TC4 bit or set TR4 bit in Mode2
8	2	COM1	Set COM1 bit in LEDCOM register
	3	P1.0	Above condition is not met
	1	T2EX	In mode0, 2, 3, set EXEN2 bit in T2CON register, or in mode 1 set DCEN bit in T2CON register or in mode1, clear DCEN bit and set EXEN2 bit (Auto Pull up)
9	2	TK17	Set P1SS.1 bit in P1SS register
	3	COM2	Set COM2 bit in LEDCOM register
	4	P1.1	Above condition is not met
	1	TK18	Set P1SS.2 bit in P1SS register
10	2	COM3	Set COM3 bit in LEDCOM register
	3	P1.2	Above condition is not met
	1	TK19	Set P1SS.3 bit in P1SS register
11	2	COM4	Set COM4 bit in LEDCOM register
	3	P1.3	Above condition is not met
	1	TK20	Set P1SS.4 bit in P1SS register
12	2	COM5	Set COM5 bit in LEDCOM register
	3	P1.4	Above condition is not met
	1	T2	Set TR2 bit and C/T2 bit in T2CON register (Auto Pull up) or clear C/T2 bit and set T2OE bit in T2MOD register
	2	TONE	Set TG1EN bit in TVCR1 register or Set TG2EN bit in TVCR2 register
13	3	COM6	Set COM6 bit in LEDCOM register
	4	INT40	Set EX4 bit in IEN1 register and set EXS40 bit in IENC register
	5	P1.5	Above condition is not met
	1	RESET	Code option
	2	Т3	Set TR3 bit in T3CON register and T3CLKS[1:0] = 01 (Auto Pull up)
14	3	COM7	Set COM7 bit in LEDCOM register
	4	INT41	Set EX4 bit in IEN1 register and set EXS43-EXS40 bit in IENC register
	5	P1.6	Above condition is not met
	1	TXD	Write to SBUF Register
	2	SCK	When ENTWI = 1, do operations on TWIDAT register
15	3	INT42	Set EX4 bit in IEN1 register and set EXS43-EXS40 bit in IENC register
	4	P1.7	Above condition is not met

Note: When P1OS = 60H, P1.7 and P3.0 are open-drain ports.

PORT2:

- TK8-TK16: Touch Key channel 8-16 (P2.0-P2.7)

- SEG8-15: SEG output - INT0, 1, 2: External interrupt 0, 1, 2 input

Table 7.21 PORT2 Share Table

Pin No.	Priority	Function	Enable bit
	1	TK9-TK13	Set P2SS.0-P2SS.4 bit in P2SS register
20-24	2	SEG8-SEG12	Set SEG8-SEG12 bit in SEG02 register
	3	P2.0-2.4	Above condition is not met
	1	TK14	Set P2SS.5 bit in P2SS register
10	2	SEG13	Set SEG13 bit in SEG02 register
19	3	INT2	Set EX2 bit in IEN1 register, P2.5 as input port
	4	P2.5	Above condition is not met
	1	TK15	Set P2SS.6 bit in P2SS register
18	2	SEG14	Set SEG14 bit in SEG02 register
10	3	INT1	Set EX1 bit in IEN0 register, P2.6 as input port
	4	P2.6	Above condition is not met
	1	TK16	Set P2SS.7 bit in P2SS register
47	2	SEG15	Set SEG15 bit in SEG02 register
17	3	INT0	Set EX0 bit in IEN0 register, P2.7 as input port
	4	P2.7	Above condition is not met

PORT3:

- RXD: EUART data input (P3.0)

- TWI: SDA pin

- INT43: External interrupt input

Table 7.22 PORT3 Share Table

Pin No.	Priority	Function	Enable bit
	1	RXD	Write to SBUF Register
16	2	SDA	When ENTWI = 1, do operations on TWIDAT register
10	3	INT43	Set EX4 bit in IEN1 register and set EXS43-EXS40 bit in IENC register
	4	P3.0	Above condition is not met

7.7 Timer

7.7.1 Features

- The SH79F1622 has three timers (Timer2, 3, 4)
- Timer2 is compatible with the standard 8052 and has up or down counting and programmable clock output function
- Timer3 is a 16-bit auto-reload timer and can operate even in Power-Down mode
- Timer4 is a 16-bit auto-reload timer, two data register: TH4 & TL4 can be used as a 16-bit register to access

7.7.2 Timer2

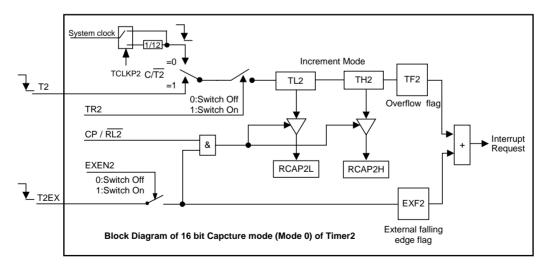
The Timer 2 is implemented as a 16-bit register accessed as two cascaded data registers: TH2 and TL2. It is controlled by the register T2CON and T2MOD. The Timer2 interrupt can be enabled by setting the ET2 bit in the IEN0 register. (Refer to Interrupt Section for details)

 $C/\overline{T2}$ selects system clock (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows Timer 2/Counter 2 Data Register to increment by the selected input.

Timer2 Modes

Timer2 has 3 operating modes: Capture/Reload, Auto-reload mode with up or down counter and Programmable clock-output. These modes are selected by the combination of CP/RL2.

C/T2	T2OE	DCEN	TR2	CP/RL2	Mode	
Х	0	Х	1	1	0	16 bit capture
Х	0	0	1	0	• 1	16 bit auto-reload timer
Х	0	1	1	0		
0	1	Х	1	Х	2	Programmable clock-output only
1	1	Х	1	Х		Not recommending
Х	Х	Х	0	Х	Х	Timer2 stop, the T2EX path still enable

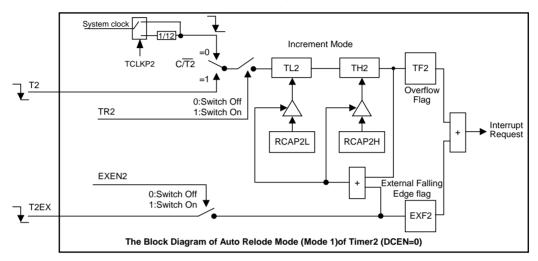

Table 7.23 Timer2 Mode select

Mode0: 16 bit Capture

In the capture mode, two options are selected by bit EXEN2 in T2CON.

If EXEN2 = 0, Timer2 is a 16-bit timer or counter which will set TF2 on overflow to generate an interrupt if ET2 is enabled.

If EXEN2 = 1, Timer2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L respectively, In addition, a 1-to-0 transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can also generate an interrupt if ET2 is enabled.

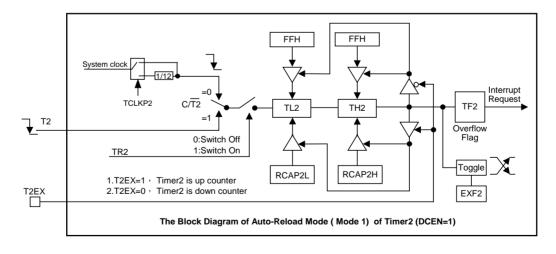

Mode1: 16 bit auto-reload Timer

Timer2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit in T2MOD. After reset, the DCEN bit is set to 0 so that Timer2 will default to count up. When DCEN is set, Timer2 can count up or down, depending on the value of the T2EX pin.

When DCEN = 0, two options are selected by bit EXEN2 in T2CON.

If EXEN2 = 0, Timer2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L, which are pressed by software.

If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if ET2 is enabled.

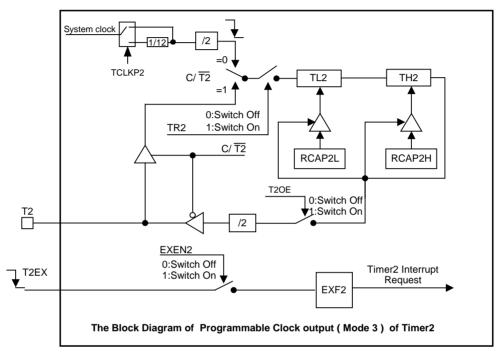


Setting the DCEN bit enables Timer2 to count up or down. When DCEN = 1, the T2EX pin controls the direction of the count, and EXEN2's control is invalid.

A logical "1" at T2EX makes Timer2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logical "0" at T2EX makes Timer2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.


Mode2: Programmable Clock Output

A 50% duty cycle clock can be programmed to come out on P0.5. To configure the Timer2 as a clock generator, bit C/T2 must be cleared and bit T2OE must be set. Bit TR2 starts and stops the timer.

In this mode T2 will output a 50% duty cycle clock:

Clock Out Frequency =
$$\frac{1}{2 \times 2} \times \frac{{}^{T}SYS}{65536 - [RCAP2H, RCAP2L]}$$

Timer2 overflow will not generate an interrupt.

Note:

- (1) Both TF2 and EXF2 can cause timer2 interrupt request, and they have the same vector address.
- (2) TF2 and EXF2 are set as 1 by hardware while event occurs. But they can also be set by software at any time. Only the software and the hardware reset will be able to clear TF2 & EXF2 to 0.
- (3) When EA = 1 & ET2 = 1, setting TF2 or EXF2 as 1 will cause a timer2 interrupt.

Registers

Table 7.24 Timer2 Control Register

C8H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
T2CON		TF2	EXF2	-	-	EXEN2	TR2	C/T2	CP/RL2	
R/W		R/W	R/W	-	-	R/W	R/W	R/W	R/W	
Reset Value 0 (POR/WDT/LVR/PIN)		0	0	-	-	0	0	0	0	
Bit Number	Bit N	Inemonic	Description							
7		TF2	Timer2 over 0: No over 1: Overfle	erflow (must	t be cleared b	y software)				
6	I	EXF2	External event input (falling edge) from T2EX pin detected flag bit 0: No external event input (Must be cleared by software) 1: Detected external event input (Set by hardware if EXEN2 = 1)							
3	E	XEN2	trigger enal 0: Ignore	ole/disable of events on T	control bit 2EX pin) from T2EX	-		-	
2		TR2	Timer2 star 0: Stop T 1: Start T	imer2	ol bit					
1		C/T2	Timer2 Timer/Counter mode selected bit 0: Timer Mode, T2 pin is used as I/O port 1: Counter Mode, the internal pull-up resister is turned on							
0	С	P/RL2		timer/count	selected bit er with reload er with captu					

Table 7.25 Timer2 Mode Control Register

С9Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2MOD	TCLKP2	-	-	-	-	-	T2OE	DCEN
R/W	R/W	-	-	-	-	-	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	-	-	-	-	-	0	0

Bit Number	Bit Mnemonic	Description
7	TCLKP2	Timer 2 Clock Source Control bit 0: Select the clock source of system clock/12 as the Timer2 clock source 0: Select the clock source of system clock as the Timer2 clock source
1	T2OE	Timer2 Output Enable bit 0: Set P1.5/T2 as clock input or I/O port 1: Set P1.5/T2 as clock output
0	DCEN	Down Counter Enable bit 0: Disable Timer2 as up/down counter, Timer2 is an up counter 1: Enable Timer2 as up/down counter

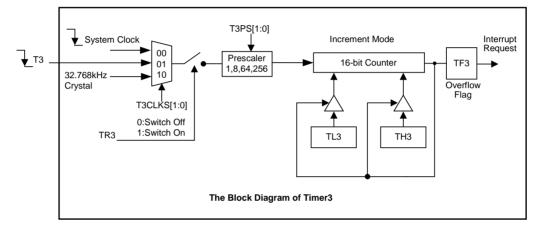
Table 7.26 Timer2 Reload/Capture & Data Registers

CAH-CDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCAP2L	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description					
7-0	RCAP2L.x	imer2 Reload/Capturer Data, $x = 0 - 7$					
7-0	RCAP2H.x	Timerz Reioau/Capturer Data, $x = 0 - 7$					
7.0	TL2.x	Timer2 Low & High byte counter, $x = 0 - 7$					
7-0	TH2.x						

7.7.3 Timer3

Timer3 is a 16-bit auto-reload timer. It is accessed as two cascaded Data Registers: TH3 and TL3. It is controlled by the T3CON register. The Timer3 interrupt can be enabled by setting ET3 bit in IEN1 register (Refer to **Interrupt** Section for details).


Timer3 has only one operating mode: 16-bit Counter/Timer with auto-reload. Timer3 also supports the following features: selectable pre-scaler setting and Operation during CPU Power-Down mode.

Timer3 consists of a 16-bit counter/reload register (TH3, TL3). When writing to TH3 and TL3, they are used as timer load register. When reading from TH3 and TL3, they are used as timer counter register. Setting the TR3 bit enables Timer 3 to count up. The Timer will overflow from 0xFFFF to 0x0000 and set the TF3 bit. This overflow also causes the 16-bit value written in timer load register to be reloaded into the timer counter register. Writing to TH3 also can cause the 16-bit value written in timer load register to be reloaded into the timer counter register.

Read or write operation to TH3 and TL3 should follow these steps:

Write operation: Low bits first, High bits followed

Read operation: High bits first, Low bits followed

Timer3 can operate even in Power-Down mode.

When OP_OSC[2:0] is 000, T3CLKS[1:0] can be selected as 00, 01 (refer to "Code Option" section for details). When OP_OSC[2:0] is 011, T3CLKS[1:0] can be selected as 00, 01, 10.

If T3CLKS[1:0] is 00, Timer3 can't work in Power-Down mode. If T3CLKS[1:0] is 01, when T3 port input external clock, Timer3 can work in CPU normal operating or Power Down mode (entering Power Down mode when system clock is high frequency). If T3CLKS[1:0] is 10 and OP_OSC[2:0] is 011, Timer3 can work in CPU normal operating or Power Down mode. If T3CLKS[1:0] is 10 and OP_OSC[2:0] is 011, Timer3 can work in CPU normal operating or Power Down mode. If T3CLKS[1:0] is 10 and OP_OSC[2:0] is 011, Timer3 can work in CPU normal operating or Power Down mode. If T3CLKS[1:0] is 10 and OP_OSC[2:0] is 011, Timer3 can work in CPU normal operating or Power Down mode. If T3CLKS[1:0] is 10 and OP_OSC[2:0] is 000, Timer3 can't work. It can be described in the following table:

OP_OSC[2:0]	T3CLKS[1:0]	Can work in normal mode	Can work in Power Down mode		
	00	YES	NO		
000	01	YES	YES		
	10	NO	NO		
	00	YES	NO		
011	01	YES	YES		
	10	YES	YES		

Note:

(1) When TH3 and TL3 read or written, must make sure TR3 = 0.

(2) When T3 is selected as Timer3 clock source and TR3 is set 0 to 1, the first T3 down edge will be ignored.

Registers

Table 7.27 Timer3 Control Register

СОН	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T3CON	TF3	-	T3PS.1	T3PS.0	-	TR3	T3CLKS.1	T3CLKS.0
R/W	R/W	-	R/W	R/W	-	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	-	0	0	-	0	0	0

Bit Number	Bit Mnemonic	Description
7	TF3	Timer3 overflow flag bit 0: No overflow (cleared by hardware) 1: Overflow (Set by hardware)
5-4	T3PS[1:0]	Timer3 input clock Prescaler Select bits 00: 1/1 01: 1/8 10: 1/64 11: 1/256
2	TR3	Timer3 start/stop control bit 0: Stop Timer3 1: Start Timer3
1-0	T3CLKS[1:0]	Timer3 Clock Source select bits 00: System clock, T3 pin is used as I/O port 01: External clock from pin T3, auto pull-up 10: 32.768kHz from external Crystal 11: reserved

Table 7.28 Timer3 Reload/Counter Data Registers

C4H-C5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TL3 (C4H)	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
TH3 (C5H)	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description				
7-0	TL3.x	Timer2 Low 8 High hyte counter y 0 7				
7-0	TH3.x	Fimer3 Low & High byte counter, x = 0 - 7				

7.7.4 Timer4

Timer4 is a 16-bit auto-reload timer. It is accessed as two cascaded data registers: TH4 and TL4. It is controlled by the T4CON register. The Timer 4 interrupt can be enabled by setting ET4 bit in IEN1 register (Refer to **interrupt** Section for details).

When writing to TH4 and TL4, they are used as timer load register. When reading from TH4 and TL4, they are used as timer counter register. Setting the TR4 bit enables Timer 4 to count up. The timer will overflow from 0xFFFF to 0x0000 and set the TF4 bit. This overflow also causes the 16-bit value written in timer load register to be reloaded into the timer counter register. Writing to TH4 also can cause the 16-bit value written in timer load register to be reloaded into the timer counter register.

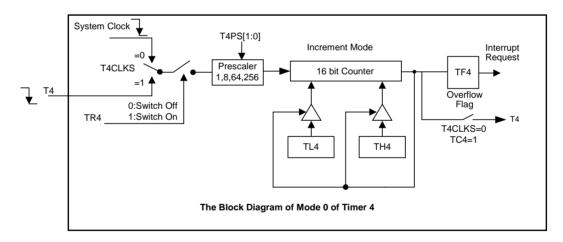
Read or write operation to TH4 and TL4 should follow these steps:

Write operation: Low bits first, High bits followed

Read operation: High bits first, Low bits followed

Timer4 Modes

Timer4 has two operating modes: 16-bit auto-reload counter/timer and 16 bit auto-reload timer with T4 edge trig. These modes are selected by T4M[1:0] bits in T4CON Register.

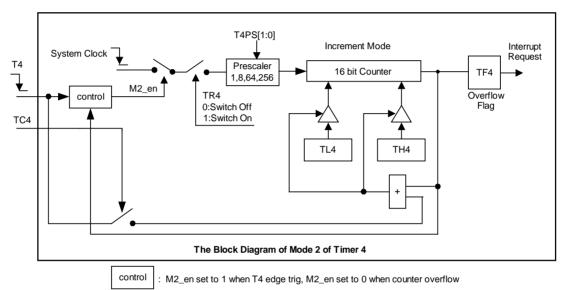

Mode0: 16 bit Auto-Reload Counter/Timer

Timer4 operates as 16-bit counter/timer in Mode 0. The TH4 register holds the high eight bits of the 16-bit counter/timer, TL4 holds the low eight bits. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the timer overflow flag TF4 (T4CON.7) is set and the 16-bit value in timer load register are reloaded into timer counter register, and an interrupt will occur if Timer 4 interrupts is enabled. The T4CLKS bit (T4CON.0) selects the counter/timer's clock source.

If T4CLKS = 1, external clock from the Pin T4 is selected as Timer4 clock, after prescaled, it will increase the Counter/Timer4 Data register. Else if T4CLKS = 0, the system clock is selected as Timer4 clock.

Setting the TR4 bit (T4CON.1) enables the timer. Setting TR4 does not force the timer to reset. The timer load register should be loaded with the desired initial value before the timer is enabled.

In Compare mode, the T4 pin is automatically set as output mode by hardware. the internal counter is constantly countered from TH4 and TL4 register value to 0xFFFF. When an overflow occurs, the T4 pin will be inverted. At the same time, interrupt flag bit of Time4 is set. Timer4 must be running in Timer mode (T4CLKS = 0) when compare function enabled.


Mode2: 16 bit Auto-Reload Timer with T4 Edge Trig

Timer4 operates as 16-bit timer in Mode1. T4CLKS bit in T4CON.0 will be 0 always. Timer4 can select system clock as clock source. Other setting accords with mode 0.

In Mode1, After Setting the TR4 bit (T4CON.1), Timer4 does not start counting but waits the trig signal (rising or falling edge controlled by T4M[1:0]) from T4. An active trig signal will start the Timer4. When Timer 4 overflows from 0XFFFF to 0x0000, TF4 will be set, if Timer4 interrupt is enabled, Timer4 interrupt will be generated. The clock of Timer4 is system clock. TH4 and TL4 will be reloaded from timer load register, and Timer4 holds and waits the next trig edge.

When Timer4 is working and an active trig signal come, if TC4 = 0, the trig signal will be ignored; if TC4 = 1, Timer4 will be re-trigged.

Setting TR4 does not clear the counter data of Timer4. The timer register should be loaded with the desired initial value before the timer is enabled.

Note:

- (1) When Timer4 is running (TR4 = 1) as a timer in the baud rate generator mode, TH4 or TL4 should not be written to. Because a write might overlap a reload and cause write and/or reload errors. So, the timer 4 must be turned off (TR4 = 0) before accessing the TH4 or TL4 registers.
- (2) When Timer4 is used as a counter, the frequency of input signal of T4 pin must be less than half of system clock.

Registers

Table 7.29 Timer4 Control Register

C2H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
T4CON		TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS	
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value (POR/WDT/LVR	-	0	0	0	0	0	0	0	0	
Bit Number	Bit N	Inemonic				Description				
7		TF4			ed by hardwa	are)				
6		TC4	Compare function Enable bit When T4M[1:0] = 00 0: Disable compare function of Timer4 1: Enable compare function of Timer4 When T4M[1:0] = 10 or 11 0: Timer4 can't be re-trigged 1: Timer4 can be re-trigged							
5-4	T4	PS[1:0]	Timer4 inpu 00: 1/1 01: 1/8 10: 1/64 11: 1/256		scale Select	bits				
3-2	T4	IM[1:0]	Timer4 Mode Select bit 00: Mode0, 16-bit auto-reload up timer 01: reserved 10: Mode1 with rising edge trig from pin T4 (system clock only, T4CLKS is invalid) 11: Mode1 with falling edge trig from pin T4 (system clock only, T4CLKS is invalid)							
1		TR4	Timer4 star 0: Stop T 1: Start T	imer4	ol bit					
0	T4	4CLKS		n clock, T4 p	oin is used as		up resister is	turned on		

Table 7.30 Timer4 Reload/Counter Data Registers

TH4.x

D6H-D7H	D6H-D7H		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
TL4		TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0			
TH4		TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0			
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset Value (POR/WDT/LVR/PIN)		0	0 0 0 0 0 0						0			
Bit Number	Bit N	Inemonic	Description									
7.0	-	TL4.x	Timor4 Low	Timer4 Low & High byte counter, $x = 0 - 7$								
7-0			Timer4 LOW		counter, $x =$	0-7						

7.8 Interrupt

7.8.1 Features

- 9 interrupt sources
- 4 interrupt priority levels

The SH79F1622 provides total 9 interrupt sources: 4 external interrupts (INT0/1/2/4), 3 timer interrupts (Timer2, 3, 4), one EUART interrupt, TWI interrupt, TK interrupt.

7.8.2 Interrupt Enable Control

Each interrupt source can be individually enabled or disabled by setting or clearing the corresponding bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains global interrupt enable bit, EA, which can enable/disable all the interrupts at once. Generally, after reset, all interrupt enable bits are set to 0, which means that all the interrupts are disabled.

7.8.3 Registers

Table 7.31 Primary Interrupt Enable Register

A8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN0	EA	-	ET2	ES	-	EX1	TKIE	EX0
R/W	R/W	-	R/W	R/W	-	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	-	0	0	-	0	0	0

Bit Number	Bit Mnemonic	Description
7	EA	All interrupt enable bit 0: Disable all interrupt 1: Enable all interrupt
5	ET2	Timer2 overflow interrupt enable bit 0: Disable Timer2 overflow interrupt 1: Enable Timer2 overflow interrupt
4	ES	EUART interrupt enable bit 0: Disable EUART interrupt 1: Enable EUART interrupt
2	EX1	External interrupt1 enable bit 0: Disable external interrupt1 1: Enable external interrupt1
1	TKIE	Touch Key interrupt enable bit 0: Disable Touch Key interrupt 1: Enable Touch Key interrupt
0	EX0	External interrupt0 enable bit 0: Disable external interrupt0 1: Enable external interrupt0

Table 7.32 Secondary Interrupt Enable Register

A9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN1	-	-	-	ET3	ETWI	EX4	EX2	ET4
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
4	ET3	Timer3 overflow interrupt enable bit 0: Disable timer3 overflow interrupt 1: Enable timer3 overflow interrupt
3	ETWI	TWI interrupt enable bit 0: Disable TWI interrupt 1: Enable TWI interrupt
2	EX4	External interrupt4 enable bit 0: Disable external interrupt4 1: Enable external interrupt4
1	EX2	Enternal interrupt2 enable bit 0: Disenable external interrupt2 1: Enable external interrupt2
0	ET4	Timer4 overflow interrupt enable bit 0: Disable Timer4 overflow interrupt 1: Enable Timer4 overflow interrupt

Note: To enable External interrupt0/1/2/3/4, the corresponding port must be set to input mode before using it.

 Table 7.33 Interrupt channel Enable Register

BAH		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
IENC		EXS47	EXS46	EXS45	EXS44	EXS43	EXS42	EXS41	EXS40	
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value (POR/WDT/LVR	-	0	0	0	0	0	0	0	0	
Bit Number	Bit N	Inemonic	Description							
7-0		EXS4x = 0-7)	External interrupt4 channel select bit (x = 7-0) 0: Disable external interrupt 4x 1: Enable external interrupt 4x							

7.8.4 Interrupt Flag

Each Interrupt source has its own interrupt flag, when interrupt occurs, corresponding flag will be set by hardware, the interrupt flag bits are listed in Table bellow.

For external interrupt (INT0/1/2/4) is generated, if the interrupt was edge trigged, the flag IEx (x = 0-2, 4) that generated this interrupt is cleared by hardware when the service routine is vectored. If the interrupt was level trigged, then the requesting external source directly controls the request flag, rather than the on-chip hardware.

The **Timer2 interrupt** is generated by setting TF2 bit or EXF2 bit in T2CON register. None of these flags can be cleared by hardware when the service routine is vectored. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, so the flag must be cleared by software.

When the **Timer3** counter overflow, set interrupt flag bit TF3 in T3CON to 1 to generate Timer3 interrupt. The flag will be cleared automatically by hardware after CPU respond to the interrupt.

The **EUART interrupt** is generated by the logical OR of flag RI and TI in SCON register, which is set by hardware. Neither of these flags can be cleared by hardware when the service routine is vectored. In fact, the service routine will normally have to determine whether it was the receive interrupt flag or the transmission interrupt flag that generated the interrupt, so the flag must be cleared by software.

88H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCON	-	-	-	-	IE1	IT1	IE0	IT0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Table 7.34 Timer/Counter Control Register (x = 0, 1)

Bit Number	Bit Mnemonic	Description
1, 3	IEx (x = 0, 1)	External interrupt x request flag bit 0: No interrupt pending 1: Interrupt is pending
0, 2	ITx (x = 0, 1)	External interrupt x trigger mode selection bit 0: Low level trigger 1: Falling edge trigger

Table 7.35 External Interrupt Flag Register

E8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EXF0	IT4.1	IT4.0	-	-	IT2.1	IT2.0	-	IE2
R/W	R/W	R/W	-	-	R/W	R/W	-	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	-	-	0	0	-	0

Bit Number	Bit Mnemonic	Description
7-6	IT4[1:0]	External interrupt4 trigger mode selection bit 00: Low Level trigger 01: Trigger on falling edge 10: Trigger on rising edge 11: Trigger on both edge IT4 [1:0] is effect on external interrupt 4x at the same mode
3-2	IT2[1:0]	External interrupt2 trigger mode selection bit 00: Low Level trigger 01: Trigger on falling edge 10: Trigger on rising edge 11: Trigger on both edge
0	IE2	External interrupt2 request flag bit 0: No interrupt pending 1: Interrupt is pending

Table 7.36 External Interrupt4 Flag Register

D8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EXF1	-	-	-	-	IF43	IF42	IF41	IF40
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description			
3-0	IF4x (x = 3-0)	External interrupt4 request flag bit 0: No interrupt pending 1: Interrupt is pending IF4x is cleared by software			

7.8.5 Interrupt Vector

When an interrupt occurs, the program counter is pushed onto the stack and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are listed in **Interrupt Summary table**.

7.8.6 Interrupt Priority

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing corresponding bits in the interrupt priority control registers IPL0, IPH0, IPL1, and IPH1. But the OVL NMI interrupt has the highest Priority Level (except RESET) of all the interrupt sources, with no IPH/IPL control. The interrupt priority service is described below.

An interrupt service routine in progress can be interrupted by a higher priority interrupt, but can not by another interrupt with the same or lower priority.

The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are pending at the start of an instruction cycle, an internal polling sequence determines which request is serviced.

	Interrupt Priority							
Prior	ity bits	Interrunt Lover Priority						
IPHx	IPLx	Interrupt Lever Priority						
0	0	Level 0 (lowest priority)						
0	1	Level 1						
1	0	Level 2						
1	1	Level 3 (highest priority)						

Table 7.37 Interrupt Priority Control Registers

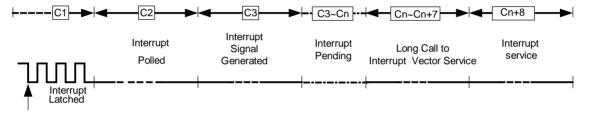
B8H, B4H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IPL0 (B8H)		-	PT4L	PT2L	PS0L	PTKL	PX1L	PTWL	PX0L
IPH0 (B4H)		-	PT4H	PT2H	PS0H	PTKH	PX1H	PTWH	PX0H
R/W		-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/		-	0	0	0	0	0	0	0
B9H, B5H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IPL1 (B9H)		-	-	-	PT3L	-	PX4L	PX2L	-
IPH1 (B5H)		-	-	-	PT3H	-	PX4H	PX2H	-
R/W		-	-	-	R/W	-	R/W	R/W	-
Reset Value (POR/WDT/LVR/		-	-	-	0	-	0	0	-
Bit Number	Bit N	Inemonic	Description						
7-0	P	cxxL/H	Correspondi	ng interrupt	source xxx's	priority level	selection bit	S	

7.8.7 Interrupt Handling

The interrupt flags are sampled and polled at the fetch cycle of each machine cycle. All interrupts are sampled at the rising edge of the clock. If one of the flags was set, the CPU will find it and the interrupt system will generate a LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

An interrupt of equal or higher priority is already in progress.

The current cycle is not in the final cycle of the instruction in progress. This ensures that the instruction in progress is completed before vectoring to any service routine.


The instruction in progress is RETI. This ensures that if the instruction in progress is RETI then at least one more instruction except RETI will be executed before any interrupt is vectored to; this delay guarantees that the CPU can observe the changes of the interrupt status.

Note:

Since priority change normally needs 2 instructions, it is recommended to disable corresponding Interrupt Enable flag to avoid interrupt between these 2 instructions during the change of priority.

If the flag is no longer active when the blocking condition is removed, the denied interrupt will not be serviced. Every polling cycle interrogates only the valid interrupt requests.

The polling cycle/LCALL sequence is illustrated below:

Interrupt Response Timing

The hardware-generated LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the program counter with corresponding address that depends on the source of the interrupt being vectored too, as shown in Interrupt Summary table.

Interrupt service execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that the interrupt routine is no longer in progress, and then pops the top two bytes from the stack and reloads the program counter. Execution of the interrupted program continues from the point where it was stopped. Note that the RETI instruction is very important because it informs the processor that the program left the current interrupt service. A simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt with this priority was still in progress. In this case, no interrupt of the same or lower priority level would be acknowledged.

7.8.8 Interrupt Response Time

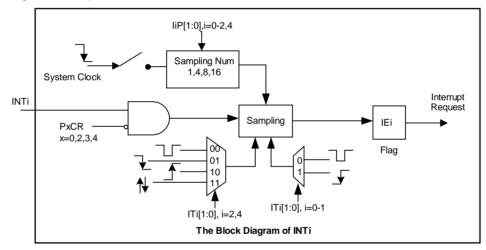
If an interrupt is recognized, its request flag is set in every machine cycle after recognize. The value will be polled by the circuitry until the next machine cycle; the CPU will generate an interrupt at the third machine cycle. If the request is active and conditions are right for it to be acknowledged, hardware LCALL to the requested service routine will be the next instruction to be executed. Else the interrupt will pending. The call itself takes 7 machine cycles. Thus a minimum of 3+7 complete machine cycles will elapse between activation and external interrupt request and the beginning of execution of the first instruction of the service routine.

A longer response time would be obtained if the request was blocked by one of the above three previously listed conditions. If an interrupt of equal or higher priority is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine.

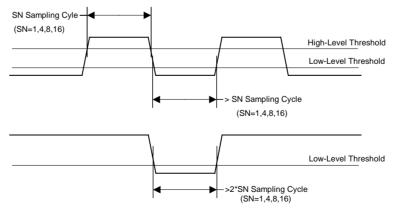
If the instruction in progress is not in its final cycle and the instruction in progress is RETI, the additional wait time is 8 machine cycles. For a single interrupt system, if the next instruction is 20 machine cycles long (the longest instructions DIV & MUL are 20 machine cycles long for 16 bit operation), adding the LCALL instruction 7 machine cycles the total response time is 2+8+20+7 machine cycles.

Thus interrupt response time is always more than 10 machine cycles and less than 37 machine cycles.

7.8.9 External Interrupt Inputs


The SH79F1622 has 4 external interrupt inputs. External interrupt0-2 each has one vector address. External interrupt 4 has 4 inputs; all of them share one vector address. External interrupt0-1 can be programmed to be level-triggered or edge-triggered by clearing or setting bit IT1 or IT0 in register TCON. If ITx = 0 (x = 0, 1), external interrupt 0/1 is triggered by a low level detected at the INT0/1 pin. If ITx = 1 (x = 0, 1), external interrupt 0/1 is edge triggered. In this mode if consecutive samples of the INT0/1 pin show a high level in one cycle. And if the consequence of consecutive SN (Sample Num) cycles is low level form next cycle, the interrupt request flag in TCON register will be set. Since the external interrupt pins are sampled once each machine cycle, an input high or low level should be held for at least SN machine cycles to ensure proper sampling.

If the external interrupt is falling-edge trigger, the external interrupt source should hold high level of at least SN cycles at interrupt pin. After that, external interrupt should hold low level of at least SN cycles. This is to ensure that the edge is detected and IEx is set. CPU will clear IEx automatically after calling interrupt service programs.


If the external interrupt is low level trigger, the external interrupt source must keep valid request always until the interrupt which is called is generated. The process need to take double SN cycles. If the external interrupt is still asserted when the interrupt service routine is completed, another interrupt will be generated. It is not necessary to clear the interrupt flag IEx (x = 0, 1, 2, 4) when the interrupt is level sensitive, it simply tracks the input pin level.

Interrupt consecutive sampling times can be adjusted by configuring **EXCON** register.

External interrupt2, 4 have more interrupt trigger modes, the operation of External interrupt2, 4 is similar to external interrupt0, 1. When SH79F1622 is in IDLE mode or Power-Down mode, interrupt will cause the processor to wake up and resume operation, refer to "Power Management" chapter for details.

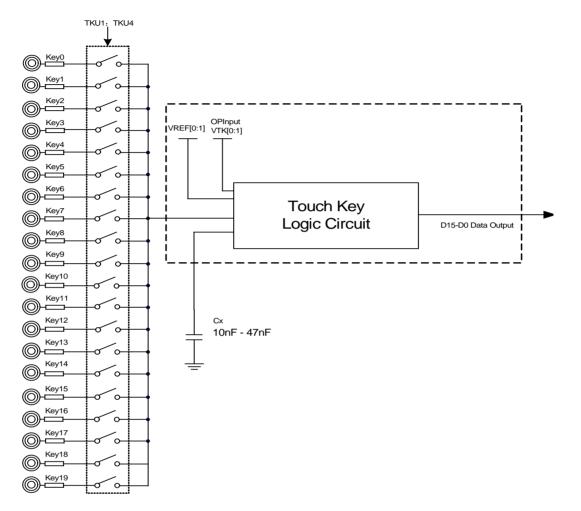
Note: IE0-2 is automatically cleared by CPU when the service routine is called while IF40-43 should be cleared by software.

ADH-AEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EXCON0 (ADH)	-	-	I2P1	I2P0	I1P1	I1P0	10P1	10P0
EXCON1 (AEH)	I43P1	I43P0	I42P1	I42P0	I41P1	I41P0	I40P1	I40P0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Table 7.38 External interrupt Sampling time Control Register

Bit Number	Bit Mnemonic	Description
7-0	lxP[1:0] x = 0-3, 41-47	INTx Continuous Sampling time Select bit 00: 1 01: 4 10: 8 11: 16

Note: If *IxP*[1:0]=01, *INTx* is falling-edge trigger, interrupt flag will be generated on the condition of continuous sampling 4 times.


7.8.10 Interrupt Summary

Source	Vector Address	Enable bits	Flag bits	Polling Priority	Interrupt number (c language)
Reset	0000H	-	-	0 (higest)	-
INT0	0003H	EX0	IE0	1	0
тк	000BH	TKIE	IFERR+IFGO+IFAVE +IFCOUNT+IFTKOV	2	1
INT1	0013H	EX1	IE1	3	2
EUART	0023H	ES	RI+TI	4	4
Timer2	002BH	ET2	TF2+EXF2	5	5
Timer4	003BH	ET4	TF4	6	7
INT2	0043H	EX2	IE2	7	8
INT4	004BH	EX4+IENC	IF43-40	8	9
TWI	0053H	ETWI	TWINT	9	10
Timer3	005BH	ET3	TF3	10	11

8. Enhanced Function

8.1 Touch Key Function

System Diagram

Functional Description

SH79F1622 built-in Touch Key function module, which can connect at most 20 keys .

SH79F1622 built-in simplified operating circuit in Touch Key function module, the application of it only need to use a external connected C_X capacitor. The value of C_X capacitor choose 22 nF - 44nF, must use polyester capacitor of 10% or more accuracy, X7R capacitor or NPO capacitor. C_X capacitor can adjust suitable sensitivity according to the material of actual circuit or medium of Touch Key, the value of capacitor is smaller, the sensitivity is higher, the value of capacitor is higher, the sensitivity is smaller,

Touch Key module can select a scan button channel number by TKU1-TKU3 registers, which can connect at most 20 keys.

If Touch Key function is not used, it can be set as I/O ports, SEG output or COM output through register.Refer to "I/O Port" chapter for details.

On-off circuit can be selected by FSW1 bit and FSW0 bit in register. Working frequency recommend select 4M or below 4M. Touch Key built-in reference voltage, can be selected by VREF1 bit and VREF0 bit in register.

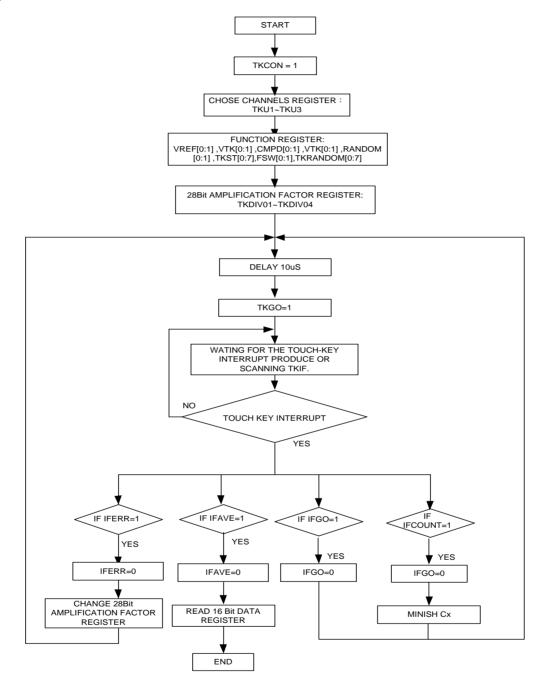
Touch Key make sure the stability of data register in dirrerent C_x and working frequency by adjusting TUNE1 bit and TUNE0 bit. According to the actual application, Touch Key sampling times can select multi-sampling. Program only need to start one time sampling scan, hardware will perform multi-sampling, count the average value and output result automatically. For example,

selecting 6 times sampling output, set TKGO/DONE bit and start to scan key, hardware will sample 6 times value and campare the six samplied value. Removing maximum and minimum, the rest of them will be averaged to output to16-bit data register.

28-bit amplification coefficient register is used to amplify the calculated result of key controller. If calculated result is larger than 16-bit data, that is to say calculated result is high-bit overflow. The flag bit IFERR will be set. If interrup enables, interrupt program will be called. At the time, user need to reduce data value of amplification coefficient register and restart next scan. Usually during normal operation, the value of 16-bit data register will not be larger than FFFFH. When the value is larger than FFFFH, data value of dividend register will be reduced.

Touch Key has 5 kinds of situation to produce interrupt flag bit, any interrupt could be generated, system responds interrupt and perform interrupt subprogram after judging interrupt flag bit:

- (1) After finishing the key scan, if any abnormal situation does't happen, IFAVE bit will be set.
- (2) After finishing the key scan, if calculated result is high-bit overflow, IFERR bit will be set. If multi-sampling, system will stop current sampling state to wait for next time to restart the scan instead of performing the unfinished sampling continuously. If calculated result high-bit overflow interrupt happens, user should reduce the value of 28-bit amplification coefficient register
- (3) Set TKGO/DONE1, system will detect whether comparison output state is normal, if abnormal situation happens, the flag bit IFGO bit will be set. At the same time, key controller startup errors (channel flag register is invalid). User should delay 10uS to restart next scan.
- (4) During counting key scan, when counter overflow, interrupt flag bit IFCOUNT will be set, user need to reduce capacitor or slow down switch frequency.
- When used as Touch Key, the step of startup as follows:
- (1) Select key channel which is needed to scan;
- (2) Set TKCON bit, enable Touch Key module works;
- (3) Set switch frequency, reference voltage(Vref), key sampling times and the sequence of scan;
- (4) Set 28-bit amplification coefficient register;
- (5) Software delay 10uS;
- (6) Set TKGO/DONE bit, start key scan;
- (7) Interrupt generates, TKGO will be cleared by hardware automatically;
- (8) Judging interrupt flag bit: IFERR, IFGO, IFAVE, IFCOUNT;
- (9) If IFAVE = 1, reading data register 500H 527H, program save data result, goto step12;


If IFERR = 1, data register arithmetic overflow error, clear IFERR flag bit, reset amplification coefficient register, reduce the value of amplification coefficient, goto step5 to restart scan;

If IFGO = 1, key controller startup errors, clear IFGO flag bit, goto step5 to restart scan (channel flag register is invalid); If IFCOUNT = 1, key scan count overflow error, clear IFCOUNT flag bit, reduce CX capacitor or slow down switch frequency. Goto step5 to restart scan.

(10) Completing A group key scan.

Operating Flow

8.1.1 Register

Table 8.1 Touch Key Functional Control Register

A1H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCON1	ON1 TKCON		-	TKGO /DONE	SHARE	MODE	OVDD	FSW1	FSW0
R/W		R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)0-000						0	0	0	
Bit Number	ber Bit Mnemonic Description								
7	Т	KCON	Touch Key Enable bit 0: Disable Touch Key Function 1: Enable Touch Key Function						
5	TKG	O/DONE	Start Touch Key Enable bit 0: Don't start key scan or key scan end 1:Start key scan or key scan is performing						
4	S	SHARE Touch Key share with LED Enable bit (refer to Note3 for details) 0: Disable sharing 1: Enable sharing							
3	Ν	NODE		battery char	t bit ging times as ging time as				
2	C	DVDD		OP output v	oltage				
1-0	FS	\$W[1:0]	 Select V_{DD} output voltage Sampling Times Selection bit 00: Key sample 1 time output data, D15-D0 defined as the average of sampling 1 time 01: Key sample 3 times output data, D15-D0 defined as the average of sampling 1 time 10: Key sample 6 times output data, D15-D0 defined as the average of sampling 4 times 11: Key sample 10 times output data, D15-D0 defined as the average of sampling 8 times (Except for maximum and minimum) 						ampling

Note: If OVDD = 0, OP output voltage is selected by VTK; If OVDD = 1, V_{DD} output the OP output voltage directly.

A3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKST	-	ST.6	ST.5	ST.4	ST.3	ST.2	ST.1	ST.0
R/W	-	R/W						
Reset Value (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description					
6-0	ST[6:0]	Touch Key Functional Frequency Control bit System clock/TKST = Touch Key Functional On-Off Frequency					

Note:

Touch Key Functional Frequency = OSC/TKST; The range of TKST is 2 - 127 frequency diision, when register is less than or equal to 2 frequency diision, register is system ckock/2 by default.

96H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
TKRANDOM	I	TKRADON	TKOFFSET	TKVDD	TKOUT	-	-	RANDOM1	RANDOM0		
R/W		R/W	R/W	R/W	R/W	-	-	R/W	R/W		
Reset Value (POR/WDT/LVR/PIN)		0	0	0	0	-	-	0	0		
Bit Number Bit Mnemonic			Description								
7	Touch Key Random Frequency Enable bit										
6	тк	OFFSET	Touch Key Offset Compensation Enable bit 0: Disable Touch Key offset compensation 1: Enable Touch Key offset compensation								
5	т	KVDD		tput Touch k	ion Wavefor Key Compens Key Compen	sation Wavef	orm Level				
4	т	коит	0: Touch	Fouch Key Compensation Waveform Output ability Selection bit 0: Touch Key Compensation Waveform weak output 1: Touch Key Compensation Waveform strong output							
1-0	RAN	DOM[1:0]	TKRADS 00: TKST 01: TKST 10: TKST	1: Touch Key Compensation Waveform strong output Random Shake Setting bit TKRADSEL = 0 00: TKST random shake ±1 01: TKST random shake ±1, ±2 10: TKST random shake ±1, ±2, ±3 11: TKST random shake ±1, ±2, ±3, ±4							

Table 8.3 Touch Key Frequency Random Setting Register

Note: Design spec: random shake please make sure that mathematic accumulation is 0 during a certain period of time.

- (1) When TKST is two divided-frequency,can't shake clock, three divided-frequency is valid only when selecting 00, four divided-frequency valid option is 00, 01. When TKST is more than or equal to six divided-frequency, TKST divided-frequency valid option is 00, 01, 10, 11.
- (2) If Touch Key offset compensation bit is valid, when Touch Key scans, other TK scanning key channel all output compensation waveform except for the current TK scanning key channel. When TKVDD is valid, V_{DD} provides Touch Key Compensation Waveform Level. When TKVDD is 0, OP output provides Touch Key Compensation Waveform Level.

Table 8.4 Touch Key Interrupt Flag Register (The register only can be cleared)

A2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKF0	-	IFERR	IFGO	IFAVE	IFCOUNT	IFTKOV	-	-
R/W	-	R/W	R/W	R/W	R/W	R/W	-	-
Reset Value (POR/WDT/LVR/PIN)	-	0	0	0	0	0	-	-

Bit Number	Bit Mnemonic	Description
6	IFERR	Calculated Result Overflow Interrupt Flag bit 0: Calculated result high-bit don't overflow 1: Calculated result high-bit overflow and generate interrupt
5	IFGO	Start signal Error Interrupt Flag bit 0: Start signal has no error 1: Start signal error generates interrupt
4	IFAVE	Key Scan End Interrupt Flag bit 0: Scan don't end 1: Scan end and generate interrupt
3	IFCOUNT	Key Scan Count Overflow Flag bit 0: Key scan count don't overflow 1: Key scan count overflow
2	IFTKOV	Error Signal Interrupt Flag bit (SHARE status, LED scan start, TK havn't completed) 0: TK scan end normally, LED start normally 1: TK scan time add, LED scan time delay, generate interrupt

Table 8.5 Amplification Coefficient Register

91H - 94H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKDIV01 (91H)	DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
TKDIV02 (92H)	DIV15	DIV14	DIV13	DIV12	DIV11	DIV10	DIV9	DIV8
TKDIV03 (93H)	DIV23	DIV22	DIV21	DIV20	DIV19	DIV18	DIV17	DIV16
TKDIV04 (94H)	-	-	-	-	DIV27	DIV26	DIV25	DIV24
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Table 8.6 Port Function Control Register

D9H - DBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0SS(D9H)	P0SS.7	P0SS.6	P0SS.5	P0SS.4	P0SS.3	P0SS.2	P0SS.1	P0SS.0
P1SS(DAH)	-	-	-	P1SS.4	P1SS.3	P1SS.2	P1SS.1	-
P2SS(DBH)	P2SS.7	P2SS.6	P2SS.5	P2SS.4	P2SS.3	P2SS.2	P2SS.1	P2SS.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	PxSSy x = 0-5, y = 0-7	Port Function Control 0: PxSSy is I/O 1: PxSSy Is Touch Key channel

Table 8.7 Touch Key Function Time Control Register

97H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKCOUNT		COUNT0.7	COUNT0.6	COUNT0.5	COUNT0.4	COUNT0.3	COUNT0.2	COUNT0.1	COUNT0.0
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/		0	0	0	0	0	0	0	0
Bit Number	Bit N	Inemonic	Description						
7-0	COL	JNT0[7:0]	TK Time Wi	dth Selectio	on bit				

TK clock width = LED clock frequency/TKCOUNT

Note:

TKCOUNT register valid only in SHARE mode.

Take LED frame frequency 64Hz for example, when LED is used independently,

the width of LED frame frequency = [1/(SYSTEM CLOCK/8/DISPCLK/DISCOM)]*5

In SHARE mode, LED frame frequency is divided into two part: Touch Key function time and LED scan time.

LED clock frequency = system clock frequency/8/DISPCLK

Touch Key function time = LED clock frequency/TKCOUNT [Time A]

LED COM scan width = LED clock frequency/DISCOM [Time B]

LED scan time (SEG scan period) = (LED clock frequency/TKCOUNT)[Time A]+LED clock frequency/DISCOM*5 [Time B]

In SHARE mode, when OP_OSC[3:0] = 0000, system clock RC = 27MHz, and frame frequency = 64Hz:

If LED clock frequency = 27M/8/DISPCLK[096H]

Frame frequency width A+B = 64 frame = 15.625ms

(1) Need 10mS Touch Key time width:

LED clock frequency/TKCOUNT = 100 frames = 10ms (1/100), LED clock frequency/TKCOUNT[E1H] = 100Hz = 10ms (1/100). (2) Need 8mS Touch Key time width:

LED clock frequency/TKCOUNT = 125 frames = 8ms (1/125), LED clock frequency/TKCOUNT[B4H] = 125Hz = 8ms (1/125). (3) Need 7mS Touch Key time width:

LED clock frequency/TKCOUNT = 142 frames = 7ms(1/142),

LED clock frequency/TKCOUNT[9EH] = 142.40Hz = 7.02ms(1/142.5).

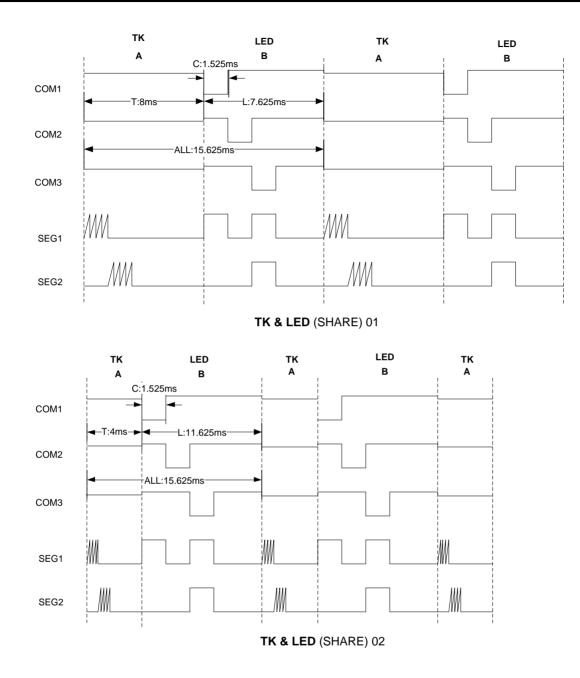
If one COM scan width is 27M/1464/25 = 655.73Hz = 1.525ms, Touch Key time width is 8ms, then scan frame frequency = [Time A]+[Time B] = 1.525 ms*5+8ms = 15.625 = 64Hz

When LED frame frequency is stabled, changing TKCOUNT, that means changing Touch Key function time[Time A], LED frame frequency become faster, but LED frame frequency width [Time B] will not increase.

If need to keep frame frequency unchanged, user need to readjust LED COM scan time.

During the actual application, the value of Touch Key will change according to the change of environment temperature and humidity. Some free time is needed to be reserved as remain, usually 10-15%.

 Table 8.8 Key Scan Error Register


BDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ткw	-	-	-	TW.4	TW.3	TW.2	TW.1	TW.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
4-0	TKW[4:0]	Key Scan Error Display: When TKW[4-0] = 00000b, Key 1 When TKW[4-0] = 00010b, Key 2 When TKW[4-0] = 00010b, Key 3 When TKW[4-0] = 00011b, Key 4 When TKW[4-0] = 00100b, Key 5 When TKW[4-0] = 00110b, Key 6 When TKW[4-0] = 00111b, Key 8 When TKW[4-0] = 00111b, Key 8 When TKW[4-0] = 01000b, Key 9 When TKW[4-0] = 01001b, Key 10 When TKW[4-0] = 01010b, Key 11 When TKW[4-0] = 01010b, Key 12 When TKW[4-0] = 01110b, Key 13 When TKW[4-0] = 01110b, Key 14 When TKW[4-0] = 01110b, Key 15 When TKW[4-0] = 10000b, Key 17 When TKW[4-0] = 10001b, Key 18 When TKW[4-0] = 10010b, Key 19 When TKW[4-0] = 10010b, Key 11

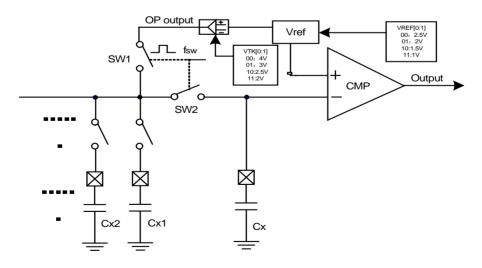
Note: When key error flag bit is set, all other flag bit will stop running Touch Key, except for IFTKOV bit. Error channel bit will be set (When IFGO flag bit is set, key scan error register is invalid). The register is read-only register.

SEG output Touch Key waveform in diagram:

ALL width = LED frame frequency width, T width is setting width of Touch Key, L width is width of LED scan, C width is width of LED COM.

ALL (LED frame frequency) = L (LED scan width)+T (Touch Key time width) For example:

When TK width is 8ms, LED width is 7.625ms, then frame frequency will be 64Hz.


When TK width is 4ms, LED width is 11.625ms, then frame frequency will be 64Hz.

95H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKVREF	VREF1	VREF0	CMPD1	CMPD0	VTK1	VTK0	TUNE1	TUNE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

 Table 8.9 Reference Voltage Selection Register

Bit Number	Bit Mnemonic	Description
7-6	VREF[1:0]	Internal Reference Voltage Selection bit 00: $V_{REF} = 2.5V$ 01: $V_{REF} = 2V$ 10: $V_{REF} = 1.5V$ 11: $V_{REF} = 1V$
5-4	CMPD[1:0]	Debounce Time Selection bit 00: About 4 X t _{sysclk} 01: About 8 X t _{sysclk} 10: About 16 X t _{sysclk} 11: About 32 X t _{sysclk}
3-2	VTK[1:0]	OP Output Voltage Selection bit 00: VTK = 4V 01: VTK = 3.0V 10: VTK = 2.5V 11: VTK = 2V
1-0	TUNE[1:0]	Discharge Time Adjust Selection bit 00: Delay 128 X t _{sysclk} 01: Delay 256 X t _{sysclk} 10: Delay 384 X t _{sysclk} 11: Delay 512 X t _{sysclk}

OP Output Voltage Diagram

Table 8.10 Key Scan Sequence Register

A4H - A6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TKU1 (A4H)	TK8	TK7	TK6	TK5	TK4	TK3	TK2	TK1
TKU2 (A5H)	TK16	TK15	TK14	TK13	TK12	TK11	TK10	TK9
TKU3 (A6H)	-	-	-	-	TK20	TK19	TK18	TK17
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Note: When share bit is set, TK17 - 20 wil be used as COM output, key scan is invalid. When some bit of TKU1 - TKU3 is cleared, starting key scan will skip the channel of this key. The sequence of key scan is from TK1 in TKU1 to TK20 in TKU3, representing 20 channels of key scan separately.

Table 8.11 16-bit Data Register(Touch Key data RAM is read-only register)

Address		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
500H	TK01L	D7	D6	D5	D4	D3	D2	D1	D0
501H	TK01H	D15	D14	D13	D12	D11	D10	D9	D8
502H	TK02L	D7	D6	D5	D4	D3	D2	D1	D0
503H	TK02H	D15	D14	D13	D12	D11	D10	D9	D8
504H	TK03L	D7	D6	D5	D4	D3	D2	D1	D0
505H	ТК03Н	D15	D14	D13	D12	D11	D10	D9	D8
506H	TK04L	D7	D6	D5	D4	D3	D2	D1	D0
507H	TK04H	D15	D14	D13	D12	D11	D10	D9	D8
508H	TK05L	D7	D6	D5	D4	D3	D2	D1	D0
509H	TK05H	D15	D14	D13	D12	D11	D10	D9	D8
50AH	TK06L	D7	D6	D5	D4	D3	D2	D1	D0
50BH	TK06H	D15	D14	D13	D12	D11	D10	D9	D8
50CH	TK07L	D7	D6	D5	D4	D3	D2	D1	D0
50DH	ТК07Н	D15	D14	D13	D12	D11	D10	D9	D8
50EH	TK08L	D7	D6	D5	D4	D3	D2	D1	D0
50FH	TK08H	D15	D14	D13	D12	D11	D10	D9	D8
510H	TK09L	D7	D6	D5	D4	D3	D2	D1	D0
511H	ТК09Н	D15	D14	D13	D12	D11	D10	D9	D8
512H	TK010L	D7	D6	D5	D4	D3	D2	D1	D0
513H	TK010H	D15	D14	D13	D12	D11	D10	D9	D8
514H	TK011L	D7	D6	D5	D4	D3	D2	D1	D0
515H	TK011H	D15	D14	D13	D12	D11	D10	D9	D8
516H	TK012L	D7	D6	D5	D4	D3	D2	D1	D0
517H	TK012H	D15	D14	D13	D12	D11	D10	D9	D8
518H	TK013L	D7	D6	D5	D4	D3	D2	D1	D0
519H	TK013H	D15	D14	D13	D12	D11	D10	D9	D8

(to be continued)

1	continue)	
	continue	

(
51AH	TK014L	D7	D6	D5	D4	D3	D2	D1	D0
51BH	TK014H	D15	D14	D13	D12	D11	D10	D9	D8
51CH	TK015L	D7	D6	D5	D4	D3	D2	D1	D0
51DH	TK015H	D15	D14	D13	D12	D11	D10	D9	D8
51EH	TK016L	D7	D6	D5	D4	D3	D2	D1	D0
51FH	TK016H	D15	D14	D13	D12	D11	D10	D9	D8
520H	TK017L	D7	D6	D5	D4	D3	D2	D1	D0
521H	TK017H	D15	D14	D13	D12	D11	D10	D9	D8
522H	TK018L	D7	D6	D5	D4	D3	D2	D1	D0
523H	TK018H	D15	D14	D13	D12	D11	D10	D9	D8
524H	TK019L	D7	D6	D5	D4	D3	D2	D1	D0
525H	ТК019Н	D15	D14	D13	D12	D11	D10	D9	D8
526H	TK020L	D7	D6	D5	D4	D3	D2	D1	D0
527H	TK020H	D15	D14	D13	D12	D11	D10	D9	D8

Note:

(1) OP output voltage is supply voltage of Touch Key, Vref is reference voltage source of Touch Key.

(2) Touch Key can adjust discharge time of capacitor by setting TUNE1 bit and TUNE0 bit to ensure the stability of data register under the condition of different Cx and working frequency.

(3) When enable LED share with Touch Key: TK1 - TK16 will be used as key, P1.1 - P1.6 is used as COM, TK17 - TK20 is invalid.Completing Touch Key function scan will exit Touch Key module.It is need to set SEG and COM before enabling LED display module. The content of scanning COM1 - COM7, SEG0 - 15 need to be prestored. LED function is finished and restart Touch Key function after a scanning.

8.2 LED Driver

LED dirver contains a controller, 7 COM output pins and 16 SEG output pins, supporting 1/4 - 1/7 duty voltage drive mode. When DISPSEL bit is set, LED function is enable. Controller consists of display data RAM storage area and a duty generator. LED SEG1-SEG16 can also be used as I/O port. POSS register and P2SS register is invalid, SEG01 register and SEG02 register will be used to control the mode selection of LED_SEG1-16, COM1-COM7 and I/O port.

LED will be closed during power-on reset, pin reset, LVR reset or WDT reset.

8.2.1 Register

Table 8.12 LED Control Register

89H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DISPCON	-	LEDON	-	-	-	-	DUTY1	DUTY0
R/W	-	R/W	-	-	-	-	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	0	-	-	-	-	0	0

Bit Number	Bit Mnemonic	Description
6	LEDON	LED Enable Control bit 0: Disable LED Driver 1: Enable LED Drive
1-0	DUTY[1:0]	Duty Selection bit 00: 1/4 duty 01: 1/5 duty 10: 1/6 duty 11: 1/7 duty

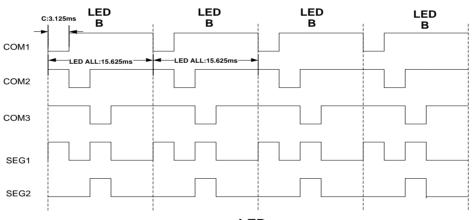
Table 8.13 LED Clock Control Register

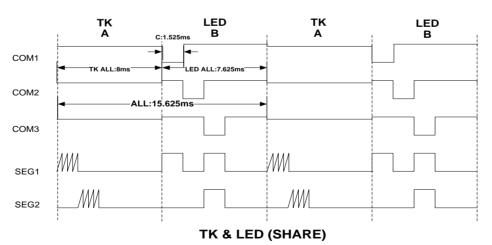
8CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DISPCLK	DCK0.7	DCK0.6	DCK0.5	DCK0.4	DCK0.3	DCK0.2	DCK0.1	DCK0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	DCK0[7:0]	LED Clock Selection bit LED clock frequency = system clock frequency/8/DISPCLK

Table 8.14 COM Scan Width Control Register

9FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DISCOM	DCOM.7	DCOM.6	DCOM.5	DCOM.4	DCOM.3	DCOM.2	DCOM.1	DCOM.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0


Bit Number	Bit Mnemonic	Description
7-0	DCOM[7:0]	LED One COM Scan Width Selection bit One COM Scan Width = LED clock frequency/DISCOM


Note:

LED clock frequency = system clock frequency/8/DISPCLK: system clock frequency is 27M. One COM scan width = LED clock frequency/DISCOM The current LED scan is (5) COM scan mode. LED ALL: 64HZ = 1/64 = 15.625C:15.625/(5) = 3.125ms = 1/0.003125 = 320Hz For example: When LED is COM1 When OP OSC[2:0] = 000, system clock is RC = 27MHz and need 64Hz LED frame, If DISPCLK = 27M/150 = 096H, actually, one COM scan width is DISCOM = 27M/8/150/320 = 0X46H. one COM scan width is 27M/8/150/70 = 321Hz = 3.115ms. When OP_OSC[2:0] = 011, system clock is 32.768KHz and need 64Hz LED frame, If DISPCLK = 32.768KHz/8 = 0X01H, actually, one COM scan width is DISCOM = 32768/8/1/320 = 0X0CH. one COM scan width is 32.768KHz/8/12 = 341Hz = 2.932ms When Touch Key and LED are in SHARE mode, taking COM1 for example: if Touch Key time is 8ms, When OP_OSC[2:0] = 000, system clock is RC = 27MHz and need 64Hz LED frame, (15.625-8)/5 = 7.625/5 = 1.525ms = 655Hz If DISPCLK = 27M/8/150 = 096H, actually, one COM scan width is DISCOM = 27M/8/150/655 = 0X22H. one COM scan width is 27M/8/150/34 = 661Hz = 1.515ms. Scan frame frequency = [Time A]+[Time B] = 1.515ms*5+8ms = 15.564 = 64Hz

COM as Touch Key function keep output OP voltage.

Table 8.15 SEG Mode Selection Register

8AH-8BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG01 (8AH)	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
SEG02 (8BH)	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SEG[15:0]	P1 Port Mode Selection bit (x = 0-7) 0: P0.0-P0.7, P2.0-P2.7 is I/O 1: P0.0-P0.7, P2.0-P2.7 is Segment (LED_S0 - LED_S15)

Table 8.16 COM Mode Selection Register

8FH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LEDCOM	-	COM7	COM6	COM5	COM4	COM3	COM2	COM1
R/W	-	R/W						
Reset Value (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
6-0	COM[7:1]	P1 Port Mode Selection bit (x = 0-6) 0: P1.0-P1.6 is I/O 1: P1.0-P1.6 is COM (LED_C1 - LED_C7)

Table 8.17 Brightness Selection Register

8DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LIGHTCOM	-	-	-	-	-	CC3	CC2	CC1
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	-	0	0	0

Bit Number	Bit Mnemonic	Description
2-0	CC[3:1]	Brightness Selection bit 000: COM width 100% 001: COM width 87.5% 010: COM width 75% 011: COM width 62.5% 100: COM width 50% 101: COM width 37.5% 110: COM width 25% 111: COM width 12.5%

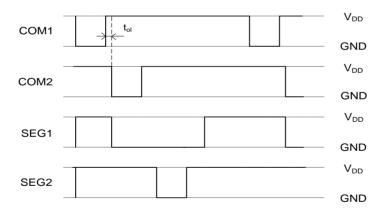
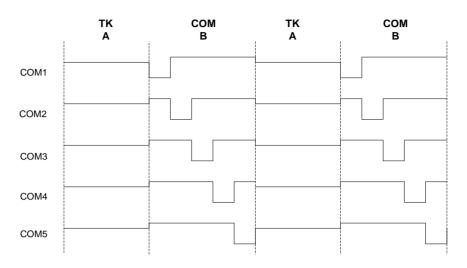
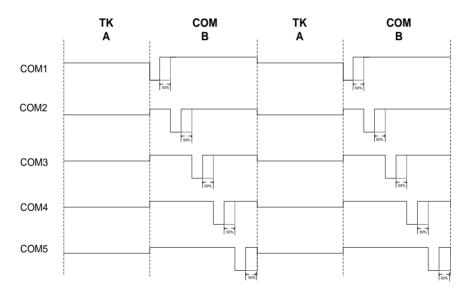

8.2.2 Configuration of LED RAM

Table 8.18 LED 1/5 Duty (LED_C1-C7, LED_S1-16)

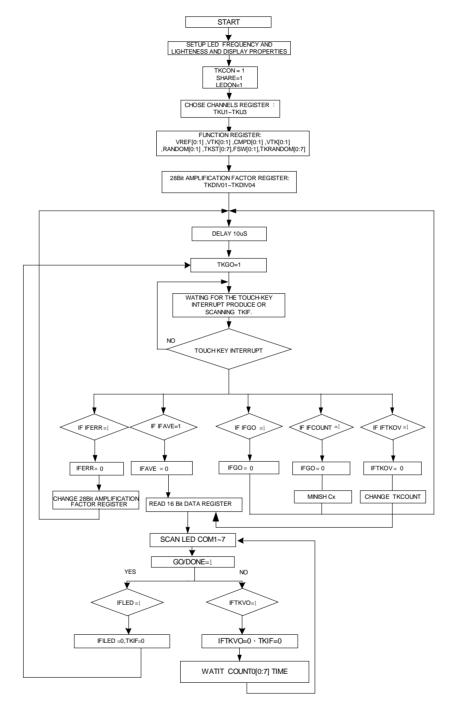
Add	ress	7	6	5	4	3	2	1	0
530H	COM1L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
531H	COM1H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
532H	COM2L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
533H	COM2H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
534H	COM3L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
535H	СОМЗН	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
536H	COM4L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
537H	COM4H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
538H	COM5L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
539H	COM5H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
53AH	COM6L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
53BH	COM6H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
53CH	COM7L	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
53DH	COM7H	SEG16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9


Note: When SHARE bit in TKCON1, then P1.0-P1.6 only can be used as COM instead of Touch Key channel by default.

1/5 DUTY



Note: t_{OL} is overlapping time between LED Common signals, the range of it is 20μ s- 40μ s.


COM waveform, under the condition of LED and Touch Key in SHARE mode, CC[3:1] = 111, brightness is 100%

COM waveform, under the condition of LED and Touch Key in SHARE mode, CC[3:1] = 010, brightness is 50%

8.3 Touch Key Function and LED SHARE Function

Register Flow Diagram

8.3.1 Function Description

SH79F1622 built-in Touch Key function module, which can connect at most 20 keys. When enable LED SHARE function, Touch Key function can connect at most 16 keys. COM1-COM7 is used as LED COM. It is need to notice that, if SHARE function is enable, LED scan function will enable after Touch Key function fininsh data storage. When scanning COM1-COM7 is finished, Touch Key function will restart automatically to start a new key scan and LED.

The startup step of Touch Key:

- (1) Set LED: SEG01-02 = 0FFH, LEDCOM = 7FH, set LED display RAM
- (2) Set scan frequency of LED, set LED brightness and duty
- (3) Set TKCON bit, enable Touch Key module
- (4) Set on-off frequency, reference voltage (Vref), output voltage (OP), key sampling times, key scan sequence, clock width of key scan, enable touch key & LED share function: FSW[0:1], VREF[0:1], CMPD[0:1], VTK[0;1], TKU1-TKU3, SHARE = 1, LEDON = 1.
- (5) Set 28-bit amplification coefficient register: DIV01-04.
- (6) Software delay 10uS.
- (7) Set TKGO/DONE bit, start key scan;

Program query interrupt flag bit, **TKGO** is cleared by hardware. Interrupt flag bit: **IFERR**, **IFGO**, **IFAVE**, **IFLED**, **IFTKOV** If **IFAVE** = 1, reading data register **500H-527H**, program save data result, goto step9;

If **IFERR = 1**, data register arithmetic overflow error, clear **IFERR** and flag bit, reset ting the value of amplification coefficient register, reducing amplification coefficient, go back to step6 to restart scan;

If IFGO = 1, key controller start error, clear IFGO and flag bit, go back to step7 to restart scan;

If **IFCOUNT** = 1, key scan count overflow error, clear **IFCOUNT** and flag bit, reduce **CX** capacitor or reduce average times.Go back to step7 to restart scan.

Interrupt generate (If **TKIE = 1**), or program query interrupt flag bit, **TKGO** is cleared by hardware.

(8) Touch Key function module:

When scanning Touch Key function is finished, **IFTKOV = 0**, after key clock width time is finished, goto step9;

When scanning Touch Key function is not finished, **IFTKOV = 1**, after scanning key is finished, goto step9. (9) Enable **LED** scan module: Begin to scan **COM1-COM7**.

Program query register, clear **TKGO/DONE** bit, then Touch Key scan is finished, program read key data in RAM to judge. Program juage whether touch key to judge interrupt flag bit. If no error flag, go back to step7.

TOUCHKEY Working Mode Table

TOUCHKEY and LED can be divided into 3 working mode, according to whether SHARE, shown in the following Table:

TKCON	LED_ON	SHARE	Working Mode		
1	0	0	TOUCHKEY work independently		
1	1	0	TOUCHKEY and LED work separately		
1	0	1	TOUCHKEY and LED are in SHARE mode, LED doesn't work		
1	1	1	TOUCHKEY and LED are in SHARE mode, LED work		
0	1	Х	LED work independently		
0	0	Х	TOUCHKEY and LED don't work		

8.3.2 SHARE Table of SEG Port

The control signal of SEG port as shown in the following Table:

TKCON	LED_ON	SHARE	TK_STA 0:TK, 1:LED	PXSS	SEGX	PX
1	Х	0	Х	0	0	I/O
1	Х	0	Х	0	1	LED
1	Х	0	Х	1	Х	ТК
0	Х	Х	Х	0	0	I/O
0	Х	Х	Х	0	1	LED
0	Х	Х	Х	1	Х	ТК
1	Х	1	0	0	Х	I/O
1	Х	1	0	1	Х	TK
1	Х	1	1	Х	0	I/O
1	Х	1	1	Х	1	LED

8.4 EUART

8.4.1 Features

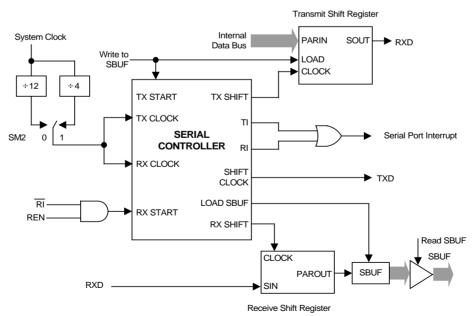
- The SH79F1622 has one enhanced EUART
- The baud rate generator is an 15 bit up-counting timer
- Enhancements over the standard 8051 the EUART include Framing Error detection and automatic address recognition
- The EUART can be operated in four modes

8.4.2 EUART Mode Description

The EUART can be operated in 4 modes. Users must initialize the SCON before any communication can take place. This involves selection of the Mode and the baud rate.

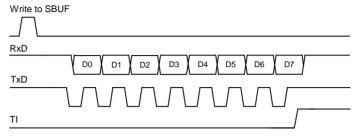
In all of the 4 modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a clock on the TxD pin and shift in 8 bits on the RxD pin. Reception is initiated in the other modes by the incoming start bit if RI = 0 and REN = 1. The external transmitter will start the communication by transmitting the start bit.

EUART Mode Summary

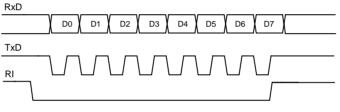

SM0	SM1	Mode	Туре	Baud Clock	Frame Size	Start Bit	Stop Bit	9 th bit
0	0	0	Synch	f _{SYS} /(4 or 12)	8 bits	NO	NO	None
0	1	1	Asynch	Own baud-rate generator overflow rate/16	10 bits	1	1	None
1	0	2	Asynch	f _{SYS} /(32 or 64)	11 bits	1	1	0, 1
1	1	3	Asynch	Own baud-rate generator overflow rate/16	11 bits	1	1	0, 1

Mode0: Synchronous Mode, Half duplex

This mode provides synchronous communication with external devices. In this mode serial data is transmitted and received on the RxD line. TxD is used to output the shift clock. The TxD clock is provided by the SH79F1622 whether the device is transmitting or receiving. This mode is therefore a half duplex mode of serial communication. In this mode, 8 bits are transmitted or received per frame. The LSB is transmitted/received first.

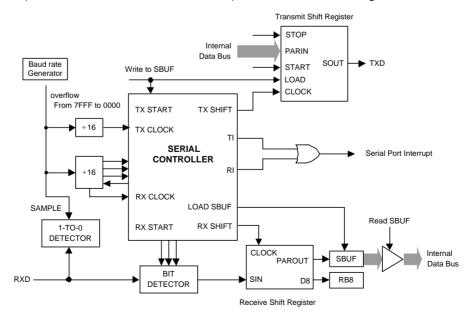

The baud rate is programmable to either 1/12 or 1/4 of the system clock. This baud rate is determined in the SM2 bit (SCON.5). When this bit is set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock. The only difference from standard 8051 is that SH79F1618 in the mode 0 has variable baud rate.

The functional block diagram is shown below. Data enters and exits the serial port on the RxD line. The TxD line is used to output the SHIFT CLOCK.

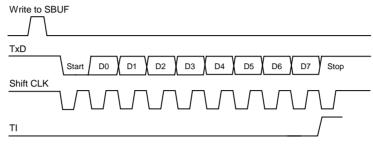


Any instruction that uses SBUF as a destination register ("write to SBUF" signal) will start the transmission. The next system clock tells the Tx control block to commence a transmission. The data shift occurs at the falling edge of the SHIFT CLOCK, and the contents of the transmit shift register is shifted one position to the right. As data bits shift to the right, zeros come in from the left. After transmission of all 8 bits in the transmit shift register, the Tx control block will deactivates SEND and sets TI (SCON.1) at the rising edge of the next system clock.

Send Timing of Mode 0


Reception is initiated by the condition REN (SCON.4) = 1 and RI (SCON.0) = 0. The next system clock activates RECEIVE. The data latch occurs at the rising edge of the SHIFT CLOCK, and the contents of the receive shift register are shifted one position to the left. After the receiving of all 8 bits into the receive shift register, the RX control block will deactivates RECEIVE and sets RI at the rising edge of the next system clock, and the reception will not be enabled till the RI is cleared by software.

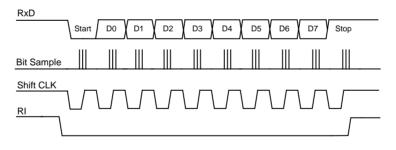
Receive Timing of Mode 0


Mode1: 8-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex

This mode provides the 10 bits full duplex asynchronous communication. The 10 bits consist of a start bit (logical 0), 8 data bits (LSB first), and a stop bit (logical 1). When receiving, the eight data bits are stored in SBUF and the stop bit goes into RB8 (SCON.2). The baud rate in this mode is variable. The serial receive and transmit baud rate can be programmed to be 1/16 of the Timer4/2 overflow (Refer to **Baud Rate** Section for details). The functional block diagram is shown below.

Transmission begins with a "write to SBUF" signal, and it actually commences at the next system clock following the next rollover in the divide-by-16 counter (divide baud-rate by 16), thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal. The start bit is firstly put out on TxD pin, then are the 8 bits of data. After all 8 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TxD pin, and the TI flag is set at the same time that the stop is send.

Send Timing of Mode 1

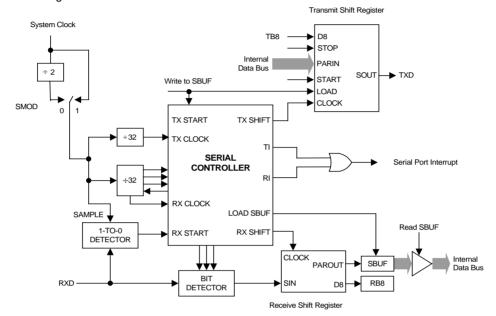

Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data with the detection of a falling edge on the RxD pin. For this purpose RxD is sampled at the rate of 16 times baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of the divide-by-16 counter. The 16 states of the counter divide each bit time into 16ths. The bit detector samples the value of RxD at the 7th, 8th and 9th counter states of each bit time. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the first bit after the falling edge of RxD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again waiting for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the shift register. After shifting in 8 data bits and the stop bit, the SBUF and RB8 are loaded and RI are set if the following conditions are met:

1. RI must be 0

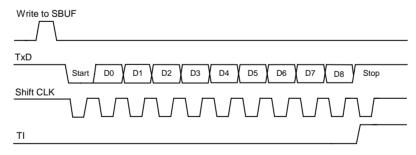
2. Either SM2 = 0, or the received stop bit = 1

If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.

At the time, the receiver goes back to looking for another falling edge on the RxD pin. And the user should clear RI by software for further reception.



Receive Timing of Mode 1

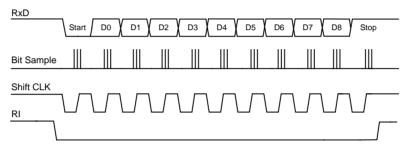


Mode2: 9-Bit EUART, Fixed Baud Rate, Asynchronous Full-Duplex

This mode provides the 11 bits full duplex asynchronous communication. The 11 bit consists of one start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical 1). Mode 2 supports multiprocessor communications and hardware address recognition (Refer to Multiprocessor Communication Section for details). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1, for example, the parity bit P in the PSW or used as data/address flag in multiprocessor communications. When data is received, the 9th data bit goes into RB8 and the stop bit is not saved. The baud rate is programmable to either 1/32 or 1/64 of the system working frequency, as determined by the SMOD bit in PCON. The functional block diagram is shown below:

Transmission begins with a "write to SBUF" signal, the "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register. Transmission actually commences at the next system clock following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal). The start bit is firstly put out on TxD pin, then are the 9 bits of data. After all 9 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TxD pin, and the TI flag is set at the same time, this will be at the 11th rollover of the divide-by-16 counter after a write to SBUF.

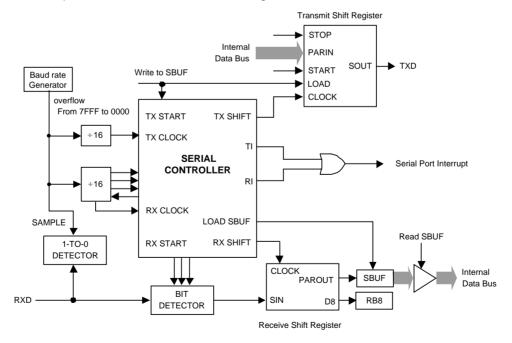
Send Timing of Mode 2


Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data, with the detection of a falling edge on the RxD pin. For this purpose RxD is sampled at the rate of 16 times baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of the divide-by-16 counter. The 16 states of the counter divide each bit time into 16ths. The bit detector samples the value of RxD at the 7th, 8th and 9th counter state of each bit time. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the first bit detected after the falling edge of RxD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again looks for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the shift register. After shifting in 9 data bits and the stop bit, the SBUF and RB8 are loaded and RI is set if the following conditions are met:

1. RI must be 0

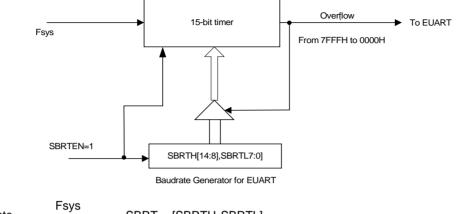
2. Either SM2 = 0, or the received 9^{th} bit = 1 and the received byte accords with Given Address

If these conditions are met, then the 9th bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.


At the time, the receiver goes back to looking for another falling edge on the RxD pin. And the user should clear RI by software for further reception.

Receive Timing of Mode 2

Mode3: 9-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex


Mode3 uses transmission protocol of the Mode2 and baud rate generation of the Mode1.

8.4.3 Baud Rate Generate

The baud rate generator is an 15 bit up-counting timer.

SBRToverflowrate = $\frac{1395}{32768 - SBRT}$, SBRT = [SBRTH, SBRTL]

In Mode0, the baud rate is programmable to either 1/12 or 1/4 of the system frequency. This baud rate is determined by SM2 bit. When set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock. In Mode1 & Mode3, the baud rate can be fine adjusted.

The Mode1 & 3 baud rate equations are shown below,

 $BaudRate = \frac{Fsys}{16 \times (32768 - SBRT) + BFINE}$

For example: Fsys = 8MHz, to get 115200Hz baud rate, computing method of SBRT and SFINE as shown below:

800000/16/115200 = 4.34

SBRT = 32768 - 4 = 32764 115200 = 8000000/(16 X 4 + BFINE)

BFINE = $5.4 \approx 5$

This fine tuning method to calculate the actual baud rate is 115942Hz and the error is 0.64%, but the error is 8.5% In the past computing method.

In Mode2, the baud rate is programmable to either 1/32 or 1/64 of the system clock. This baud rate is determined by the SMOD bit (PCON.7). When this bit is set to 0, the serial port runs at 1/64 of the clock. When set to 1, the serial port runs at 1/32 of the clock.

BaudRate = $2^{\text{SMOD}} \times (\frac{f_{\text{SYS}}}{64})$

8.4.4 Multi-Processor Communication

Software Address Recognition

Modes 2 and 3 of the EUART have a special provision for multi-processor communication. In these modes, 9 data bits are received. The 9th bit goes into RB8. Then a stop bit follows. The EUART can be programmed such that when the stop bit is received, the EUART interrupt will be activated (i.e. the request flag RI is set) only if RB8 = 1. This feature is enabled by setting the bit SM2 in SCON.

A way to use this feature in multiprocessor communications is as follows. If the master processor wants to transmit a block of data to one of the several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte.

With SM2 = 1, no other slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. After having received a complete message, the slave sets SM2 again. The slaves that were not addressed leave their SM2 set and go on with their business, ignoring the incoming data bytes.

Note: In Mode0, SM2 is used to select baud rate doubling. In Mode1, SM2 can be used to check the validity of the stop bit. If SM2 = 1 in Mode1, the receive interrupt will not be activated unless a valid stop bit is received.

Automatic (Hardware) Address Recognition

In Mode2 & 3, setting the SM2 bit will configure EUART act as following: when a stop bit is received, EUART will generate an interrupt only if the 9th bit that goes into RB8 is logic 1 (address byte) and the received data byte matches the EUART slave address. Following the received address interrupt, the slave should clear its SM2 bit to enable interrupts on the reception of the following data byte(s).

The 9-bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. When the master processor wants to transmit a block of data to one of the slaves, it first sends out the address of the targeted slave (or slaves). All the slave processors should have their SM2 bit set high when waiting for an address byte, which ensures that they will be interrupted only by the reception of an address byte. The Automatic address recognition feature further ensures that only the addressed slave will be interrupted. The address comparison is done by hardware not software.

After being interrupted, the addressed slave clears the SM2 bit to receive data bytes. The un-addressed slaves will be unaffected, as they will be still waiting for their address. Once the entire message is received, the addressed slave should set its SM2 bit to ignore all transmissions until it receives the next address byte.

The Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given Address. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. The slave address is an 8-bit value specified in the SADDR register. The SADEN register is actually a mask for the byte value in SADDR. If a bit position in SADEN is 0, then the corresponding bit position in SADDR is don't care. Only those bit positions in SADDR whose corresponding bits in SADEN are 1 are used to obtain the Given Address. This gives the user flexibility to address multiple slaves without changing the slave address in SADDR. Use of the Given Address allows multiple slaves to be recognized while excluding others.

	Slave 1	Slave 2
SADDR	10100100	10100111
SADEN (0 mask)	11111010	11111001
Given Address	10100x0x	10100xx1
Broadcast Address (OR)	1111111x	1111111

The Given address for slave 1 and 2 differ in the LSB. For slave 1, it is a don't care, while for slave 2 it is 1. Thus to communicate only with slave 1, the master must send an address with LSB = 0 (10100000). Similarly the bit 1 is 0 for slave 1 and don't care for slave 2. Hence to communicate only with slave 2 the master has to transmit an address with bit 1 = 1 (1010 0011). If the master wishes to communicate with both slaves simultaneously, then the address must have bit 0 = 1 and bit 1 = 0. The bit 2 position is don't care for both the slaves. This allows two different addresses to select both slaves (1010 0001 and 1010 0101).

The master can communicate with all the slaves simultaneously with the Broadcast Address. This address is formed from the logical OR of the SADDR and SADEN. The zeros in the result are defined as don't cares. In most cases, the Broadcast Address is FFh, this address will be acknowledged by all slaves.

On reset, the SADDR and SADEN are initialized to 00h. This results in Given Address and Broadcast Address being set as XXXXXXXX (all bits don't care). This effectively removes the multiprocessor communications feature, since any selectivity is disabled. This ensures that the EUART0 will reply to any address, which it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition. So the user may implement multiprocessor by software address recognition mentioned above.

8.4.5 Error Detection

Error detection is available when the SSTAT bit in register PCON is set to logic 1. The SSTAT bit must be logic 1 to access any of the status bits (FE, RXOV, and TXCOL). The SSTAT bit must be logic 0 to access the Mode Select bits (SM0, SM1, and SM2). All the 3 bits should be cleared by software after they are set, even when the following frames received without any error will not be cleared automatically.

Transmit Collision

The Transmit Collision bit (TXCOL bit in register SCON) reads '1' if RI is set 0 and user software writes data to the SBUF register while a transmission is still in progress. If this occurs, the new data will be ignored and the transmit buffer will not be written.

Receive Overrun

The Receive Overrun bit (RXOV in register SCON) reads '1' if a new data byte is latched into the receive buffer before software has read the previous byte. The previous data is lost when this happen.

Frame Error

The Frame Error bit (FE in register SCON) reads '1' if an invalid (low) STOP bit is detected.

Note: TXD pin must be set as output high level before sending.

8.4.6 Register

Table 8.19 Power Control Register

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	SMOD	Baud rate doubler 0: If set in Mode2, the baud-rate of EUART is system clock/64 1: If set in Mode2, the baud-rate of EUART is system clock/32
6	SSTAT	SCON [7:5] function select bit 0: SCON [7:5] operates as SM0, SM1, SM2 1: SCON [7:5] operates as FE, RXOV, TXCOL
3-2	GF[1:0]	General purpose flags for software use
1	PD	Power-Down mode control bit
0	IDL	Idle mode control bit

Table 8.20 EUART Control & Status Register

98H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SCON	SM0 /FE	SM1 /RXOV	SM2 /TXCOL	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-6	SM[0:1]	EUART Serial mode control bit, when SSTAT = 0 00: mode 0, Synchronous Mode, fixed baud rate 01: mode 1, 8 bit Asynchronous Mode, variable baud rate 10: mode 2, 9 bit Asynchronous Mode, fixed baud rate 11: mode 3, 9 bit Asynchronous Mode, variable baud rate
7	FE	EUART Frame Error flag, when FE bit is read, SSTAT bit must be set 1 0: No Frame Error, clear by software 1: Frame error occurs, set by hardware
6	RXOV	EUART Receive Over flag, when RXOV bit is read, SSTAT bit must be set 1 0: No Receive Over, clear by software 1: Receive over occurs, set by hardware
5	SM2	EUART Multi-processor communication enable bit (9 th bit '1' checker), when SSTAT = 0 0: In Mode0, baud-rate is 1/12 of system clock In Mode1, disable stop bit validation check, any stop bit will set RI to generate interrupt In Mode2 & 3, any byte will set RI to generate interrupt 1: In Mode0, baud-rate is 1/4 of system clock In Mode1, Enable stop bit validation check, only valid stop bit (1) will set RI to generate interrupt In Mode2 & 3, only address byte (9 th bit = 1) will set RI to generate interrupt

(to be continued)

(continue)

Bit Number	Bit Mnemonic	Description
5	TXCOL	EUART Transmit Collision flag, when TXCOL bit is read, SSTAT bit must be set 1 0: No Transmit Collision, clear by software 1: Transmit Collision occurs, set by hardware
4	REN	EUART Receiver enable bit 0: Receive Disable 1: Receive Enable
3	TB8	The 9th bit to be transmitted in Mode2 & 3 of EUART, set or clear by software
2	RB8	The 9th bit to be received in Mode1, 2 & 3 of EUART In Mode0, RB8 is not used In Mode1, if receive interrupt occurs, RB8 is the stop bit that was received In Modes2 & 3 it is the 9 th bit that was received
1	ТІ	Transmit interrupt flag of EUART 0: cleared by software 1: Set by hardware
0	RI	Receive interrupt flag of EUART 0: cleared by software 1: Set by hardware

Table 8.21 EUART Data Buffer Register

99H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SBUF	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SBUF[7:0]	This SFR accesses two registers; a transmit shift register and a receive latch register A write of SBUF will send the byte to the transmit shift register and then initiate a transmission A read of SBUF returns the contents of the receive latch

Table 8.22 EUART Slave Address & Address Mask Register

9AH-9BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SADDR (9AH)	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
SADEN (9BH)	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SADDR[7:0]	SFR SADDR defines the EUART's slave address
7-0	SADEN[7:0]	 SFR SADEN is a bit mask to determine which bits of SADDR are checked against a received address 0: Corresponding bit in SADDR is a "don't care" 1: Corresponding bit in SADDR is checked against a received address

9CH-9DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SBRTH (9CH)	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL (9DH)	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Table 8.23 EUART Baudrate generator Register

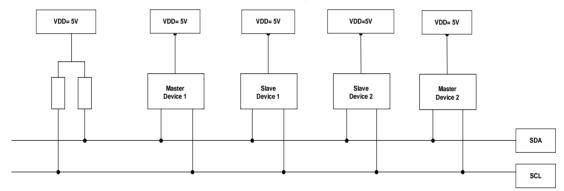
Bit Number	Bit Mnemonic	Description
7	SBRTEN	EUART Baudrate generator control bit 0: disable(default) 1: enable
6-0 7-0	SBRT[14:0]	EUART Baudrate generator data

Table 8.24 EUART Baudrate generator Bfine Register

9CH-9DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SFINE	-	-	-	-	SFINE.3	SFINE.2	SFINE.1	SFINE.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	SFINE[3:0]	EUART Baudrate generator Bfine data Register

8.5 TWI


8.5.1 Features

- Two Wire Interface, simple and fast
- Master and Slave operation Supported
- Device are operated as Transmitter or Receiver
- Multi-master Arbitration Supported
- TWI Timeout Detection
- Wake-up system when SH79F1622 is in IDLE Mode
- Programable address

TWI serial bus adopt two wires (SDA and SCL) to transmit messages between bus and device. SH79F1622 is totally in conformity with TWI bus standard, transmitting and processing bytes automatically, and tracking serial communication.

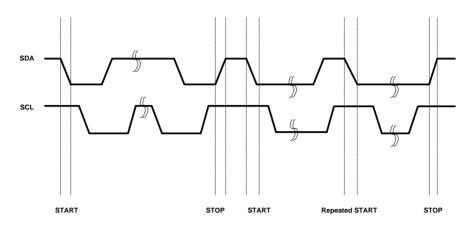
TWI function need 27MHz system frequency, when system period is 32.768KHz, OSC2 27MRC can't disable to advoid that TWI can't communicate.

The following diagram shows a typical TWI configuration using one Master controller and many Slave peripherals. The protocol allows the system to interconnect up to 128 different devices using only two lines.

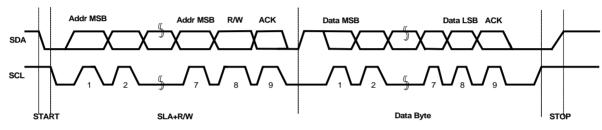
8.5.2 Data Transformat

Data Transformat

Each data bit transferred on the TWI data transfer lines is accompanied by a pulse on the clock line. The level of the data line must be stable when the clock line is high. The only exception to this rule is for generating START and STOP conditions.

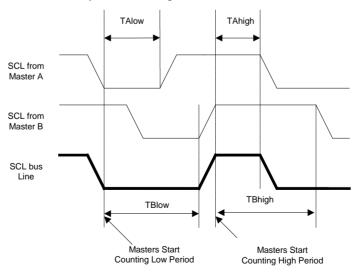

As with I2C, TWI defines two special waveform: START and STOP condition. A high to low transition of SDA line while SCL is high defines as START condition; A low to high transition of SDA line while SCL is high defines as STOP condition. START and STOP conditions are always generated by the bus master.

The Master can initiate and terminate a data transmission. The transmission is initiated when the Master transfers a START condition, and it is terminated when the Master transfers a STOP condition. Between START and STOP condition, the bus is considered as busy. The other masters shouldn't try to initiate a transfer. In Busy mode, if the Master initiates START condition again, it will be defined as REPEATED START condition to indicate that the Master wishes to initiate a new transfer without relinquishing bus. After a REPEATED START, the bus will be still in Busy mode until the next STOP. Considering that the features of REPEATED START condition and START condition are same, except for special statement, START condition will be used to describe both START and REPEATED START conditions for the remainder of this datasheet.


All data packets (including address packets) are 9-bit long, consisting of one data byte and an acknowledge bit. During a data transfer, the Master generates the clock and the START and STOP conditions, while the Receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is signaled by the Receiver through pulling the SDA line low during the ninth SCL pulse. If the Receiver hold high at the ninth SCL pulse, a NACK is signaled. When the Receiver has received the last byte, or for some reason cannot receive any more bytes, it should respond NACK signal. The MSB of the data byte is transmitted first.

A transmission basically consists of a START condition, a SLA + R/W, one or more data packets and a STOP condition.An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the wired-AND can be used to implement handshaking between the Master and the Slave. The Slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the Slave, or the Slave needs extra time for processing between the data transmissions. The Slave extending the SCL low period will not affect the SCL high period, which is determined by the Master. As a consequence, the Slave can reduce TWI data transfer speed by prolonging the TWI duty cycle.

When generating ACK signal, SH79F1622 will pull the SDA line low. During setting interrupt flag bit, SH79F1622 pull the SCL line low, releasing the SDA line. Clearing TWINT flag after interrupt process is finished, releasing the SCL line.



Clock Synchronization

A situation may occur that more than one master is trying to place clock signals on the bus at the same time. The resulting bus will be the wired AND of all the clock signals provided by the masters.

It is important for the bus integrity that there is a clear definition of the clock, bit by bit for all masters involved during an arbitration process.

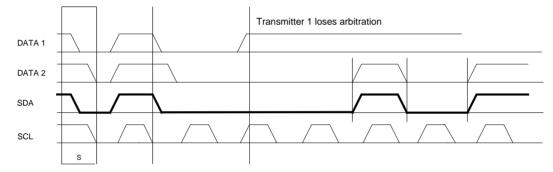
A high to low transition on the SCL line should cause all devices involved to start counting off their low period. As soon as a device finishes counting its low period it will release the SCL line. Neverthless, the actual signal on the SCL may not transition to the high state if another master will longer low period keeps the SCL line low. In this situation the master that released the SCL line will enter the SCL high wait period. When all devices have counted off their low period, the SCL line will be released and go high. All devices concerned at this point will start counting their high periods. The first device that completes its high period count will pull the SCL line low and the cycle will start again.

Data Arbitration

A master may start a transfer only if the bus is free. Two or more devices may generate a START condition within the minimum hold time ($t_{HOLD:STA}$), resulting in a defined START condition on the bus.

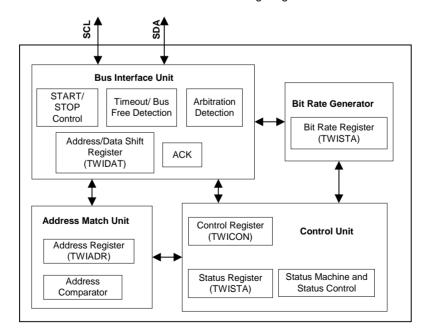
Since the devices that generated the START condition may not be aware whether other masters are contending for the bus. Arbitration takes place on the SDA line while the SCL is high. When the other master is transmitting a low level on the SDA line, the master which transmits a high level will lose the arbitration and must give up bus.

The master that lost the arbitration may continue to provide clock pulses until the current transmission bytes are finished. Arbitration in the case of two masters trying to access the same device may continue past the address byte. In this case arbitration will continue with the remaining transfer data. This mechanism requires that all TWI devices are monitoring the actual state of the SDA line during every bus transmission.


If a master also incorporates a slave mode and lose the arbitration during the address stage, it should check the actual address placed on the bus in order to determine whether another master is trying to access it. In this case the master that lost the arbitration must switch immediately to its slave mode in order to receive the rest of the message.

During each bus transmission, masters are still required to be able to recognized a repeated START condition on the bus. When detecting a repeated START condition which is not generated by itself, the device should quit the current transfer.

Arbitration should not occur in the following situation:


- (1) A repeated START condition and data bit
- (2) A STOP condition and data bit

(3) A repeated START condition and a STOP condition

8.5.3 Function Description

Detailed structure of TWI communication module is shown in the following diagram.

Bus Interface Unit

This unit contains the Data and Address Shift Register (TWIDAT), a START/STOP Controller, Arbitration and Timeout detection hardware.

The TWIDAT register contains the address or data bytes to be transmitted, or the address or data bytes to be received.

The START/STOP Controller is responsible for generation and detection of START, repeated START and STOP conditions.

If SH79F1622 has initiated a transmission as Master, the Arbitration Detection hardware continuously monitors the transmission trying to determine if arbitration is in process. If TWI has lost arbitration, the Control Unit is informed Correct action can be taken and appropriate status codes generated.

SH79F1622 must hold data stable before SCL from low to high, when SH79F1622 transmit data/address.

When SH79F1622 transmit ACK/NACK, SH79F1622 will generate TWINT interrupt after SCL from low to high, and when SCL from high to low, pulling SCL low, releasing SCL when clearing TWINT interrupt.

When SH79F1622 transmit ACK/NACK, if TWINT has been cleared and SCL is still high, SDA generates jumping, TWINT interrupt will regenerate, status is 00H. The current communication of SH79F1622 will stop, the process is as the same as general 00H.

When SH79F1622 transmit ACK/NACK, if TWINT isn't cleared and SCL is still high, SDA generates jumping, then the status switch to 00H directly instead of regenerating interrupt. SH79F1622 enter into the status as slave, then the current communication will stop and can generate STA to start master transmission. Or accepting the visit of STA+ADR to own address again. SH79F1622 enter into the status as master, then the current communication will stop and can generate STA to start master transmission. Or accepting the visit of STA+ADR to start master transmission. Or accepting the visit of STA+ADR to start master transmission. Or accepting the visit of STA+ADR to start master transmission. Or accepting the visit of STA+ADR to own address again.

After the current communication is terminated, SH79F1622 will don't take part in the current transmission. If SH779F1622 exists as a master, please enable EFREE function to avoid entering logic deadband.

SH79F1622 defines the Bus hold high more than 50us as free mode, releasing the Bus. The function is only used in the transmission process of one packet (8 + 1 bit).

When SH79F1622 is in slave transfer mode and the first byte of transferred message is low, the function can be used. STA and RSTA is not situable for this function. If SH79F1622 generates interrupt, TFREE bit in TWICON regiser will be set (if control bit EFREE bit has been set).

When SCL line is pulled to low by slave, the communication will be stop temporarily; The master also can't pull SCL line to high. For solving this problem, TWI defines all devices that take part in transmission pull SCL line to low more than 25ms as Timeout. TOUT bit in TWICON register will be set (if control bit ETOT has been set).

TWI module will reset within 10ms and release the Bus.

Bit Rate Generator Unit

In Master mode, the baud rate si chosen from one of the four clock rates (4KHz, 16KHz, 64KHz, 100KHz (4MHz clock source), setting by CR[1:0] in TWICON register.

Address Match Unit

The Address Match unit checks if received address bytes match the 7bit address in the address register TWIADR. If the TWI General Call Recognition Enable bit is set, it will check whether match the general address 00H. Upon matching the address, the control unit will generate a appropriate action and corresponding status code.

Control Unit

The Control Unit monitors the TWI bus and generates corresponding response according to the setting of TWICON register. When an event which requires the attention of the application occurs on the TWI bus, the interrupt flag of TWI will be set, indicating that the status code of the current event will be written to TWISTA register. The status Register TWISTA only can show the communication status information when generating TWI communication interrupt; In other situations, a status code which is used to represent invalid status code in status register. Before clearing the interrupt, SCL line will hold low level. This allows the application software to complete its tasks before allowing the TWI transmission to continue.

8.5.4 Transmission Mode

TWI is a byte-oriented and interrupt based communication bus. Interrupts will be generated by all bus events, like reception of a byte or transmission of a START condition. So the application software can do other oparations during a byte transfer. Note that TWI enable (ENTWI) bit in TWICON, all interrupts enable (EA) bit in IEN0 and ETWI bit will decide together whether generating an interrupt when TWINT bit is set. If ETWI bit or EA bit is not set, the application software must poll the TWINT flag to know whether TWI event occurs.

Setting the TWINT bit indicates that a TWI transfer has completed, and it is waiting for the response of the application software. At this moment, the sattus register TWISTA contains the current status. The application software can decide which communication will be transmitted by TWI by TWICON register and TWISTA register.

The following section will introduce the four major modes of TWI communication and describe all possible status codes. These figures contain the following abbreviations:

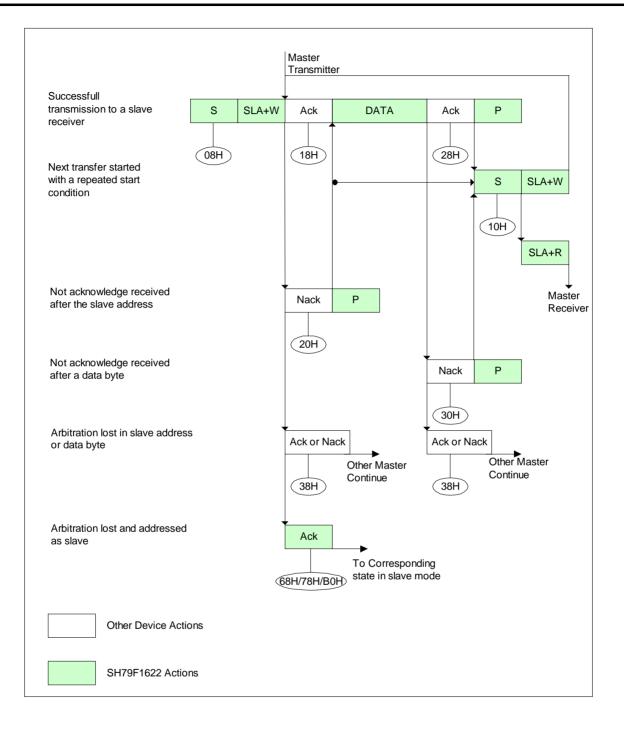
- S : START condition
- Rs : REPEATED START condition
- R : Read bit
- W : Write bit
- A : Acknowledge bit
- Ā : Not acknowledge bit
- DATA : 8-bit data byte
- P : STOP condition
- SLA : Slave Address

The circles are used to indicate that the interrupt flag is set. The numbers in the circles show the status code held in theTWISTA, with the least 3 bit masked to zero. Before clearing TWINT, the TWI transfer will be suspended, the application must decide whether to continue or stop the current transfer. For each status code, the required software action and details of the following serial transfer are given.

Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a slave receive. In order to enter a Master mode, a START condition must be transmitted, a following SLA + W address packet determines MT has entered.

By setting ENTWI and STA in TWICON register, clearing STO and TWINT, the TWI logic will test TWI bus and generate a start condition as soon as the bus becomes free. When a START condition is transmitted, the interrupt (TWINT) will be set, the status register TWISTA is 08H. The interrupt service routine should load TWIDAT with the slave address and the data direction bit (SLA + W). Clearing TWINT flag before start the next transfer.

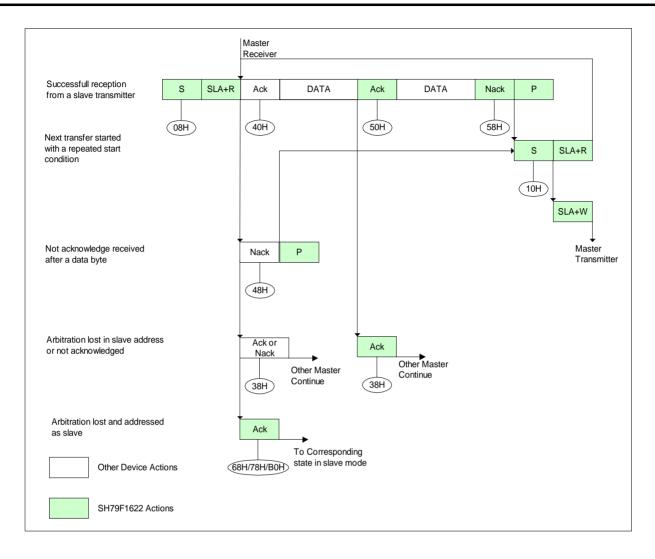

When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, TWINT will be set, and a number of status codes in TWISTA are possible. There are 18H, 20H and 38H for the master mode, and also 68H, 78H and B0H for the slave mode.

Status Code for Master Transmitter Mode

		Application S	plication Software Response						
Status Code	Status of TWI bus and Hardware Interface	To/From			Opera		Next Action Taken by Hardware		
		TWIDAT	STA	STO	TWINT	AA			
08H	A START Condition has been transmitted	Load SLA + W	х	0	0	Х	Transmit SLA+W, receive ACK		
	A repeated START	Load SLA + W	Х	0	0	Х	Transmit SLA+W, receive ACK		
10H	Condition has been transmitted	Load SLA + R	х	0	0	Х	Transmit SLA+R, TWI will switch to Master Receiver mode		
		Load data byte	0	0	0	Х	Transmit data, receive ACK		
	SLA + W has been		1	0	0	Х	Transmit the repeated Start condition		
18H	transmitted; ACK has been received	No TWIDAT	0	1	0	Х	Transmit STOP condition; Clearing STO flag		
	ACK has been received	action	1	1	0	Х	Transmit STOP condition, and then transmit START condition; clearing STO		
		Load data byte	0	0	0	Х	Transmit data, receive ACK		
	SLA + W has been transmitted;		1	0	0	Х	Transmit the repeated Start condition		
20H	NACK has been	No TWIDAT	0	1	0	Х	Transmit STOP condition; Clearing STO flag		
	received	action	1	1	0	Х	Transmit STOP condition, and then transmit START condition; clearing STO		
		Load data byte	0	0	0	Х	Transmit data, receive ACK		
	Data byte in TWIDAT		1	0	0	Х	Transmit the repeated Start condition		
28H	has been transmitted; ACK has been received	No TWIDAT	0	1	0	Х	Transmit STOP condition; Clearing STO flag		
	ACIA has been received	action	1	1	0	х	Transmit STOP condition, and then transmit START condition; clearing STO		
		Load data byte	0	0	0	Х	Transmit data, receive ACK		
	Data byte in TWIDAT		1	0	0	Х	Transmit the repeated Start condition		
30H	has been transmitted; ACK has been received	No TWIDAT	0	1	0	Х	Transmit STOP condition; Clearing STO flag		
	AUN HAS DEEN IEUEIVEU	action	1	1	0	Х	Transmit STOP condition, and then transmit START condition; clearing STO		
38H	Lose arbitration in SLA + W or data transmit	No TWIDAT action	0	0	0	х	Releasing TWI bus; Entering not addressed slave mode		
		acuun	1	0	0	Х	Transmit START condition when bus is free		

Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a slave. In order to enter a Master mode, a STARTcondition must be transmitted, a following SLA + R address packet determines MR has entered.


Clearing STO and TWINT by setting ENTWI and STA in TWICON register. TWI logic will test TWI bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the interrupt (TWINT) will be set, the status register TWISTA is 08H. The interrupt service routine should load TWIDAT with the slave address and the data direction bit (SLA + R). Clearing TWINT flag before start the next transfer.

When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, TWINT will be set, and a number of status codes in TWISTA are possible. There are 40H, 48H and 38H for the master mode, and also 68H, 78H and B0H for the slave mode.

01-1-1-		Application Software Response				se	
Status Code	Status of TWI bus and Hardware Interface	To/From	Cont	rol Bi	Opera	ation	Next Action Taken by Hardware
oouo		TWIDAT	STA	STO	TWINT	AA	
08H	A START Condition has been transmitted	Load SLA + R	х	0	0	Х	Transmit SLA+R, receive ACK
	A repeated START	Load SLA + R	Х	0	0	Х	Transmit SLA+R, receive ACK
10H	Condition has been transmitted	Load SLA + W	х	0	0	Х	Transmit SLA + W, TWI will switch to Master transmitter mode
38H	Lose arbitration when transmitting SLA + R	No TWIDAT action	0	0	0	Х	Releasing TWI bus; Entering not address slave mode
	or NACK	action	1	0	0	Х	Transmit START condition when bus is
4011	SLA + R has been	No TWIDAT	0	0	0	0	Receive data, go back to NACK
40H	transmitted; ACK has been received	action	0	0	0	1	Receive data, go back to ACK
	SLA + R has been		1	0	0	Х	Transmit the repeated Start condition
48H	transmitted;	No TWIDAT	0	1	0	Х	Transmit STOP condition; Clearing STO flag
	NACK has been received	action	1	1	0	Х	Transmit STOP condition, and then transmit START condition; clearing STO
50H	Data byte has been	Read data bit	0	0	0	0	Receive data, go back to NACK
	received; ACK has responded	Read data bit	0	0	0	1	Receive data, go back to ACK
			1	0	0	Х	Transmit the repeated Start condition
58H	Data byte has been received:	Read data bit	0	1	0	Х	Transmit STOP condition; Clearing STO flag
00.1	NACK has responded		1	1	0	х	Transmit STOP condition, and then transmit START condition; clearing STO

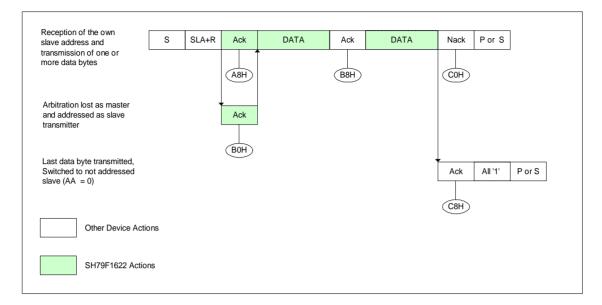
Status Code for Master Receiver Mode

Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a master receive. In order to initialize Slave transmitter mode, TWICON register and TWIADR register must be initialized: set ENTWI bit and AA bit in TWICON register, clearing STA, STO and TWINT; The high 7-bit in TWIADR register is used to prepare the corresponding address for SH79F1622. If GC is set, SH79F1622 will respond the general address (00H); Otherwise, SH79F1622 will not respond the address.

When TWIADR and TWICON are initialized, SH79F1622 will be waiting for the response to itself address or general address (if GC is set).

If the direction bit is "R", then TWI enter to the Slave transmitter mode. Otherwise, TWI will enter to the Slave receiver mode. After its own slave address and read bit have been received, TWINT will be set and a valid status code can be read from TWISTA.


If the AA bit is cleared during a transfer, TWI will transmit the last byte. State C0H or C8H will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte. TWI bus will switch to the not address slave mode, and will ignore the master if it continues the transfer. Thus the master receiver will receive all "1" as serial data. State C8H is entered if the master demands additional data bytes (by transmitting ACK), even though the slave has transmitted the last byte.

Status Code for Slave Transmitter Mode

0 111		Application S	oftwa	re Re	spon	se	
Status Code	Status of TWI bus and Hardware Interface	To/From			Opera		Next Action Taken by Hardware
oodo		TWIDAT	STA	STO	TWINT	AA	
A8H	Own SLA + R has been received;	Load data byte	х	0	0	0	Transmit the last data byte and ACK will be received
	ACK has been received		Х	0	0	1	Transmit data byte and ACK will be received
B0H	Arbitration lost in SLA + R/W as master; Own SLA + R has been	Load data byte	х	0	0	0	Transmit the last data byte and ACK will be received
	received; ACK has been received		х	0	0	1	Transmit data byte and ACK will be received
B8H	TWIDAT data has transmitted;	Load data byte	х	0	0	0	Transmit the last data byte and ACK will be received
	ACK has been received		Х	0	0	1	Transmit data byte and ACK will be received
		No TWIDAT action	0	0	0	0	Switched to not addressed SLA mode; No recognition of own SLA or General address
	TWIDAT data has		0	0	0	1	Switched to not addressed SLA mode; Own SLA will be recognized, general address will be recognized if TWIADR.0 = 1
С0Н	transmitted; NACK has been received		1	0	0	0	Switched to not addressed SLA mode; No recognition of own SLA or General address; Transmit "START condition" when bus is free
			1	0	0	1	Switched to not addressed SLA mode; Own SLA will be recognized, general address will be recognized if TWIADR.0 = 1; Transmit "START condition" when bus is free
			0	0	0	0	Switched to not addressed SLA mode; No recognition of own SLA or General address
	Last data byte in		0	0	0	1	Switched to not addressed SLA mode; Own SLA will be recognized, general address will be recognized if TWIADR.0 = 1
С8Н	TWIDAT has been transmitted (AA = 0) ; ACK has been received	No TWIDAT action	1	0	0	0	Switched to not addressed SLA mode; No recognition of own SLA or General address; Transmit "START condition" when bus is free
			1	0	0	1	Switched to not addressed SLA mode Own SLA will be recognized, general address will be recognized if TWIADR.0 = 1; Transmit "START condition" when bus is free

Slave Receiver Mode

In the Slave receiver mode, a number of data bytes are received from a master transmitter. In order to initialize Slave receiver mode, TWICON register and TWIADR register must be initialized: set ENTWI bit and STA bit in TWICON register, clearing STO and TWINT; The high 7-bit in TWIADR register is used to prepare the corresponding address for SH79F1622. If GC is set, SH79F1622 will respond the general address (00H); Otherwise, SH79F1622 will not respond the address.

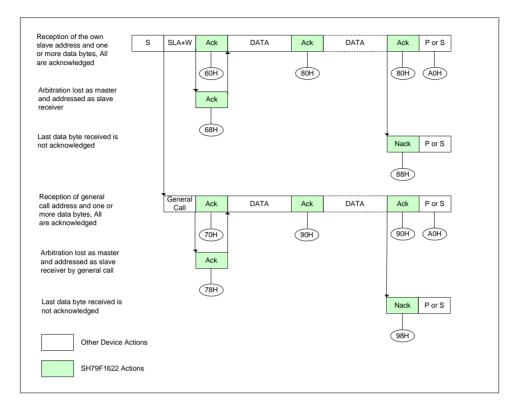
When TWIADR and TWICON are initialized, SH79F1622 will be waiting for the response to itself address or general address (if GC is set).

If the direction bit is "W", then TWI enter to the Slave receiver mode. Otherwise, TWI will enter to the Slave transmitter mode. After its own slave address and write bit have been received, TWINT will be set and a valid status code can be read from TWISTA.

If the AA bit is cleared during a transfer, TWI will receive the last byte and respond NACK information. Responding NACK indicates the current slave can't receive more bytes. When AA = 0, SH79F1622 can't respond the visit to its own address; However, SH79F1622 still monitors the bus status, and address recognition may resume at any time by setting AA. This implies that the AA bit may be used to temporarity isolate SH79F1622 from the bus.

When SH79F1622 is in Slave Receiver mode, the minimum receive frequency is 4.5KHz, less than 4.5KHz, unable to properly receive data.

Chatting	Status of TW/I hus and	Application S	oftwa	re Re	spon	se		
Status Code	Status of TWI bus and Hardware Interface	To/From	Control Bit Operation				Next Action Taken by Hardware	
0000		TWIDAT	STA	STO	TWINT	AA		
60H	Own SLA + W has been received:	No TWIDAT	Х	0	0	0	Receive data byte; Transmit NACK	
	ACK has been received	action	Х	0	0	1	Receive data byte; Transmit ACK	
68H	Arbitration lost in SLA + R/W as master; Own SLA + W has been	No TWIDAT	х	0	0	0	Receive data byte; Transmit NACK	
0011	received; ACK has been received	action	х	0	0	1	Receive data byte; Transmit ACK	
70H	General address has	No TWIDAT	Х	0	0	0	Receive data byte; Transmit NACK	
	been received; ACK has been received	action	Х	0	0	1	Receive data byte; Transmit ACK	


Status Code for Slave Receiver Mode

(to be continued)

(continu	e)						
78H	Arbitration lost in SLA + R/W as master; General address has been	No TWIDAT	х	0	0	0	Receive data byte; Transmit NACK
7011	received; ACK has been received	action	х	0	0	1	Receive data byte; Transmit ACK
80H	Previously addressed with own SLA address;	Read data byte	Х	0	0	0	Receive data byte; Transmit NACK
0011	Data has been received; ACK has been received		Х	0	0	1	Receive data byte; Transmit ACK
			0	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address
	Previously addressed with own SLA address;		0	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1
88H Data has been received; NACK has been	Data has been received;	Read data byte	1	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address; Transmit "START condition" when bus is free
			1	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1; Transmit "START condition" when bus is free
90H	0H Previously addressed with General address; Data has been received; ACK has been received	Read data byte	Х	0	0	0	Receive data byte; Transmit NACK
3011			Х	0	0	1	Receive data byte; Transmit ACK
			0	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address
	Previously addressed with General address:		0	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1
98H	Data has been received; NACK has been received	Read data byte	1	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address; Transmit "START condition" when bus is free
			1	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1; Transmit "START condition" when bus is free
			0	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address
	A STOP condition or repeated START		0	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1
A0H	condition has been received while still addressed as slave	No TWIDAT action	1	0	0	0	Switched to not addressed SLA mode; no recognition of own SLA or general address; Transmit "START condition" when bus is free
	receiver		1	0	0	1	Switched to not addressed SLA mode; SLA will be recognized, general address will be recognized if TWIADR.0 = 1; Transmit "START condition" when bus is free

Other Modes

Except for the above status codes, there are two status codes without specific TWI status. The status 0F8H indicates that no relevant information is available because TWINT is not set. This occurs between other states, and when the TWINT is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a TWI bus serial transfer. A bus error is caused when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. A bus error may also be caused when external interference disturbs the internal TWI bus signals. When a bus error occurs, TWINT will be set. To recover from a bus error, the STO flag must be set and TWINT must be cleared. This will cause SH79F1622 to enter the not addressed slave mode and to clear the STO flag. SDA and SCL lines will be released, and no STOP condition is transmitted.

Status Code of Other Modes

Chatura	Status Status of TWI bus and Application			re Re	spon	se		
Code	Hardware Interface	To/From	Cont	rol Bit	Opera	ation	Next Action Taken by Hardware	
0000		TWIDAT	STA	STO	TWINT	AA		
F8H	Without valid status code; TWINT = 0	No TWIDAT action	No TWICON action			tion	Wait or proceed current transfer	
00H	Bus error during Master or selected slave modes, due to an illegal START or STOP condition. Interface cause TWI internal logic mess.	No TWIDAT action	0	1	0	х	Only the internal hardware is affected in the Master or addressed Slave modes. In all cases, the bus is released and TWI bus is switched to the not addressed Slave mode, STO is reset	

8.5.5 Register

Table 8.25 TWI Control Register

F8H		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TWICON		TOUT	ENTWI	STA	STO	TWINT	AA	TFREE	EFREE	
R/W		R/W	R/W R/W		R/W	R/W	R/W	R/W	R/W	
Reset Value (POR/WDT/LVR		0	0 0 0 0 0 0 0							
Bit Number	Bit N	Inemonic				Description				
7	•	ΓΟυΤ	Bus line timeout flag 0: No timeout occurred 1: Set by hardware when TWI bus low level exceeds the timeout period (25ms). It must be cleared by software.							
6	E	NTWI	TWI Enable 0: Disabl 1: Enable	e TWI						
5		STA	START condition flag 0: No START condition is transmitted 1: Transmit START condition when the bus is free							
4		STO	1: Transr but the	OP condition nit STOP co	ecover to no	ed aster; Don't tr t addressed				
3	т	WINT	1: Set by	/I serial inter hardware w	rupt occurre	d e other states eared by soft		0F8H in TWI		
2		AA		NACK sign	je Flag al (high level (low level or					
1	Т	FREE	 SCL High Level Timeout Flag 0: No high level timeout occurred 1: Set by hardware when SCL high level exceeds the timeout period (50us), it must be cleared by sofaware. 							
0	E	FREE		le SCL high	ut Enable bit level timeou level timeout	t detection				

Note: TOUT, TWINT, TFREE share one interrupt vector, all of them can trigger TWI interrupt.

Table 8.26 TWI Status Register

E6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TWISTA	TWISTA.7	TWISTA.6	TWISTA.5	TWISTA.4	TWISTA.3	CR.1	CR.0	ETOT
R/W	R	R	R	R	R	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIIN)	1	1	1	1	1	0	0	0

Bit Number	Bit Mnemonic	Description
7-3	TWISTA[7:3]	TWI Status bit of Serial Communication See operation mode for details
2-1	CR[0:1]	TWI Serial bit rate 00: f _{OSC} /6/1024 01: f _{OSC} /6/256 10: f _{OSC} /6/42 When SH79F1622 is in Master mode, the hold time of STA, STO and repeated STA is related to the transfer frequency which is selected by CR[1:0]
0	ETOT	Timeout Enable Bit 0: Disable Timeout detection 1: Enable Timeout detection

Table 8.27 TWI Address Register

E7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TWIADR	TWA.6	TWA.5	TWA.4	TWA.3	TWA.2	TWA.1	TWA.0	GC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-1	TWA[6:0]	TWI Address Configuration bit Configure SH79F1622 as the address in Slave mode
0	GC	General Address Enable bit 0: Disable general address 1: Enable general address

Table 8.28 TWI Data Register

DFH		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TWIDAT		TWIDAT.7	TWIDAT.6	TWIDAT.5	TWIDAT.4	TWIDAT.3	TWIDAT.2	TWIDAT.1	TWIDAT.0
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/		0	0	0	0	0	0	0	0
Bit Number	Bit N	Inemonic	Description						
7-0	тพі	DAT[7:0]	TWI Communication Data Register						

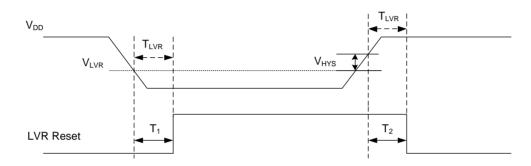
Table 8.29 System Clock Control Register

B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	32k_SPDUP	CLKS1	CLKS0	-	OSC2ON	-	-	-
R/W	R/W	R/W	R/W	-	R/W	-	-	-
Reset Value (POR/WDT/LVR/PIN)	1	1	1	-	0	-	-	-

Bit Number	Bit Mnemonic	Description
7	32k_SPDUP	 32.768kHz oscillator speed up mode control bit 32.768kHz oscillator normal mode, cleared by software. 32.768kHz oscillator speed up mode, set by hardware or software. This control bit is set by hardware automatically in all kinds of RESET such as Power on reset, watch dog reset etc. to speed up the 32.768kHz Oscillator oscillating, shorten the 32.768kHz oscillator start-oscillating time. And this bit also can be set or cleared by software if necessary. Such as set before entering Power-down mode and cleared when Power-down mode wakes up. It should be noticed that turning off 32.768kHz oscillator speed up (clear this bit) could reduce the system power consumption. Only when code option OP_OSC is 011, this bit is valid. (32.768kHz oscillator is selected, Refer to code option section for details)
6-5	CLKS[1:0]	SYSCLK Prescaler Register $00: f_{SYS} = f_{OSCS}$ $01: f_{SYS} = f_{OSCS}/2$ $10: f_{SYS} = f_{OSCS}/4$ $11: f_{SYS} = f_{OSCS}/12$ If 32.768kHz oscillator is selected as OSCSCLK, $f_{SYS} = f_{OSCS}$
3	OSC2ON	OSC2CLK On-Off Control Register 0: Disable OSC2CLK 1: Enable OSC2CLK

8.6 Low Voltage Reset (LVR)

8.6.1 Features


- Enabled by the code option and V_{LVR} is 4.1V or 2.8V
- LVR de-bounce timer T_{LVR} is about 30-60µs
- When the power supply voltage is lower than the set voltage V_{LVR}, it will cause the internal reset

The LVR function is used to monitor the supply voltage and generate an internal reset in the device when the supply voltage below the specified value V_{LVR} . The LVR de-bounce timer T_{LVR} is about 30μ s- 60μ s.

The LVR circuit has the following feature when the LVR function is enabled (T_1 means the time of the supply voltage below V_{LVR} , T_2 means the time of the supply voltage above V_{LVR} + V_{HYS}):

Generates a system reset when $V_{DD} \leq V_{LVR}$ and $T_1 \geq T_{LVR}$;

Cancels the system reset when $V_{DD} > V_{LVR} + V_{HYS}$ and $T_2 \ge T_{LVR}$, or don't generate a system reset when $V_{DD} < V_{LVR}$, but $T_1 < T_{LVR}$. The range of V_{HYS} is 0.09V - 0.11V.

 V_{DD} is Voltage Source, V_{LVR} is LVR detection voltage, V_{HYS} is low voltage reset hysteresis voltage.

The LVR function is enabled by the code option.

It is typically used in AC line or large battery supplier applications, where heavy loads may be switched on and cause the MCU supply-voltage temporarily falls below the minimum specified operating voltage. This feature can protect system from working under bad power supply environment.

8.7 Watchdog Timer (WDT) and Reset State

8.7.1 Features

- Auto detect Program Counter (PC) over range, and generate OVL Reset
- WDT runs even in the Power-Down mode
- Selectable different WDT overflow frequency

OVL Reset

To enhance the anti-noise ability, SH79F1622 built in Program Counter (PC) over range detect circuit, if program counter value is larger than flash romsize, or detect operation code equal to A5H which is not exist in 8051 instruction set, a OVL reset will be generate to reset CPU, and set WDOF bit. So, to make use of this feature, you should fill unused flash rom with A5H.

Watchdog Timer

The watchdog timer is a down counter, and its clock source is an independent built-in RC oscillator, so it always runs even in the Power-Down mode. The watchdog timer will generate a device reset when it overflows. It can be enabled or disabled permanently by the code option.

The watchdog timer control bits (WDT.2-0) are used to select different overflow frequency. The watchdog timer overflow flag (WDOF) will be automatically set to "1" by hardware when overflow happens. To prevent overflow happen, by reading or writing the WDT register RSTSTAT, the watchdog timer should re-count before the overflow happens.

There are also some reset flags in this register as below:

8.7.2 Register

Table 8.30 Reset Control Register

B1H, Bank0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSTSTAT	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR)	0	-	1	0	0	0	0	0
Reset Value (WDT)	1	-	u	u	u	0	0	0
Reset Value (LVR)	u	-	u	1	u	0	0	0
Reset Value (PIN)	u	-	u	u	1	0	0	0

Bit Number	Bit Mnemonic	Description
7	WDOF	 Watch Dog Timer Overflow or OVL Reset Flag Set by hardware when WDT overflow or OVL reset happened, cleared by software or Power On Reset 0: Watch Dog not overflows and no OVL reset generated 1: Watch Dog overflow or OVL reset occurred
5	PORF	Power On Reset Flag Set only by Power On Reset, cleared only by software 0: No Power On Reset 1: Power On Reset occurred
4	LVRF	Low Voltage Reset Flag Set only by Low Voltage Reset, cleared by software or Power On Reset 0: No Low Voltage Reset occurs 1: Low Voltage Reset occurred
3	CLRF	Pin Reset Flag Set only by pin reset, cleared by software or Power On Reset 0: No Pin Reset occurs 1: Pin Reset occurred
2-0	WDT[2:0]	WDT Overflow period control bit 000: Overflow period minimal value = 4096ms 001: Overflow period minimal value = 1024ms 010: Overflow period minimal value = 256ms 011: Overflow period minimal value = 128ms 100: Overflow period minimal value = 64ms 101: Overflow period minimal value = 16ms 110: Overflow period minimal value = 4ms 111: Overflow period minimal value = 1ms Notes: If WDT_opt is enable in application, you must clear WatchDog periodically, and the interval must be less than the value list above.

8.8 Tone

SH79F1622 has two 16-bit Tone generator, which can generate square ware with specific frequency.

Table 8.31 Tone Generator Control Register (TGCR11, 12: 21, 22)

		.						
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TGCR11	TG1.7	TG1.6	TG1.5	TG1.4	TG1.3	TG1.2	TG1.1	TG1.0
TGCR12	TG1.15	TG1.14	TG1.13	TG1.12	TG1.11	TG1.10	TG1.9	TG1.8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PI	I) 0	0	0	0	0	0	0	0
Bit Number Bit Mnemonic Description								

TGCR1[2:1]	TG1[13:0]	Tone Generator 1 register bit	

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TGCR21	TG2.7	TG2.6	TG2.5	TG2.4	TG2.3	TG2.2	TG2.1	TG2.0
TGCR22	TG2.15	TG2.14	TG2.13	TG2.12	TG2.11	TG2.10	TG2.9	TG2.8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
TGCR2[2:1]	TG2[13:0]	Tone Generator 2 register bit

Table 8.32 Tone Generator Volume Control Register (TVCR[1: 2])

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TVCR1	TG1EN	TV1.6	TV1.5	TV1.4	TV1.3	TV1.2	TV1.1	TV1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description		
6-0	TV1[6:0]	Tone Generator 1 volume register		
7	TG1EN	Tone Generator 1 enable register		

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TVCR2	TG2EN	TV2.6	TV2.5	TV2.4	TV2.3	TV2.2	TV2.1	TV2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description			
6-0	TV2[6:0]	Tone Generator 2 volume register			
7	TG2EN	Tone Generator 2 enable register			

Volume control register use 7-bit register control the output level of tone generator.

TGxEN (X = 1, 2): Tone generator x enable.

0: Disable Tone generator x (default)

1: Enable Tone generator x

Program Note:

When Tone generator is operating, POWER-DOWN or IDEA instruction can't be performed for avoiding electric leakage.

The situation that Two Tone generator generate one same tone at the same time is disabled. If do this, some unpredictable errors can be generated. If must use the two channels (for example, playing dual-channel music), don't let the tone generate the same tone for a long time to avoid error. If some error occurs, the listener can ignore it.

The output waveform frequency of Tone generatot is from the system frequency divider, as the following:

Tone output frequency = $\frac{f_{sys}}{8 \times N}$

N = 10000H - TGCR (TGx.15 - TGx.0)

x = 1 or 2

Music Table 1

Note	ldeal Frequency	Ν	TGCR (TGx.13 -TGx.0)	Actual Frequency	Error Rate%	Note	ldeal Frequency	Ν	TGCR (TGx.13 -TGx.0)	Actual Frequency	Error Rate%
#D2	77.78	43391	5681	77.78	0.00%	D5	587.33	5746	E98E	587.36	0.01%
E2	82.41	40953	6007	82.41	0.00%	#D5	622.25	5423	EAD1	622.34	0.01%
F2	87.31	38655	6901	87.31	0.00%	E5	659.26	5119	EC01	659.30	0.01%
#F2	92.50	36486	717A	92.50	0.00%	F5	698.46	4832	ED20	698.46	0.00%
G2	98.00	34438	797A	98.00	0.00%	#F5	739.99	4560	EE30	740.13	0.02%
#G2	103.82	32508	8104	103.82	0.00%	G5	783.99	4304	EF30	784.15	0.02%
A2	110.00	30681	8827	110.00	0.00%	#G5	830.61	4063	F021	830.66	0.01%
#A2	116.54	28960	8EE0	116.54	0.00%	A5	880.00	3835	F105	880.05	0.01%
B2	123.47	27334	953A	123.47	0.00%	#A5	932.33	3619	F1DD	932.57	0.03%
C3	130.81	25800	9B38	130.81	0.00%	B5	987.77	3416	F2A8	987.99	0.02%
#C3	138.59	24352	A0E0	138.59	0.00%	C6	1046.5	3225	F367	1046.51	0.00%
D3	146.83	22985	A637	146.83	0.00%	#C6	1108.7	3044	F41C	1108.73	0.00%
#D3	155.56	21695	AB41	155.56	0.00%	D6	1174.7	2873	F4C7	1174.73	0.00%
E3	164.81	20478	B002	164.81	0.00%	#D6	1244.5	2711	F569	1244.92	0.03%
F3	174.61	19328	B480	174.61	0.00%	E6	1318.5	2559	F601	1318.87	0.03%
#F3	185.00	18243	B8BD	185.00	0.00%	F6	1396.9	2416	F690	1396.93	0.00%
G3	196.00	17219	BCBD	196.00	0.00%	#F6	1480.0	2280	F718	1480.26	0.02%
#G3	207.65	16253	C083	207.65	0.00%	G6	1568.0	2152	F798	1568.30	0.02%
A3	220.00	15340	C414	220.01	0.00%	#G6	1661.2	2031	F811	1661.74	0.03%
#A3	233.08	14480	C770	233.08	0.00%	A6	1760.0	1917	F883	1760.56	0.03%
B3	246.94	13667	CA9D	246.94	0.00%	#A6	1864.7	1809	F8EF	1865.67	0.05%
C4	261.63	12899	CD9D	261.64	0.00%	B6	1975.5	1708	F954	1975.99	0.02%
#C4	277.18	12176	D070	277.18	0.00%	C7	2093.0	1612	F9B4	2093.67	0.03%
D4	293.66	11492	D31C	293.68	0.01%	#C7	2217.5	1521	FA0F	2218.93	0.06%
#D4	311.13	10847	D5A1	311.14	0.00%	D7	2349.3	1436	FA64	2350.27	0.04%
E4	329.63	10238	D802	329.65	0.01%	#D7	2489.0	1355	FAB5	2490.77	0.07%
F4	349.23	9664	DA40	349.23	0.00%	E7	2637.0	1279	FB01	2638.78	0.07%
#F4	369.99	9121	DC5F	370.02	0.01%	F7	2793.8	1208	FB48	2793.87	0.00%
G4	392.00	8609	DE5F	392.03	0.01%	#F7	2960.0	1140	FB8C	2960.52	0.02%
#G4	415.30	8126	E042	415.33	0.01%	G7	3136.0	1076	FBCC	3136.61	0.02%
A4	440.00	7670	E20A	440.02	0.00%	#G7	3322.4	1015	FC09	3325.12	0.08%
#A4	466.16	7240	E3B8	466.16	0.00%	A7	3520.0	958	FC42	3522.96	0.08%
B4	493.88	6833	E54F	493.92	0.01%	#A7	3729.3	904	FC78	3733.40	0.11%
C5	523.25	6450	E6CE	523.25	0.00%	B7	3951.1	854	FCAA	3951.99	0.02%
#C5	554.37	6087	E839	554.46	0.02%	C8	4186.0	806	FCDA	4187.34	0.03%

8.9 Power Management

8.9.1 Features

- Two power saving modes: Idle mode and Power-Down mode
- Two ways to exit Idle and Power-Down mode: interrupt and reset

To reduce power consumption, SH79F1622 supplies two power saving modes: Idle mode and Power-Down mode. These two modes are controlled by PCON & SUSLO register.

8.9.2 Idle Mode

In this mode, the clock to CPU is frozen, the program execution is halted, and the CPU will stop at a defined state. But the peripherals continue to be clocked. When entering idle mode, all the CPU status before entering will be preserved. Such as: PSW, PC, SFR & RAM are all retained.

By two consecutive instructions: setting SUSLO register as 0x55, and immediately followed by setting the IDL bit in PCON register, will make SH79F1621 enter Idle mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or IDL bit in the next machine cycle. And the CPU will not enter Idle mode. The setting of IDL bit will be the last instruction that CPU executed.

There are two ways to exit Idle mode:

- (1) An interrupt generated. The clock to the CPU will be restored, and the hardware will clear SUSLO register and IDL bit in PCON register. Then the program will execute the interrupt service routine first, and then jumps to the instruction immediately following the instruction that activated Idle mode.
- (2) Reset signal (logic low on the RESET pin, WDT RESET if enabled, LVR REST if enabled), this will restore the clock to the CPU, the SUSLO register and the IDL bit in PCON register will be cleared by hardware, finally the SH79F1622 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

8.9.3 Power-Down Mode

The Power-Down mode places the SH79F1622 in a very low power state. Power-Down mode will stop all the clocks including CPU and peripherals. If WDT is enabled, WDT block will keep on working. When entering Power-Down mode, all the CPU status before entering will be preserved. Such as: PSW, PC, SFR & RAM are all retained.

By two consecutive instructions: setting SUSLO register as 0x55, and immediately followed by setting the PD bit in PCON register, will make SH79F1622 enter Power-Down mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or PD bit in the next machine cycle. And the CPU will not enter Power-Down mode.

The setting of PD bit will be the last instruction that CPU executed.

Note: If IDL bit and PD bit are set simultaneously, the SH79F1621 enters Power-Down mode. The CPU will not go in Idle mode when exiting from Power-Down mode, and the hardware will clear both IDL & PD bit after exit form Power-Down mode.

There are two ways to exit the Power-Down mode:

- (1) An active external Interrupt such as INT0, INT1, INT2, INT3 & INT4 will make SH79F1622 exit Power-Down mode. The oscillator will start after interrupt happens, after warm-up time, the clocks to the CPU and peripheral will be restored, the SUSLO register and PD bit in PCON register will be cleared by hardware. Program execution resumes with the interrupt service routine. After completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-Down mode.
- (2) Reset signal (logic low on the RESET pin, WDT RESET if enabled, LVR REST if enabled). This will restore the clock to the CPU after warm-up time, the SUSLO register and the PD bit in PCON register will be cleared by hardware, finally the SH79F1622 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

Note: In order to entering Idle/Power-Down, it is necessary to add 3 NOPs after setting IDL/PD bit in PCON.

8.9.4 Register

Table 8.34 Power Control Register

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description	
7	SMOD	Baud rate double bit	
6	SSTAT	CON[7:5] function selection bit	
3-2	GF[1:0]	eneral purpose flags for software use	
1	PD	Power-Down mode control bit 0: Cleared by hardware when an interrupt or reset occurs 1: Set by software to activate the Power-Down mode	
0	IDL	Idle mode control bit 0: Cleared by hardware when an interrupt or reset occurs 1: Set by software to activate the Idle mode	

Table 8.35 Suspend Mode Control Register

8EH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SUSLO	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SUSLO[7:0]	This register is used to control the CPU enter suspend mode (Idle or Power-Down). Only consecutive instructions like below will make CPU enter suspend mode. Other wise the either SUSLO, IDL or PD bit will be cleared by hardware in the next machine cycle.

Example:

IDLE_MODE: MOV SUSLO, #55H ORLPCON, #01H NOP NOP NOP	
POWERDOWN_MODE: MOV SUSLO, #55H ORLPCON, #02H NOP NOP NOP	

8.10 Warm-up Timer

8.10.1 Features

- Built-in power on warm-up counter to eliminate unstable state of power on
- Built-in oscillator warm-up counter to eliminate unstable state when oscillation startup

SH79F1622 has a built-in power warm-up counter; it is designed to eliminate unstable state after power on or to do some internal initial operation such as read customer option etc.

SH79F1622 has also a built-in oscillator warm-up counter, it is designed to eliminate unstable state when oscillator starts oscillating in the following conditions: Power-on reset, Pin reset, LVR reset, Watchdog Reset and Wake up from Power-down mode.

After power-on, SH79F1622 will start power warm-up procedure first, and then oscillator warm-up procedure.

Power Warm-up Time

Key F	on Reset/ Reset/ age Reset	WDT Reset (Not in Power-Down Mode)		WDT (Wakeup from Mo	Power-Down	Wakeup from Power-Down Mode (Only for interrupt)	
TPWRT**	OSC Warm up*	TPWRT**	OSC Warm up*	TPWRT**	OSC Warm up*	TPWRT**	OSC Warm up*
11ms	YES	1000 clock	NO	11ms	YES	1000 clock	NO

OSC Warm-up Time

Oscillator Type	TPWRT**
32kHz Crystal	2 ¹³ X Tosc
Internal RC	2 ⁷ X Tosc

8.11 Code Option

OP_WDT:

- 0: Enable WDT (Default)
- 1: Disable WDT

OP_WDTPD:

- 0: WDT can't work in STOP MODE (Default)
- 1: WDT can work in STOP MODE

OP_LVREN:

- 0: Disable LVR function (Default)
- 1: Enable LVR function

OP_LVRLE:

- 0: 4.1V LVR level 1 (Default)
- 1: 2.8V LVR level 2

OP_OSC:

000: Oscillator1 is internal 27M RC, oscillator2 is disabled

011: Oscillator1 is 32.768k crystal oscillator, oscillator2 is internal 27M RC

OP_LEDCOM:

- 0: P1.0 P1.6 sink ability normal mode (Default)
- 1: P1.0 P1.6 sink ability large mode

OP_RST:

- 0: P1.6 used as RST pin (Default)
- 1: P1.6 used as I/O pin

OP_SEG:

0: P0.0 - P0.7, P2.0 - P2.7 normal of output current capability (Default) 1: P0.0 - P0.7, P2.0 - P2.7 1/3 of normal of output current capability

108

9. Instruction Set

ARITHMETIC OPERATIONS Opcode	Description	Code	Byte	Cycle						
ADD A, Rn	Add register to accumulator	0x28-0x2F	1	1						
ADD A, direct	Add direct byte to accumulator	0x25	2	2						
ADD A, @Ri	Add indirect RAM to accumulator									
ADD A, #data	Add immediate data to accumulator									
ADDC A, Rn	Add register to accumulator with carry flag	0x38-0x3F	1	1						
ADDC A, direct	Add direct byte to A with carry flag	0x35	2	2						
ADDC A, @Ri	Add indirect RAM to A with carry flag	0x36-0x37	1	2						
ADDC A, #data	Add immediate data to A with carry flag	0x34	2 2							
SUBB A, Rn	Subtract register from A with borrow	0x98-0x9F	1 1							
SUBB A, direct	Subtract direct byte from A with borrow	0x95	2	2						
SUBB A, @Ri	Subtract indirect RAM from A with borrow	0x96-0x97	1	2						
SUBB A, #data	Subtract immediate data from A with borrow	0x94	2	2						
INC A	Increment accumulator	0x04	1	1						
INC Rn	Increment register	0x08-0x0F 1								
INC direct	Increment direct byte	0x05	2 3							
INC @Ri	Increment indirect RAM	0x06-0x07	1	3						
DEC A	Decrement accumulator	0x14	1	1						
DEC Rn	Decrement register	0x18-0x1F	1	2						
DEC direct	Decrement direct byte	0x15	2	3						
DEC @Ri	Decrement indirect RAM	Decrement indirect RAM 0x16-0x17								
INC DPTR	Increment data pointer	0xA3	1	4						
MUL AB 8 X 8 16 X 8	Multiply A and B	1	11 20							
DIV AB 8 / 8 16 / 8	Divide A by B	Divide A by B 0x84								
DA A	Decimal adjust accumulator	0xD4	1	1						

Opcode	Description	Code	Byte	Cycle
ANL A, Rn	AND register to accumulator	0x58-0x5F	1	1
ANL A, direct	AND direct byte to accumulator	0x55	2	2
ANL A, @Ri	AND indirect RAM to accumulator	0x56-0x57	1	2
ANL A, #data	AND immediate data to accumulator	0x54	2	2
ANL direct, A	AND accumulator to direct byte	0x52	2	3
ANL direct, #data	AND immediate data to direct byte	0x53	3	3
ORL A, Rn	OR register to accumulator	0x48-0x4F	1	1
ORL A, direct	OR direct byte to accumulator	0x45	2	2
ORL A, @Ri	OR indirect RAM to accumulator	0x46-0x47	1	2
ORL A, #data	OR immediate data to accumulator	0x44	2	2
ORL direct, A	OR accumulator to direct byte	0x42	2	3
ORL direct, #data	OR immediate data to direct byte	0x43	3	3
XRL A, Rn	Exclusive OR register to accumulator	0x68-0x6F	1	1
XRL A, direct	Exclusive OR direct byte to accumulator	0x65	2	2
XRL A, @Ri	Exclusive OR indirect RAM to accumulator	0x66-0x67	1	2
XRL A, #data	Exclusive OR immediate data to accumulator	0x64	2	2
XRL direct, A	Exclusive OR accumulator to direct byte	0x62	2	3
XRL direct, #data	Exclusive OR immediate data to direct byte	0x63	3	3
CLR A	Clear accumulator	0xE4	1	1
CPL A	Complement accumulator	0xF4	1	1
RL A	Rotate accumulator left	0x23	1	1
RLC A	Rotate accumulator left through carry	0x33	1	1
RR A	Rotate accumulator right	0x03	1	1
RRC A	Rotate accumulator right through carry	0x13	1	1
SWAP A	Swap nibbles within the accumulator	0xC4	1	4

Opcode	Description	Code	Byte	Cycle	
MOV A, Rn	Move register to accumulator	0xE8-0xEF	1	1	
MOV A, direct	Move direct byte to accumulator	0xE5	2	2	
MOV A, @Ri	Move indirect RAM to accumulator	0xE6-0xE7	1	2	
MOV A, #data	Move immediate data to accumulator	0x74	2	2	
MOV Rn, A	Move accumulator to register	0xF8-0xFF	1	2	
MOV Rn, direct	Move direct byte to register	0xA8-0xAF	2	3	
MOV Rn, #data	Move immediate data to register	0x78-0x7F	2	2	
MOV direct, A	Move accumulator to direct byte	0xF5	2	2	
MOV direct, Rn	Move register to direct byte	0x88-0x8F	2	2	
MOV direct1, direct2	Move direct byte to direct byte	0x85	3	3	
MOV direct, @Ri	Move indirect RAM to direct byte	0x86-0x87	2	3	
MOV direct, #data	Move immediate data to direct byte	0x75	3	3	
MOV @Ri, A	Move accumulator to indirect RAM	0xF6-0xF7	1	2	
MOV @Ri, direct	Move direct byte to indirect RAM	0xA6-0xA7	2	3	
MOV @Ri, #data	Move immediate data to indirect RAM	Move immediate data to indirect RAM 0x76-0x77			
MOV DPTR, #data16	Load data pointer with a 16-bit constant	0x90	3	3	
MOVC A, @A+DPTR	Move code byte relative to DPTR to A	0x93	1	7	
MOVC A, @A+PC	Move code byte relative to PC to A	0x83	1	8	
MOVX A, @Ri	Move external RAM (8-bit address) to A	0xE2-0xE3	1	5	
MOVX A, @DPTR	Move external RAM (16-bit address) to A	0xE0	1	6	
MOVX @Ri, A	Move A to external RAM (8-bit address)	0xF2-F3	1	4	
MOVX @DPTR, A	Move A to external RAM (16-bit address)	0xF0	1	5	
PUSH direct	Push direct byte onto stack	0xC0	2	5	
POP direct	Pop direct byte from stack	0xD0	2	4	
XCH A, Rn	Exchange register with accumulator	0xC8-0xCF	1	3	
XCH A, direct	Exchange direct byte with accumulator	0xC5	2	4	
XCH A, @Ri	Exchange indirect RAM with accumulator	0xC6-0xC7	1	4	
XCHD A, @Ri	Exchange low-order nibble indirect RAM with A	0xD6-0xD7	1	4	

Opcod	e	Description	Code	Byte	Cycle
ACALL addr11		Absolute subroutine call	0x11-0xF1	2	7
LCALL addr16		Long subroutine call	0x12	3	7
RET		Return from subroutine	0x22	1	8
RETI		Return from interrupt	0x32	1	8
AJMP addr11		Absolute jump	0x01-0xE1	2	4
LJMP addr16		Long jump	0x02	3	5
SJMP rel		Short jump (relative address)	0x80	2	4
JMP @A+DPTR		Jump indirect relative to the DPTR	0x73	1	6
JZ rel	(not taken) (taken)	Jump if accumulator is zero	0x60	2	3 5
JNZ rel	(not taken) (taken)	Jump if accumulator is not zero	0x70	2	3 5
JC rel	(not taken) (taken)	Jump if carry flag is set	0x40	2	2 4
JNC rel	(not taken) (taken)	Jump if carry flag is not set	0x50	2	2 4
JB bit, rel	(not taken) (taken)	Jump if direct bit is set	0x20	3	4 6
JNB bit, rel	(not taken) (taken)	Jump if direct bit is not set	0x30	3	4 6
JBC bit, rel	(not taken) (taken)	Jump if direct bit is set and clear bit	0x10	3	4 6
CJNE A, direct, rel	(not taken) (taken)	Compare direct byte to A and jump if not equal	0xB5	3	4 6
CJNE A, #data, rel	(not taken) (taken)	Compare immediate to A and jump if not equal	0xB4	3	4 6
CJNE Rn, #data, rel	(not taken) (taken)	Compare immediate to reg. and jump if not equal	0xB8-0xBF	3	4 6
CJNE @Ri, #data, re	el (not taken) (taken)	Compare immediate to Ri and jump if not equal	0xB6-0xB7	3	4 6
DJNZ Rn, rel	(not taken) (taken)	Decrement register and jump if not zero	0xD8-0xDF	2	3 5
DJNZ direct, rel	(not taken) (taken)	Decrement direct byte and jump if not zero	0xD5	3	4 6
NOP		No operation	0	1	1

Opcode	Description	Code	Byte	Cycle			
CLR C	Clear carry flag	0xC3	1	1			
CLR bit	Clear direct bit	0xC2	2	3			
SETB C	Set carry flag	0xD3	1	1			
SETB bit	Set direct bit	0xD2	2	3			
CPL C	Complement carry flag	0xB3	1	1			
CPL bit	Complement direct bit	0xB2	2	3			
ANL C, bit	AND direct bit to carry flag	0x82	2	2			
ANL C, /bit	AND complement of direct bit to carry	0xB0	2	2			
ORL C, bit	OR direct bit to carry flag	0x72	2	2			
ORL C, /bit	OR complement of direct bit to carry	0xA0	2	2			
MOV C, bit	Move direct bit to carry flag	0xA2	2	2			
MOV bit, C	Move carry flag to direct bit 0x92 2						

10. Electrical Characteristics

Absolute Maximum Ratings*

DC Supply Voltage
Input/Output Voltage GND-0.3V to $V_{\text{DD}}\text{+}0.3V$
Operating Ambient Temperature40℃ to +85℃
Storage Temperature55°C to +125°C
FLASH write/erase operating 0°C to +85°C

*Comments

Stresses exceed those listed under "**Absolute Maximum Ratings**" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, unless otherwise specified)

Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Operating Voltage	V_{DD}	2.7	5.0	5.5	V	32.768 KHz \leq f _{OSC} \leq 27MHz
Operating Current	I _{OP}	-	7	13	mA	
Stand by Current	I _{SB1}	-	25	35	μΑ	$f_{OSC} = 32.768$ KHz, $V_{DD} = 5.0$ V All output pins unload (including all digital input pins unfloating), CPU off (IDLE), LVR on, WDT off, all other function block off
(IDLE)	I _{SB2}	-	- 5 7 mA All		mA	$f_{OSC} = 27$ MHz, $V_{DD} = 5.0$ V All output pins unload (including all digital input pins unfloating), CPU off (IDLE), LVR on, WDT off, all other function block off
Stand by Current (Power-Down)	I _{SB3}	-	-	13	μΑ	Osc off, $V_{DD} = 5.0V$ All output pins unload (including all digital input pins unfloating), CPU off (Power-Down), LVR on, WDT off, all other function block off
WDT Current	I _{WDT}	-	1	3	μA	All output pins unload, V_{DD} = 5.0V, WDT on
Input Low Voltage 1	V _{IL1}	GND	-	$0.3 \times V_{DD}$	V	I/O Ports, V _{DD} = 2.7 - 5.5V
Input High Voltage 1	V _{IH1}	$0.7 \text{ X V}_{\text{DD}}$	-	V _{DD}	V	I/O Ports, V _{DD} = 2.7 - 5.5V
Input Low Voltage 2	V _{IL2}	GND	-	0.2 X V _{DD}	V	$\overline{\text{RST}}$, T2, T3, INT0/1/2/4, T2EX, RXD, TXD, V _{DD} = 2.7 - 5.5V
Input High Voltage 2	V _{IH2}	0.8 X V _{DD}	-	V _{DD}	V	RST, T2, T3, T4, INT0/1/2/4, T2EX, RXD, TXD, V _{DD} = 2.7 - 5.5V
Input Leakage Current	IIL	-1	-	1	μA	Input pad, $V_{DD} = 5.0V$, $V_{IN} = V_{DD}$ or GND
Output Leakage Current	I _{OL}	-1	-	1	μA	Open-drain output, $V_{DD} = 5.0V$ $V_{OUT} = V_{DD}$ or GND
Rest pin Pull-high Resistor	R _{RPH}	-	30	-	kΩ	$V_{DD} = 5.0V, V_{IN} = GND$
Pull-high Resistor	R _{PH}	-	30	-	kΩ	V_{DD} = 5.0V, V_{IN} = GND

(to be continued)

(continue)

Output High Voltage1	V _{OH1}	V _{DD} - 3V	-	-	V	I/O Ports, I_{OH} = 40mA, V_{DD} = 5.0V (OP_SEG = 0) P0.0-P0.7, P2.0-P2.7, output ability normal mode
Output High Voltage2	V _{OH2}	V _{DD} - 3V			V	I/O Ports, I_{OH} = 14mA, V_{DD} = 5.0V (OP_SEG = 1) P0.0-P0.7, P2.0-P2.7, output ability 1/3 normal mode
Output Low Voltage 1	V _{OL1}	-	-	GND + 0.6	V	I/O Port (P0, P1, P2, P3), I _{OL} = 15mA, V _{DD} = 5.0V (OP_LEDCOM = 0)
large drive port sink current capability	I _{OL}	88	100	-	mA	COM Port (P1.0-P1.6), $V_{DD} = 5.0V$, $V_{OL} = GND + 0.3V$ Code_Option (OP_LEDCOM = 1) P1.0-P1.6 both Select large mode (Code Option)

Note:

(1) "*" Data in "Typ." Column is at 5.0V, 25°C, unless otherwise specified.
(2) Maximum value of the supply current to V_{DD} is 150mA.
(3) Maximum value of the output current from GND is 300mA.

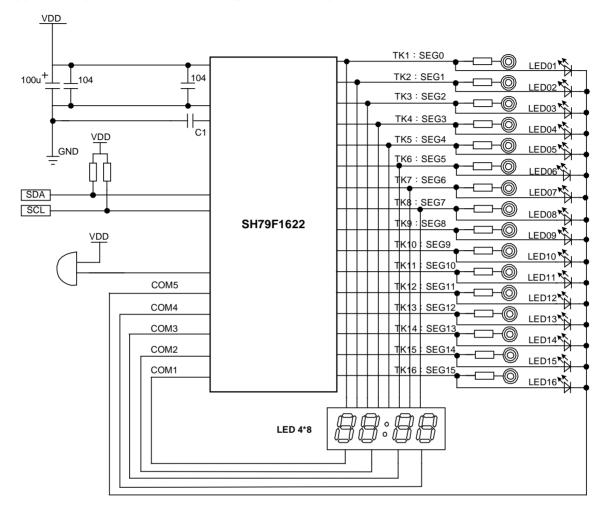
Touch Key Electrical Characteristics (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, unless otherwise specified)

Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Operating Voltage	V _{DD}	2.7	-	5.5	V	
Output Voltage1	V _{DDR1}	3.9	4	4.1	V	V _{DD} = 4.5 - 5.5V
Output Voltage 2	V_{DDR2}	2.9	3.0	3.1	V	$IV_{DDR2} = 0 - 20mA, V_{DD} = 3.5 - 5.5V$
Output Voltage 3	V _{DDR3}	2.4	2.5	2.6	V	$IV_{DDR3} = 0 - 20mA, V_{DD} = 3.0 - 5.5V$
Output Voltage 4	V_{DDR4}	1.9	2	2.1	V	$IV_{DDR4} = 0 - 20mA, V_{DD} = 2.7 - 5.5V$
Output Reference Voltage 1	V_{REF1}	0.9	1	1.1	V	V _{DD} = 2.7 - 5.5V
Output Reference Voltage 2	V_{REF2}	1.4	1.5	1.6	V	V _{DD} = 2.7 - 5.5V
Output Reference Voltage 3	V _{REF3}	1.9	2.0	2.1	V	V _{DD} = 2.7 - 5.5V
Output Reference Voltage 4	V_{REF4}	2.4	2.5	2.6	V	V _{DD} = 3.0 - 5.5V

AC Electrical Characteristics (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, f_{OSC} = 27MHz, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Oscillator start time	Tosc	-	-	1	S	$f_{OSC} = 32.768 \text{kHz}$
RESET pulse width	t _{RESET}	10	-	-	μS	
WDT RC Frequency	f_{WDT}	-	1	2	kHz	
Frequency Stability (RC)	Δ F//F1	-	-	±1	%	RC oscillator: F - 27MHz /27MHz (V_{DD} = 2.7- 5.5V, T_A = 25°C)
Frequency Stability (RC)	Δ F//F2	-	-	±2.5	%	RC oscillator: F - 27MHz /27MHz (V _{DD} = 2.7- 5.5V,T _A = -40°C - +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
LVR Voltage 1	V_{LVR1}	4.0	4.1	4.2	V	LVR enabled V _{DD} = 2.8V - 5.5V
LVR Voltage 2	V_{LVR2}	2.7	2.8	2.9	V	LVR enabled $V_{DD} = 2.0V - 5.5V$
LVR Voltage Detection Hysteresis Window	V _{SMTLV}	-	50	-	mv	
Drop-Down Pulse Width for LVR	T _{LVR}	-	60	-	μS	

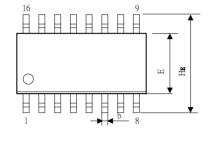

Low Voltage Reset Electrical Characteristics (V_{DD} = 2.7V - 5.5V, GND = 0V, T_A = +25°C, unless otherwise specified)

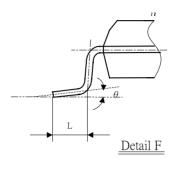
Analog Comparator Electrical Characteristics (V_{DD} = 2.7 - 5.5V, GND = 0V, T_A = +25°C, unless otherwise specified)

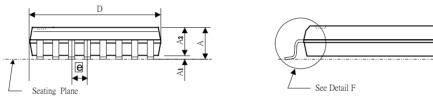
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Input Offset Voltage	V _{IO}	-	10	15	mV	$T_A = 25^{\circ}C$
Offset voltage of Input Voltage with temperature changes	V _{I1}	-	3	5	mV	T _A = -40°C~85°C
Input Common-Mode Voltage Range	VICM	0	-	V _{DD} -1V	V	
Response time	T _{res1}	-	3	4	μS	$V_{DD} = 5V, C1P = 2.5V, C1N = 0V$

11. Application (LED SHARE circuit, only for reference)

12. Ordering Information

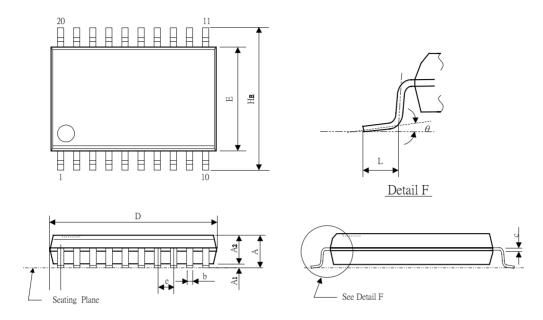

Part No.	Package
SH79F1622M/028MU	SOP28
SH79F1622M/020MU	SOP20
SH79F1622L/016LU	SOP16




13. Package Information

SOP 16L (150mil) Outline Dimensions

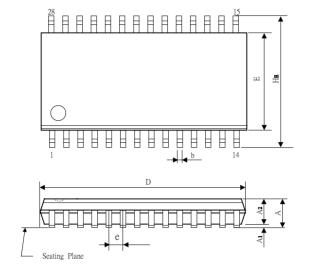
unit: inches/mm

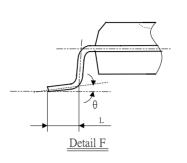


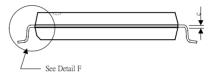
Symbol	Dimensions in inches		Dimensions in mm	
Symbol	Min	Max	Min	Max
А	0.053	0.071	1.35	1.8
A1	0.004	0.010	0.1	0.25
A2	0.049	0.061	1.25	1.55
b	0.013	0.020	0.33	0.51
С	0.008	0.014	0.2	0.35
D	0.386	0.402	9.8	10.2
E	0.150	0.157	3.8	4
е	0.050 (BSC)		1.27 ((BSC)
HE	0.228	0.248	5.8	6.3
L	0.016	0.050	0.4	1.27
θ	0°	8°	0°	8°

SOP 20L Outline Dimensions

unit: inches/mm




Symbol	Dimensions in inches		Dimensions in mm	
Symbol	Min	Max	Min	Мах
А	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
A2	0.083	0.098	2.10	2.50
b	0.013	0.020	0.33	0.51
С	0.008	0.013	0.20	0.33
D	0.493	0.516	12.52	13.10
E	0.291	0.299	7.40	7.60
е	0.050 (BSC)		1.27 (BSC)	
H _E	0.398	0.418	10.11	10.61
L	0.016	0.050	0.40	1.27
θ	0°	8°	0°	8°



SOP28L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches		Dimensions in mm	
Symbol	Min	Max	Min	Max
А	0.085	0.104	2.15	2.65
A1	0.004	0.012	0.10	0.30
A2	0.081	0.098	2.05	2.50
b	0.013	0.02	0.33	0.51
с	0.008	0.014	0.20	0.36
D	0.697	0.715	17.70	18.15
E	0.291	0.303	7.40	7.70
е	0.050 (BSC)		1.27 ((BSC)
HE	0.402	0.418	10.21	10.61
L	0.016	0.05	0.40	1.27
θ	0°	8°	0°	8°

14. Product SPEC. Change Notice

Version	Content	Date
2.2	Original	Sep. 2015

Content	
1. FEATURES	1
2. GENERAL DESCRIPTION	1
3. BLOCK DIAGRAM	
4. PIN CONFIGURATION	
5. PIN DESCRIPTION	
6. SFR MAPPING	
7. NORMAL FUNCTION	
7.1 CPU	
7.1.1 CPU Core SFR	
7.1.2 Enhanced CPU core SFRs	
7.1.3 Register	
7.2 RAM	
7.2.1 Features	
7.3 FLASH PROGRAM MEMORY	
7.3.1 Features	
7.3.2 Flash Operation in ICP Mode	
7.4 SSP Function	
7.4.1 SSP Register	
7.4.2 Flash Control Flow	
7.4.3 SSP Programming Notice	
7.4.4 Readable Random Code	
7.5 System Clock and Oscillator	
7.5.1 Features	
7.5.2 Clock Definition	
7.5.3 Description	
7.5.4 Register	
7.5.5 Oscillator Type	
7.5.6 Capacitor Selection for Oscillator	
7.6 I/O PORT	
7.6.1 Features	
7.6.2 Register	
7.6.3 Port Diagram	
7.6.4 Port Share	
7.7 TIMER	
7.7.1 Features	
7.7.2 Timer2	
7.7.3 Timer3	
7.7.4 Timer4	
7.8 Interrupt	
7.8.1 Features	
7.8.2 Interrupt Enable Control	
7.8.3 Registers	
7.8.4 Interrupt Flag	
7.8.5 Interrupt Vector	
7.8.6 Interrupt Priority	
7.8.7 Interrupt Handling	
7.8.8 Interrupt Response Time	
7.8.9 External Interrupt Inputs	
7.8.10 Interrupt Summary	
8. ENHANCED FUNCTION	
8.1 TOUCH KEY FUNCTION	
8.1.1 Register	
8.2 LED DRIVER	
8.2.1 Register	
8.2.2 Configuration of LED RAM	
8.3 TOUCH KEY FUNCTION AND LED SHARE FUNCTION	
8.3.1 Function Description	
8.3.2 SHARE Table of SEG Port	
8.4 EUART	
8.4.1 Features	
8.4.2 EUART Mode Description	
T T	

8.4.3 Baud Rate Generate	
8.4.4 Multi-Processor Communication	
8.4.5 Error Detection	
8.4.6 Register	
8.5 TWI	
8.5.1 Features	
8.5.2 Data Transformat	
8.5.3 Function Description	
8.5.4 Transmission Mode	
8.5.5 Register	
8.6 LOW VOLTAGE RESET (LVR)	
8.6.1 Features	
8.7 WATCHDOG TIMER (WDT) AND RESET STATE	
8.7.1 Features	
8.7.2 Register	
8.8 TONE	
8.9 Power Management	
8.9.1 Features	
8.9.2 Idle Mode	
8.9.3 Power-Down Mode	
8.9.4 Register	
8.10 WARM-UP TIMER	
8.10.1 Features	
8.11 CODE OPTION	
9. INSTRUCTION SET	
10. ELECTRICAL CHARACTERISTICS	114
11. APPLICATION (LED SHARE CIRCUIT, ONLY FOR REFERENCE)	
12. ORDERING INFORMATION	
13. PACKAGE INFORMATION	119
14. PRODUCT SPEC. CHANGE NOTICE	