SH7722

Renesas 32-Bit RISC Microcomputer SH7780 Series R8A7722

-Preliminary -

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

 (1) artificial life support devices or systems
 - (2) aurainal implantations
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
 - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions on Handling of Product

1. Treatment of NC Pins

Note: Do not connect anything to the NC pins.

The NC (not connected) pins are either not connected to any of the internal circuitry or are used as test pins or to reduce noise. If something is connected to the NC pins, the operation of the LSI is not guaranteed.

2. Treatment of Unused Input Pins

Note: Fix all unused input pins to high or low level.

Generally, the input pins of CMOS products are high-impedance input pins. If unused pins are in their open states, intermediate levels are induced by noise in the vicinity, a pass-through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied throughout the chip and a low level is input on the reset pin. During the period where the states are undefined, the register settings and the output state of each pin are also undefined. Design your system so that it does not malfunction because of processing while it is in this undefined state. For those products which have a reset function, reset the LSI immediately after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Note: Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test registers may have been be allocated to these addresses. Do not access these registers; the system's operation is not guaranteed if they are accessed.

5. Reading from/Writing Reserved Bit of Each Register

Note: Treat the reserved bit of register used in each module as follows except in cases where the specifications for values which are read from or written to the bit are provided in the description.

The bit is always read as 0. The write value should be 0 or one, which has been read immediately before writing.

Writing the value, which has been read immediately before writing has the advantage of preventing the bit from being affected on its extended function when the function is assigned.

Preface

This LSI is a RISC (Reduced Instruction Set Computer) microcomputer which includes a Renesas Technology-original RISC CPU as its core, and the peripheral functions required to configure a system. This LSI includes the SH4AL-DSP extended functions that have functional upward compatibility with the SH4AL-DSP.

Target Users: This manual was written for users who will be using this LSI in the design of

application systems. Users of this manual are expected to understand the fundamentals of electrical circuits, logical circuits, and microcomputers.

Objective: This manual was written to explain the hardware functions and electrical

characteristics of this LSI to the above users.

Note: This data sheet contains references to the SH7722 Hardware Manual. The contents of the

SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

Abbreviations

ALU Arithmetic Logic Unit

ASID Address Space Identifier

BSC Bus State Controller

CMT Compare Match Timer

CPG Clock Pulse Generator

CPU Central Processing Unit

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DSP Digital Signal Processor

ETU Elementary Time Unit

FIFO First-In First-Out

FLCTL Flash Memory Controller

H-UDI User Debugging Interface

IIC Inter IC Bus

INTC Interrupt Controller

JTAG Joint Test Action Group

KEYSC Key Scan Interface

LCDC LCD Controller

LRU Least Recently Used

LSB Least Significant Bit

MMC Multi Media Card

MMU Memory Management Unit

MSB Most Significant Bit

PC Program Counter

PFC Pin Function Controller

RISC Reduced Instruction Set Computer

RWDT RCLK Watchdog Timer

SBSC SDRAM Bus State Controller

SCIF Serial Communication Interface with FIFO

SIO Serial Interface

SIOF Serial Interface with FIFO

SIU Sound Interface Unit

TAP Test Access Port

TLB Translation Lookaside Buffer

TMU Timer Unit

UART Universal Asynchronous Receiver/Transmitter

UBC User Break Controller

VIO Video I/O

VOU Video Output Unit

VPU Video Processing Unit

All trademarks and registered trademarks are the property of their respective owners.

Content

Sect	tion 1 O	verview	1
1.1	Feature	es	1
1.2	Block Diagram		
1.3	Pin Ass	signments	
	1.3.1	BGA-449 Pin Assignments	15
	1.3.2	BGA-417 Pin Assignments	33
1.4	Pin Fu	nctions	51
Sect	tion 2 D	SP Unit	63
2.1	Overvi	ew	63
Sect	tion 3 M	lemory Management Unit (MMU)	67
3.1	Overvi	ew of MMU	68
	3.1.1	Address Spaces	70
Sect	tion 4 Ca	aches	77
4.1	Feature	es	77
Sect	tion 5 O	n-Chip Memory	81
5.1	Feature	es	81
Sect	tion 6 In	terrupt Controller (INTC)	85
6.1	Feature	es	85
6.2	Input/C	Output Pins	87
6.3	Interru	pt Sources	88
	6.3.1	NMI Interrupt	88
	6.3.2	IRQ Interrupts	88
	6.3.3	On-Chip Peripheral Module Interrupts	89
	6.3.4	Interrupt Exception Handling and Priority	90
6.4	Operation		93
	6.4.1	Interrupt Sequence	93
	6.4.2	Multiple Interrupts	96
	6.4.3	Interrupt Masking by MAI Bit	
	6.4.4	Interrupt Disabling Function in User Mode	97
6.5	Interru	pt Response Time	98

Secti	ion 7 Bı	us State Controller (BSC)	99
7.1		S	
7.2	Input/C	Output Pins	101
7.3	Area O	verview	103
	7.3.1	Area Division	103
Secti	ion 8 Bı	us State Controller for SDRAM (SBSC)	105
8.1	Feature	S	105
8.2	Input/C	Output Pins	107
8.3	Area O	verview	108
	8.3.1	Address Map	108
	8.3.2	Memory Bus Width	109
	8.3.3	Data Alignment	109
Secti	ion 9 Di	rect Memory Access Controller (DMAC)	111
9.1		·s	
9.2	Input/C	Output Pins	113
Secti	ion 10 C	Clock Pulse Generator (CPG)	115
10.1		es	
10.2		Diagram	
10.3		Output Pins	
Secti	ion 11 R	Reset and Power-Down Modes	119
11.1		es	
11.1	11.1.1	Division of Power-Supply Areas	
	11.1.1	Types of Resets and Power-Down Modes	
11.2		Output Pins	
11.2	Input/C	74tput 1 1115	121
Secti	ion 12 R	RCLK Watchdog Timer (RWDT)	123
12.1	Feature	S	123
12.2	Input/C	Output Pins for RWDT	124
Secti	ion 13 T	Cimer Unit (TMU)	125
13.1		ss	
Secti	ion 14 1	6-Bit Timer Pulse Unit (TPU)	127
14.1		es	
14.2		Diagram	
14.3		Output Pin	
	1	±	

Secti	on 15 Compare Match Timer (CMT)	131
15.1	Features	131
C4	16 9 - 16 9 - 1 1 10 (910)	122
	on 16 Serial I/O (SIO)	
16.1	Features	
16.2	Input/Output Pins	135
Secti	on 17 Serial I/O with FIFO (SIOF)	137
17.1	Features	
17.2	Input/Output Pins	139
Secti	on 18 Serial Communication Interface with FIFO (SCIF)	141
18.1	Features	
18.2	Input/Output Pins	
10.2	input Output I ins	
Secti	on 19 SIM Card Module (SIM)	145
19.1	Features	145
19.2	Input/Output Pins	147
Secti	on 20 IrDA Interface (IrDA)	149
20.1	Features	
20.2	Input/Output Pins	
Coot	ion 21 I ² C Bus Interface (IIC)	151
3ecu 21.1	` /	
	Features.	
21.2	Input/Output Pins	153
Secti	ion 22 AND/NAND Flash Memory Controller (FLCTL)	155
22.1	Features	
22.2	Input/Output Pins	160
Secti	on 23 Realtime Clock (RTC)	161
23.1	Features	
23.1	Input/Output Pin	
23.2	Input/Output 1 in	103
Secti	on 24 Video Processing Unit (VPU)	165
24.1	Features	
Secti	on 25 Video I/O (VIO)	171
25.1	Features	

25.2	Functional Overview of CEU	174
25.3	Pin Configuration of CEU	177
Secti	ion 26 JPEG Processing Unit (JPU)	179
26.1	Features	
Secti	ion 27 LCD Controller (LCDC)	181
27.1	Features	181
27.2	Input/Output Pins	
Secti	ion 28 Video Output Unit (VOU)	187
28.1	Features	
28.2	Pin Configuration	189
Secti	ion 29 TS Interface (TSIF)	191
29.1	Features	191
29.2	Input/Output Pins	193
Secti	ion 30 Sound Interface Unit (SIU)	195
30.1	Features	195
	30.1.1 RAM Overview	201
30.2	Input/Output Pins	202
Secti	ion 31 USB Function Module (USBF)	205
31.1	Features	
31.2	Input / Output Pins	
Secti	ion 32 Key Scan Interface (KEYSC)	209
32.1	Features	
32.2	Input/Output Pins	211
Secti	ion 33 2D Graphics Accelerator (2DG)	213
33.1	Features	
Secti	ion 34 Pin Function Controller (PFC)	215
34.1	Overview	
Secti	ion 35 I/O Ports	223
35.1	Port A	223
35.2		

35.3	Port C		224
35.4	Port D		225
35.5	Port E		225
35.6	Port F		226
35.7	Port G		227
35.8	Port H		227
35.9	Port J		228
35.10	Port K		228
35.11	Port L		229
35.12	Port M		229
35.13	Port N		230
35.14	Port Q		230
35.15	Port R		231
35.16	Port S		231
35.17	Port T		232
35.18	Port U		232
35.19	Port V		233
35.20	Port W		233
35.21	Port X		234
35.22	Port Y		234
35.23	Port Z		235
Section		ser Break Controller (UBC)	
36.1	Features		237
a .	05.11		220
		ser Debugging Interface (H-UDI)	
37.1			
37.2	Input/Ou	tput Pins	240
C = =4:	on 20 El	a atui a al Chaus ataui ati a a	242
		ectrical Characteristics	
38.1		Maximum Ratings	
38.2		ended Operating Conditions	
38.3		on and Power-Off Order	
38.4		racteristics	
38.5		racteristics	
	38.5.1	Clock Timing	
	38.5.2	Interrupt Signal Timing	
	38.5.3	BSC Bus Timing	
	38.5.4	SDRAM Timing (SDRAM Bus Timing)	
	38.5.5	I/O Port Signal Timing	291

	38.5.6	DMAC Module Signal Timing	292
	38.5.7	SIM Module Signal Timing	293
	38.5.8	TPU Module Signal Timing	
	38.5.9	SIO Module Signal Timing	294
	38.5.10	SIOF Module Signal Timing	297
	38.5.11	SCIF Module Signal Timing	301
	38.5.12	I ² C Module Signal Timing	303
	38.5.13	FLCTL Module Signal Timing	305
	38.5.14	VIO Module Signal Timing	313
	38.5.15	LCDC Module Signal Timing	314
	38.5.16	VOU Module Signal Timing	318
	38.5.17	TSIF Module Signal Timing	319
	38.5.18	SIU Module Signal Timing	320
	38.5.19	USB Transceiver Timing (Full-Speed)	321
	38.5.20	KEYSC Module Signal Timing	322
	38.5.21	AC Characteristic Test Conditions	323
Apr	endix		325
A.		es in Reset and Power-Down States	
В.		Dimensions	
	C		

Section 1 Overview

The SH7722 is a system LSI that incorporates an SH4AL-DSP microcontroller with a clock speed of up to 333 MHz as its core, together with a variety of functions required for multimedia applications. These include MPEG4 and H.264 accelerators, a 2D graphics accelerator, LCD controller, camera interface, and sound input/output module.

The SH4AL-DSP microcontroller is a 32-bit RISC-type SuperH architecture CPU with a DSP extension function, and is a new generation CPU core which is upward compatible with SH-1, SH2, and SH3-DSP at the instruction set level. Super scalar design in which two instructions are executed simultaneously allows high-speed processing. In addition, the strong power-management functions keep both operating current and standby current low.

This LSI is ideal for use in multimedia devices that require both high-performance operation and low power consumption.

1.1 Features

The features of this LSI are listed in table 1.1.

Table 1.1 Features of This LSI

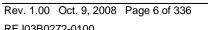
Item

Features

CPU

- · Renesas Technology original architecture
- Upward compatible with SH-1, SH-2, SH-3, and SH3-DSP at instruction set level
- 32-bit internal data bus
- General-register files
 - Sixteen 32-bit general registers (eight 32-bit shadow registers)
 - Seven 32-bit control registers
 - Four 32-bit system registers
- RISC-type instruction set (upward compatible with SH-1, SH-2, SH-3, and SH3-DSP)
 - Instruction length: 16-bit fixed length for improved code efficiency
 - Load/store architecture
 - Delayed branch instructions
 - Instructions executed with conditions
 - Instruction set based on the C language
- Super scalar design which executes two instructions simultaneously
- Instruction execution time: Two instructions per cycle (max.)
- Virtual address space: 4 Gbytes
- Space identifier ASID: 8 bits, 256 virtual address spaces
- On-chip multiplier
- Eight-stage pipeline

Item	Features
DSP	Mixture of 16-bit and 32-bit instructions
	32-/40-bit internal data bus
	Multiplier, ALU, and barrel shifter
	32-bit multiplier for 16-bit x 16-bit operations
	Large-capacity DSP data register files
	Six 32-bit data registers
	— Two 40-bit data registers
	Extended Harvard architecture for DSP data bus
	— Two data buses
	— One instruction bus
	 Maximum of four parallel operations: ALU, multiplication, two load/store operations
	 Two addressing units to generate addresses for two memory access DSP data addressing modes:
	Increment and indexing (with or without modulo addressing) Total purposed repost loop control.
	Zero-overhead repeat loop controlConditional execution instructions
	User DSP mode and privileged DSP mode
Memory	4-Gbyte address space, 256 address spaces (8-bit ASID)
management unit	
(MMU)	Supports multiple page sizes: 1 Kbyte, 4 Kbytes, 64 Kbytes, or 1 Mbyte
	4-entry full associative TLB for instructions
	64-entry full associative TLB for instructions and operands
	Specifies replacement way by software and supports random replacement
	algorithm
	Address mapping allows direct access to TLB contents
	Note: This LSI does not support the 32-bit address extended mode or the 32-bit boot function.
Cache memory	Instruction cache (IC)
	— 32-kbyte, 4-way set associative
	— 32-byte block length
	Operand cache (OC)
	 32-kbyte, 4-way set associative
	— 32-byte block length
•	Selectable write mode (copy-back or write-through)


Item	Features
X/Y memory	Three independent read/write ports
	— 8-/16-/32-bit access from CPU
	Maximum of two 16-bit accesses from DSP
	 8-/16-/32-/64-bit or 16-/32-byte access by SuperHyway bus master
	Total of 16 kbytes
	Memory protective functions specialized for DSP access in addition to
	memory protective functions for CPU access
U memory	Two independent read/write ports
	8-/16-/32-bit access from CPU
	 8-/16-/32-/64-bit or 16-/32-byte access by SuperHyway bus master
	Large 128-kbyte memory
IL memory	Three independent read/write ports
(ILRAM)	 Instruction fetch access from CPU using virtual address
	 Instruction fetch access from CPU using physical address and 8-/16-/32-
	bit operand access from CPU
	 8-/16-/32-/64-bit or 16-/32-byte access by SuperHyway bus master
	Total of 4 kbytes
Interrupt	 Nine external interrupt pins (NMI, IRQ7 to IRQ0)
controller (INTC)	NMI: Fall/rise selectable
	 IRQ: Fall/rise/high level/low level selectable
	On-chip peripheral interrupts: Priority can be specified for each module
Bus state	Supports SRAM, burst ROM, and PCMCIA interfaces.
controller (BSC)	Physical address space is provided to support six areas in total: two areas
	(areas 0 and 4) of up to 64 Mbytes each and four areas (areas 5A, 5B, 6A,
	and 6B) of up to 32 Mbytes each.
	The following settings can be individually made for each area.
	Memory type: SRAM, NOR-Flash, burst ROM, PCMCIA
	— Data bus width: Selectable from 16 bits and 32 bits (16 bits when the
	selected data bus width for the SBSC is 64 bits.)
	Number of wait cycles

Item	Features
Bus state	3.3 V SDR-SDRAM can be directly connected
controller for SDRAM (SBSC)	 Physical address space is provided to support two areas (areas 2 and 3) of up to 64 Mbytes
	Up to 128 Mbytes of SDRAM can be connected
	 Data bus width: Selectable from 16 bits, 32 bits, and 64 bits (only 16 bits or 32 bits can be selected when the selected data bus width for the BSC is 32 bits.)
	Supports auto-refresh and self-refresh
	Auto-precharge mode or bank active mode can be selected
Direct memory access controller	Number of channels: Six channels. One of these channels (channel 0) can receive an external request
(DMAC)	Address space: 4 Gbytes on architecture
	• Data transfer length: Bytes, words (2 bytes), longwords (4 bytes), 16 bytes, and 32 bytes
	Maximum transfer count: 16,777,216 transfers
	Address mode: Dual address mode
	 Transfer request: Selectable from three types of external request, on-chip peripheral module request, and auto request
	Bus mode: Selectable from cycle steal mode (normal mode and intermittent mode) and burst mode
	Priority: Selectable from fixed channel priority mode and round-robin mode
	 Interrupt request: Supports interrupt request to CPU at the end of data transfer
	 Repeat function: Automatically resets the transfer source, destination, and count at the end of DMA transfer
	Reload function: Automatically resets the transfer source and destination at the end of the specified number of DMA transfers

Item	Features
Clock pulse	Clock mode: Input clock selectable from external inputs (EXTAL and RCLK)
generator (CPG)	Generates six types of system clocks
	— CPU clock (Iφ): Maximum 333.4 MHz (VDD = 1.25 to 1.35 V)
	— SH clock (SHφ): Maximum 133.4 MHz
	 U memory clock (Uφ): Maximum 133.4 MHz
	— SDRAM clock (B3φ): Maximum 133.4 MHz
	— Bus clock (Bφ): Maximum 66.7 MHz
	 Peripheral clock (Pφ): Maximum 33.4 MHz
	Supports power-down mode
	 Module standby function (stops clocks for individual modules.)
	 Sleep mode (stops clocks for the CPU core.)
	 Software standby mode (stops clocks in the LSI except the I/O area and the RCLK operation area.)
	 U-standby mode (turns off the power in the LSI except the I/O area and
	the RCLK operation area.)
Timer unit (TMU)	Internal three-channel 32-bit timer
	Auto-reload type 32-bit down counter
	 Internal prescaler for Pφ
	Interrupt request
Compare match	32-bit timer of one channel (16 bits/32 bits can be selected)
timer (CMT)	Source clock: RCLK
	Compare match function provided
	Interrupt requests
R watchdog timer	One-channel watchdog timer operating at RCLK
(RWDT)	Operational in power-down modes
	Generates a system reset when a counter overflow occurs
Realtime clock	Operates at RCLK and includes clock and calendar functions
(RTC)	Generates alarm interrupt and periodic interrupt
Timer pulse unit	Four pulse outputs possible
(TPU)	Maximum of 4-phase PWM output possible

Item	Features	
Serial I/O (SIO)	One channel	
	 Clocked synchronous mode (clock/data/strobe x 2) 	
	Data length programmable	
	 Programmable processing of clock polarity and data values in idle state (such as low level or high impedance) 	
	Eight-bit fixed-length address, programmable data length	
	Strobe position programmable, level/edge-ready	
	MSB/LSB changeable	
	 Internal prescaler for Pφ 	
	Interrupt request	
Serial I/O with	Two channels	
FIFO (SIOF)	Internal 64-byte transmit/receive FIFOs	
	Supports 8-/16-bit data and 16-bit stereo audio input/output	
	• Sampling rate clock input selectable from $P\phi$ and external pin	
	 Internal prescaler for Pφ 	
	Interrupt request and DMAC request	
	SPI mode	
	 Provides continuous full-duplex communication with SPI slave device in fixed master mode 	
	 Serial clock (SCK) rise or fall edge selectable for data sampling timing 	
	 SCK clock phase selectable for transmit timing 	
	— Three slave devices selectable	
	 Transmit/receive data length fixed to 8 bits 	
Serial	Three channels	
communication interface with	Internal 16-byte transmit/receive FIFOs	
FIFO (SCIF)	High-speed UART for Bluetooth	
	 Internal prescaler for Pφ 	
	 Interrupt request and DMAC request 	
	Both asynchronous and clock synchronous serial communications possible	

Item	Features
SIM card	 One channel. Conforms to the ISO 7816-3 data protocol. (T = 0, T = 1)
interface (SIM)	Asynchronous half-duplex character transmission protocol
	Data length: 8 bits
	Parity bit generation and check
	Selectable output clock cycles per etu (elementary time unit)
	Selectable direct convention/inverse convention
	On-chip prescaler
	Switchable clock polarity (high or low) in idle state
	Interrupt request and DMAC request
IrDA interface	Conforms to version 1.2a
(IrDA)	CRC calculation function
I ² C bus interface	Supports single master transmission/reception
(IIC)	 Supports standard mode (100 kHz) and high-speed mode (400 kHz)
AND/NAND flash	Directly connected memory interface with AND-/NAND-type flash memory
memory controller	Read/write in sectors
(FLCTL)	 Two types of transfer modes: Command access mode and sector access mode (512-byte data + 16-byte management code: with 4-bit ECC)
	 Interrupt request and DMAC transfer request
	Supports up to 4-Gbit of flash memory
Video processing	MPEG-4 single video object plane (VOP) encoding and decoding
unit (VPU)	Applicable standard: MPEG-4 Simple Profile, MPEG-4 H.264 (Baseline)*
	Image size: Sub-QCIF to VGA
	Bit rate: Maximum 8 Mbps
	Motion detection: Layer tracking (Renesas Technology original method)
	Rate control: Control with quantizing amount predicted (Renesas
	Technology original method), both VOP and MB supported
	 Interrupt request and no DMAC request (bus master function supported)
	Note: Some of Baseline tools are not supported.

ltem

Features

Video I/O (VIO)

A module that provides the interface with camera module and image processing

- CEU block (image capturing from camera module)
 - Camera module interface:

Data (8 bits: YCbCr 4:2:2), horizontal sync signal (HD), vertical sync signal (VD)

- Size of captured image: 5M pixels, 3M pixels, 2M pixels, UXGA, SXGA, XGA, SVGA, VGA, CIF, QVGA, QCIF, QQVGA, Sub-QCIF, etc.
- Output image format: YCbCr (4:2:2/4:2:0)
- Image format conversion function:

Reduced image generating prefilter function

YCbCr 4:2:2 → YCbCr 4:2:2, YCbCr 4:2:0

YCbCr format (Y: 8 bits and CbCr: 16 bits)

- VEU block (image processing in memory)
 - A. Video image processing function

Input image format: YCbCr image (Y/CbCr plane image), RGB image (RGB pack image)

Output image format: YCbCr image (Y/CbCr plane image), RGB image (RGB pack image)

Image processing function:

Scaling image generating filter function

YCbCr → RGB/RGB → YCbCr conversion function

Dithering function (in RGB color subtraction)

B. Filter processing function

Mirroring, vertical inversion, point symmetry, ± 90 -degree image conversion functions

Deblocking filter

Median filter

- C. Video image processing and filter processing combined operation
- BEU block (image blending)
 - A. PinP function

Input image format: YCbCr image (Y/CbCr plane image), RGB image (RGB pack image)

Output image format: YCbCr image (Y/CbCr plane image), RGB image (RGB pack image)

B. Graphic processing function

Input graphic format: YCbCr/RGB image

Output graphic format: YCbCr/RGB image

C. PinP and graphic combined operation

Two PinP planes and one graphic plane can be blended simultaneously

- D. Results of processing are written back to memory
- Strobe control function (manual mode/auto mode)
- Frame drop function (1/2, 1/3, 1/4, 1/5, or 1/6 drop)
- Interrupt request is supported but DMAC request is not supported (with bus master function)

Item	Features
JPEG processing	Conforming specification: JPEG baseline
unit (JPU)	Operating precision: Conforming to JPEG Part 2 and ISO-IEC10918-2
	Color format: YCbCr 4:2:2/YCbCr 4:2:0
	Quantization tables: Four tables
	Huffman tables: Four tables (two AC tables and two DC tables)
	 Target markers: Start of image (SOI), start of frame type 0 (SOF0), start of scan (SOS), define quantization tables (DQT), define Huffman tables (DHT), define restart interval (DRI), restart (RSTm), and end of image (EOI)
	Interrupt request and no DMAC request (bus master function supported)
LCD controller	Supported LCD panel: TFT color LCD
(LCDC)	 Input data format: 8, 12, 16, 18, or 24 bpp
	LCD driver interface
	 Specialized LCD bus, independent of memory bus
	 RGB interface or 80-series CPU bus interface selectable
	— Bus width: 8, 9, 12, 16, 18, or 24 bits
	 One-pixel one-time, two-time, or three-time transfer mode selectable
	 Signal polarity and SYNC output timing and width programmable in RGB interface
	 Access cycle programmable in 80-series CPU bus interface
	 Dot clock: Bus clock, peripheral clock, or external clock selectable as the source clock
	 Display data fetch: Continuous mode (according to the refresh rate of the LCD panel) and one-shot mode (according to the frame rate of the movie) are supported. Image data can be fetched only for updated sections.
	Writing back the display data on the sub-LCD panel is supported.
	256-entry, 24-bit-input/output built-in color palette
	An interrupt can be generated at the frame and the user-specified line
	Interrupt request and no DMAC request (bus master function supported)
Video output unit	Output format: 16-bit interface with 8-bit Y and 8-bit C
(VOU)	Pixel frequency: 13.5 MHz, 27 MHz

- Partial image display: Any background color (specified through the register)
 + display image
- Supported image size: Sub-QCIF, QVGA, VGA, etc.
- Interrupt request and no DMAC request (bus master function supported)

Item	Features
TS interface	Serial TS data input
(TSIF)	 Filters 38 kinds of PIDs in total (The PID values of PAT and CAT packets are fixed. For PCR, video, and audio packets, the PID values are predefined.)
	Interrupt request and DMAC request
Sound interface	Internal two channels
unit (SIUA/SIUB)	16-bit stereo
	Supports PCM and I2S formats
	IEC60958 (SPDIF) supports stereo consumer mode
	Two sound output systems and two sound input systems
	DSP functions (FIR filter, IIR filter, equalizer, etc.)
	Serial I/O can be directly connected to external A/D or D/A converter.
	Internal prescaler
	Supports slave mode
	Interrupt request and DMA transfer request
USB function module (USBF)	Supports USB 2.0 high-speed mode (480 Mbps) and full-speed mode (12 Mbps)
	Internal USB transceivers
	• Eight endpoints are supported in total. The endpoint number is switchable.
	 Provides Control (endpoint 0), Bulk-transfer (five endpoints in total), Interrupt (two endpoints in total), and Isochronous (two endpoints in total)
	 Supports USB standard commands. The class/vendor commands are processed by firmware.
	FIFO buffers for endpoints (Bulk and Isochronous)
	Module input clock: 48 MHz
	Interrupt request and DMAC request
Key scan	Key scan: Chattering elimination in key input interrupt detection is possible
interface	Input or output bit numbers can be set to be programmable
(KEYSC)	(5 inputs/6 outputs, 6 inputs/5 outputs, 7 inputs/4 outputs.)
	Canceling software standby and U-standby modes by a key input
SD card host	SD memory/SDIO interface supported
interface (SDHI)	Maximum operating frequency: 25 MHz
	Card detection function
	Interrupt request and DMA transfer request

Features

2D graphics accelerator (2DG)

- BitBLT function
- Supports the quadrangle drawing function and associated drawing modes
- Figure drawing functions
 - Drawing rectangles and quadrangles

Filling with a single color or gradations between colors

Texture mapping

(Methods of mapping: Magnification, minification, and repetition)

(Filtering: Nearest neighbor interpolation, bilinear interpolation, and average pixel methods)

Coordinate transformation

Flipping graphics

Drawing horizontal straight lines

Drawing with a single color or gradations between colors

Texture mapping

(Methods of mapping: Magnification, minification, and repetition)

(Filtering: Nearest neighbor interpolation, bilinear interpolation, and average pixel methods)

- Pixel processing functions
 - Scissor testing, alpha blending, shadowing, raster operation (ROP), and color conversion
 - Color key and writing-mask control
- Interrupt request and no DMAC request (bus master function supported)

Item	Features
I/O port	I/O port is switchable for each bit
User break	Debugging with user break interrupts supported
controller (UBC)	Two break channels
	 All of address, data value, access type, and data size can be set as break conditions
	Supports sequential break function
User debugging	Supports E10A emulator
interface (H-UDI)	Realtime branch trace
Package	PRBG0449GA-A, 449-pin BGA package: 21 mm × 21 mm, 0.8 mm-pitch
	417-pin LFBFA package: 13 mm × 13 mm, 0.5 mm-pitch
Power-supply	• I/O: 3.0 to 3.6 V
voltage	 Internal: 1.15 to 1.35 V
Process	90-nm CMOS, 7 metal layers

1.2 Block Diagram

Figure 1.1 shows a block diagram of this LSI.

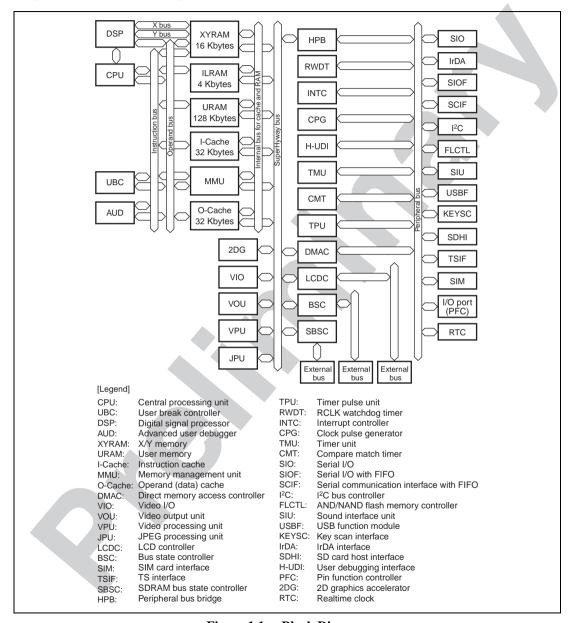


Figure 1.1 Block Diagram

1.3 Pin Assignments

1.3.1 BGA-449 Pin Assignments

Figure 1.2 and table 1.2 show the pin assignments of BGA-449.

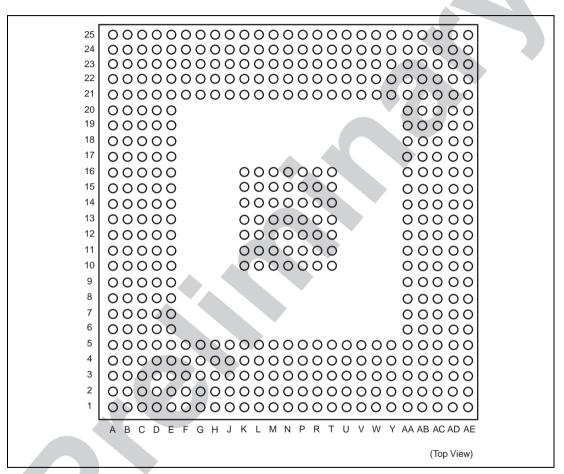


Figure 1.2 Pin Assignments (BGA-449)

Table 1.2 Pin Assignments (BGA449)

Pin No.	Pin Name	Description	Treatment of Unused Pin
A1	AV33	3.3 V power supply for USB reference power supply circuit	Always used
A2	V _{SS}	Ground	Always used
A3	XTAL	Clock output	Open
A4	EXTAL	External clock input	Pulled down
A5	PTG3/AUDATA3	Port/AUD data output	Open
A6	AUDCK	AUD clock	Open
A7	TCK	H-UDI test clock input	Open
A8	PTJ6	Port	Open
A9	RCLK	32.768 kHz clock input	Always used
A10	TSTMD	Test mode setting	Pulled up
A11	MD0	Mode setting pin	Always used
A12	PTS1/SCIF0_RXD	Port/SCIF receive data	Open
A13	PTK4/SIUAOLR/SIOF1_SYNC	Port/SIU port A sound output L-R clock/SIOF1 frame signal	Open
A14	PTK1/SIUAOSLD/SIOF1_TXD	Port/SIU port A sound output serial data/SIOF1 output data	Open
A15	PTK0/SIUMCKA/SIUFCKA/ SIOF1_MCK	Port/SIU port A master clock input/SIU port A sampling clock output/SIOF1 master clock input	Open
A16	PTQ4/SIOF0_SYNC/ TS_SDEN	Port/SIOF frame signal/ TS serial data enable	Open
A17	PTF6/SIUMCKB/SIUFCKB/ SIOMCK	Port/SIU port B master clock input/SIU port B sampling clock output/SIO master clock	Open
A18	PTF2/SIUBILR/SIOD	Port/SIU port B sound input L-R clock/SIO Transmit/receive data	Open
A19	PTD5/SDHID3	Port/SD data bus	Pulled up
A20	PTD1/SDHICMD	Port/SD command	Open
A21	PTR3/CS6B/CE1B/LCDCS2	Port/chip select/LCD chip select 2	Open
A22	PTH6/LCDVSYN2/DACK0	Port/LCD vertical sync signal/DMA transfer request acknowledge	Open

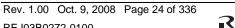
Pin No.	Pin Name	Description	Treatment of Unused Pin
A23	V _{DD} _PLL	PLL power supply	Always used
A24	V _{ss} _PLL	PLL ground	Always used
A25	V _{ss}	Ground	Always used
B1	AV12	1.2 V power supply for USB-PLL	Always used
B2	V _{ss}	Ground	Always used
B3	PTZ1/KEYIN0/IRQ6	Port/key input/interrupt request	Open
B4	PTJ0/IRQ0	Port/interrupt request	Open
B5	PTG4/AUDSYNC	Port/AUD sync signal	Open
B6	PTG0/AUDATA0	Port/AUD data output	Open
B7	TDI	H-UDI test data input	Open
B8	PDSTATUS/PTJ5	Power-down status output/port	Open
B9	RESETP	Power-on reset	Always used
B10	MD8	Mode setting pin	Pulled up or Pulled down
B11	MD1	Mode setting pin	Always used
B12	PTS2/SCIF0_SCK/TPUTO	Port/SCIF serial clock/TPU output	Open
B13	PTK5/SIUAIBT/SIOF1_SS1	Port/SIU port A sound input bit clock/SPI slave device select	Open
B14	PTK3/SIUAOBT/SIOF1_SCK	Port/SIU port A sound output bit clock/SIOF1 serial clock	Open
B15	PTQ6/SIOF0_SS2/SIM_RST	Port/SIOF0 slave device select/SIM reset	Open
B16	PTQ1/SIOF0_TXD/SIM_CLK/ IrDA_OUT	Port/SIOF0 transmit data/SIM clock/IrDA transmit data output	Open
B17	PTF4/SIUBOLR/SIOSTRB1	Port/SIU port B sound output L-R clock/SIO serial strobe	Open
B18	PTF1/SIUBISLD/SIORXD	Port/SIU port B sound input serial data/SIO input data	Open
B19	PTD6/SDHIWP	Port/SD write protect	Pulled up
B20	PTD2/SDHID0	Port/SD data bus	Pulled up
B21	WAIT/PTR2	WAIT/port	Pulled up
B22	PTH5/LCDVSYN	Port/LCD vertical sync signal	Open
B23	V _{ss}	Ground	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
B24	V _{ss}	Ground	Always used
B25	V _{ss} _DLL	DLL ground	Always used
C1	DM	USB DM pin	Open
C2	V _{SS}	Ground	Always used
C3	PTZ2/KEYIN1	Port/key input	Open
C4	PTJ1/IRQ1	Port/interrupt request	Open
C5	MPMD	E10 ASE mode set input	Open
C6	PTG2/AUDATA2	Port/AUD data output	Open
C7	TRST	H-UDI test reset input	Always used
C8	TST	Test pin (fix to V _{cc} Q)	Pulled up
C9	PTJ7/STATUS0	Port/status output	Open
C10	RESETA	System reset input	Pulled up
C11	MD2	Mode setting pin	Always used
C12	PTS4/SCIF0_CTS/SIUAISPD	Port/SCIF CTS input/SPDIF input serial data	Open
C13	PTS0/SCIF0_TXD	Port/SCIF transmit data	Open
C14	PTK2/SIUAISLD/SIOF1_RXD	Port/SIU port A sound input serial data/SIOF1 input data	Open
C15	PTQ5/SIOF0_SS1/TS_SPSYN C	Port/SPI slave device select/ TS serial data sync signal	Open
C16	PTQ0/SIOF0_MCK/IRQ3/SIM_ D	Port/SIOF0 master clock input/ interrupt request/SIM data	Open
C17	PTF3/SIUBIBT/SIOSTRB0	Port/SIU port B sound input bit clock/SIO serial strobe	Open
C18	PTD4/SDHID2/ IRQ2	Port/SD data bus/interrupt request	Pulled up
C19	PTD0/SDHICLK	Port/SD clock	Open
C20	PTD3/SDHID1	Port/SD data bus	Pulled up
C21	PTR0/LCDVEPWC/LCDVEPW C2	Port/LCD power supply control/ LCD power supply control	Open
C22	PTH4/LCDDISP/LCDRS	Port/LCD display enable signal/ LCD register select	Open
C23	PTH2/LCDDON/LCDDON2	Port/LCD display ON-OFF signal/LCD display ON-OFF signal	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
C24	PTX5/LCDD23	Port/LCD data bus	Open
C25	V _{DD} _DLL	DLL power supply	Always used
D1	DP	USB DP pin	Open
D2	DG12	1.2 V power supply ground for USB driver/receiver	Always used
D3	DG33	3.3 V power supply ground for USB driver/receiver	Always used
D4	V _{ss}	Ground	Always used
D5	NMI	Nonmaskable interrupt	Pulled up
D6	ASEBRK/BRKAK	E10A emulator brake input/acknowledge	Open
D7	PTG1/AUDATA1	Port/AUD data output	Open
D8	TDO	H-UDI test data output	Open
D9	TMS	H-UDI test mode select input	Open
D10	RESETOUT	Reset output	Open
D11	MD5	Mode setting pin	Always used
D12	PTS3/SCIF0_RTS/SIUAOSPD	Port/SCIF RTS output/SPDIF output serial data	Open
D13	PTK6/SIUAILR/SIOF1_SS2	Port/SIU port A sound input L-R clock/SPI slave device select	Open
D14	PTQ3/SIOF0_SCK/TS_SCK	Port/SIOF0 serial clock/ TS serial clock	Open
D15	PTQ2/SIOF0_RXD/TS_SDAT/ IrDA_IN	Port/SIOF0 receive data/TS serial data input/IrDA receive data input	Open
D16	PTF5/SIUBOBT/SIOSCK	Port/SIU port B sound output bit clock/SIO serial clock	Open
D17	PTF0/SIUBOSLD/SIOTXD	Port/SIU port B sound output serial data/SIO output data	Open
D18	PTD7/SDHICD	Port/SD card detection	Pulled up
D19	PTR1/LCDDCK/LCDWR	Port/LCD dot clock signal/write strobe	Open
D20	PTR4/LCDRD	Port/read strobe	Open
D21	PTH7/LCDVCPWC/ LCDVCPWC2	Port/LCD power supply control/ LCD power supply control	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
D22	PTH3/LCDHSYN/LCDCS	Port/LCD horizontal sync signal/ LCD chip select	Open
D23	PTX4/LCDD22	Port/LCD data bus	Open
D24	PTX2/LCDD20	Port/LCD data bus	Open
D25	PTX0/LCDD18/DV_CLK	Port/LCD data bus/pixel clock output	Open
E1	REFRIN	External resistor pin for USB constant current circuit	Pulled down
E2	DG12	1.2 V power supply ground for USB driver/receiver	Always used
E3	DG33	3.3 V power supply ground for USB driver/receiver	Always used
E4	DV33	3.3 V power supply for USB driver/receiver (3.3 V)	Always used
E5	V _{SS}	Ground	Always used
E6	V _{ss}	Ground	Always used
E7	V _{ss}	Ground	Always used
E8	V _{cc} Q	I/O power supply (3.3 V)	Always used
E9	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E10	V _{cc} Q	I/O power supply (3.3 V)	Always used
E11	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E12	V _{ss}	Ground	Always used
E13	V _{ss}	Ground	Always used
E14	V _{ss}	Ground	Always used
E15	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E16	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E17	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E18	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
E19	V _{ss}	Ground	Always used
E20	V _{ss}	Ground	Always used
E21	V _{ss}	Ground	Always used
E22	PTX1/LCDD19/DV_CLKI	Port/LCD data bus/video clock input	Open
E23	PTH1/LCDD17/DV_HSYNC	Port/LCD data bus/ VOU horizontal sync signal	Open

E24 PTH0/LCDD16/DV_VSYNC Port/LCD data bus/ VOU vertical sync signal E25 PTL6/LCDD14/DV_D14 Port/LCD data bus/pixel data Open F1 AG33 3.3 V power supply ground for USB reference power supply circuit F2 AG12 1.2 V power supply ground for USB-PLL F3 UG12 1.2 V power supply ground for USB-PLL F4 VBUS USB VBUS pin Pulled down F5 DV33 3.3 V power supply for USB Always used driver/receiver (3.3 V) F21 V _{ss} Ground Always used driver/receiver (3.3 V) F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB driver/receiver (1.2 V) G3 V _{ss} Ground Always used driver/receiver (1.2 V) G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G6 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G7 DY1/LCD data bus/pixel data Open G2 PTX3/LCDD21 Port/LCD data bus/pixel data Open G3 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G4 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G5 PTM6/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G6 PTM6/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G7 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G7 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G9 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G9 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G9 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open	Pin No.	Pin Name	Description	Treatment of Unused Pin
F1 AG33 3.3 V power supply ground for USB reference power supply circuit F2 AG12 1.2 V power supply ground for USB-Always used PLL F3 UG12 1.2 V power supply ground for USB-Always used UTM480 F4 VBUS F5 DV33 3.3 V power supply for USB Always used driver/receiver (3.3 V) F5 DV33 3.3 V power supply for USB Always used driver/receiver (3.3 V) F61 V _{ss} Ground Always used Always used driver/receiver (3.3 V) F72 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F73 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F74 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F75 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G6 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G61 G71 PTL3/LCDD21 Port/LCD data bus Open G72 PTX3/LCDD21 Port/LCD data bus Open G73 PTL1/LCDD9/DV_D9 Port/LCD data bus Open G74 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G75 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open G76 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open G77 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open G78 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open G79 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open O	E24	PTH0/LCDD16/DV_VSYNC		Open
reference power supply circuit F2 AG12 1.2 V power supply ground for USB- Always used PLL. F3 UG12 1.2 V power supply ground for USB- Always used UTM480 F4 VBUS USB VBUS pin Pulled down F5 DV33 3.3 V power supply for USB Always used driver/receiver (3.3 V) F21 V _{ss} Ground Always used F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G6 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G62 PTX3/LCDD21 Port/LCD data bus Open G92 PTM6/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G92 PTM6/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G95 PTM6/LCDD8/DV_D8 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	E25	PTL6/LCDD14/DV_D14	Port/LCD data bus/pixel data	Open
PLL	F1	AG33		Always used
F4 VBUS USB VBUS pin Pulled down F5 DV33 3.3 V power supply for USB driver/receiver (3.3 V) F21 V _{ss} Ground Always used F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G6 DV12 1.2 V power supply for USB Always used G22 PTX3/LCDD21 Port/LCD data bus/pixel data Open G33 PTL1/LCDD9/DV_D9 Port/LCD data bus Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D8 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F2	AG12		Always used
F5 DV33 3.3 V power supply for USB driver/receiver (3.3 V) F21 V _{ss} Ground Always used F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G61 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus G23 PTL1/LCDD9/DV_D9 Port/LCD data bus G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F3	UG12		Always used
F21 V _{ss} Ground Always used F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G61 V _{ss} Ground Always used G71 V _{ss} Ground Always used driver/receiver (1.2 V) G72 PTX3/LCDD21 Port/LCD data bus Open G73 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G74 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G75 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G77 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F4	VBUS	USB VBUS pin	Pulled down
F22 PTL7/LCDD15/DV_D15 Port/LCD data bus/pixel data Open F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB Pulled down G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) Always used G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) Always used G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 <td< td=""><td>F5</td><td>DV33</td><td></td><td>Always used</td></td<>	F5	DV33		Always used
F23 PTL4/LCDD12/DV_D12 Port/LCD data bus/pixel data Open F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB Pulled down G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) Always used G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) Always used G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB Open H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F21	V _{ss}	Ground	Always used
F24 PTL3/LCDD11/DV_D11 Port/LCD data bus/pixel data Open F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F22	PTL7/LCDD15/DV_D15	Port/LCD data bus/pixel data	Open
F25 PTL2/LCDD10/DV_D10 Port/LCD data bus/pixel data Open G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F23	PTL4/LCDD12/DV_D12	Port/LCD data bus/pixel data	Open
G1 EXTALUSB 48-MHz oscillator connection pin input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G21 V _{ss} Ground Always used driver/receiver (1.2 V) G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F24	PTL3/LCDD11/DV_D11	Port/LCD data bus/pixel data	Open
input for USB G2 PTZ3/KEYIN2 Port/key input Open G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB Always used driver/receiver (1.2 V) G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	F25	PTL2/LCDD10/DV_D10	Port/LCD data bus/pixel data	Open
G3 V _{ss} Ground Always used G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G1	EXTALUSB	·	Pulled down
G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G21 V _{ss} Ground G22 PTX3/LCDD21 Port/LCD data bus G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G2	= •, =	Port/key input	Open
G4 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G5 DV12 1.2 V power supply for USB driver/receiver (1.2 V) G21 V _{ss} Ground G22 PTX3/LCDD21 Port/LCD data bus G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G3	V _{ss}	Ground	Always used
driver/receiver (1.2 V) G21 V _{ss} Ground Always used G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G4			Always used
G22 PTX3/LCDD21 Port/LCD data bus Open G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G5	DV12		Always used
G23 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G21	V _{ss}	Ground	Always used
G24 PTL0/LCDD8/DV_D8 Port/LCD data bus/pixel data Open G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G22	PTX3/LCDD21	Port/LCD data bus	Open
G25 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G23	PTL1/LCDD9/DV_D9	Port/LCD data bus/pixel data	Open
H1 XTALUSB 48-MHz oscillator connection pin output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G24	PTL0/LCDD8/DV_D8	Port/LCD data bus/pixel data	Open
output for USB H2 PTZ5/KEYIN4/IRQ7 Port/key input/interrupt request Open	G25	PTM6/LCDD6/DV_D6	Port/LCD data bus/pixel data	Open
	H1	XTALUSB	•	Open
H3 PTZ4/KEYIN3 Port/key input Open	H2	PTZ5/KEYIN4/IRQ7	Port/key input/interrupt request	Open
	H3	PTZ4/KEYIN3	Port/key input	Open



Pin No.	Pin Name	Description	Treatment of Unused Pin
H4	UV12	1.2 V power supply for USB-UTM480	Always used
H5	UV12	1.2 V power supply for USB-UTM480	Always used
H21	V _{cc} Q	I/O power supply (3.3 V)	Always used
H22	PTM7/LCDD7/DV_D7	Port/LCD data bus/pixel data	Open
H23	PTM5/LCDD5/DV_D5	Port/LCD data bus/pixel data	Open
H24	PTM4/LCDD4/DV_D4	Port/LCD data bus/pixel data	Open
H25	PTM3/LCDD3/DV_D3	Port/LCD data bus/pixel data	Open
J1	PTY1/KEYOUT1	Port/key output	Open
J2	PTY5/KEYOUT5/KEYIN5	Port/key output/key input	Open
J3	PTY3/KEYOUT3	Port/key output	Open
J4	PTY2/KEYOUT2	Port/key output	Open
J5	PTY0/KEYOUT0	Port/key output	Open
J21	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
J22	PTL5/LCDD13/DV_D13	Port/LCD data bus/pixel data	Open
J23	PTM1/LCDD1/DV_D1	Port/LCD data bus/pixel data	Open
J24	PTM2/LCDD2/DV_D2	Port/LCD data bus/pixel data	Open
J25	PTM0/LCDD0/DV_D0	Port/LCD data bus/pixel data	Open
K1	PTT3/FWE	Port/AND-NAND flash memory write enable	Open
K2	PTT2/FSC	Port/AND-NAND flash memory chip enable	Open
K3	PTT1/DREQ0	Port/DMA transfer request	Open
K4	PTT0/FCDE	Port/AND-NAND flash memory/command data enable	Open
K5	PTY4/KEYOUT4/KEYIN6	Port/key output/key input	Open
K10	V _{DD}	Internal power supply (1.2 V)	Always used
K11	V _{DD}	Internal power supply (1.2 V)	Always used
K12	V_{DD}	Internal power supply (1.2 V)	Always used
K13	V_{DD}	Internal power supply (1.2 V)	Always used
K14	V _{DD}	Internal power supply (1.2 V)	Always used
K15	V_{DD}	Internal power supply (1.2 V)	Always used
K16	V_{DD}	Internal power supply (1.2 V)	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
K21	V _{cc} Q	I/O power supply (3.3 V)	Always used
K22	HPD63/PTN7	SDRAM upper data bus/port	Open
K23	HPD48/PTB0	SDRAM upper data bus/port	Open
K24	HPD62/PTN6	SDRAM upper data bus/port	Open
K25	HPD61/PTN5	SDRAM upper data bus/port	Open
L1	PTU3/NAF1/VIO_D9	Port/AND-NAND flash memory data bus/VIO data input	Open
L2	PTU2/NAF0/VIO_D8	Port/AND-NAND flash memory data bus/VIO data input	Open
L3	PTU1/FRB/VIO_CLK2	Port/AND-NAND flash memory ready/busy/VIO clock	Open
L4	PTU0/FCE/VIO_HD2	Port/AND-NAND flash memory chip enable/VIO horizontal sync	Open
L5	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
L10	V _{DD}	Internal power supply (1.2 V)	Always used
L11	V _{DD}	Internal power supply (1.2 V)	Always used
L12	V _{SS}	Ground	Always used
L13	V _{ss}	Ground	Always used
L14	V _{ss}	Ground	Always used
L15	V _{DD}	Internal power supply (1.2 V)	Always used
L16	V _{DD}	Internal power supply (1.2 V)	Always used
L21	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
L22	HPD49/PTB1	SDRAM upper data bus/port	Open
L23	HPD50/PTB2	SDRAM upper data bus/port	Open
L24	HPD60/PTN4	SDRAM upper data bus/port	Open
L25	HPD59/PTN3	SDRAM upper data bus/port	Open
M1	PTV1/NAF4/VIO_D12	Port/AND-NAND flash memory data bus/VIO data input	Open
M2	PTV0/NAF3/VIO_D11	Port/AND-NAND flash memory data bus/VIO data input	Open
M3	PTU4/NAF2/VIO_D10	Port/AND-NAND flash memory data bus/VIO data input	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
M4	PTT4/FOE/VIO_VD2	Port/AND-NAND flash memory output enable/VIO vertical sync	Open
M5	V _{ss}	Ground	Always used
M10	V _{DD}	Internal power supply (1.2 V)	Always used
M11	V _{SS}	Ground	Always used
M12	V _{ss}	Ground	Always used
M13	V _{SS}	Ground	Always used
M14	V _{SS}	Ground	Always used
M15	V _{ss}	Ground	Always used
M16	V _{DD}	Internal power supply (1.2 V)	Always used
M21	V _{SS}	Ground	Always used
M22	HPD51/PTB3	SDRAM upper data bus/port	Open
M23	HPD58/PTN2	SDRAM upper data bus/port	Open
M24	HPD52/PTB4	SDRAM upper data bus/port	Open
M25	HPD53/PTB5	SDRAM upper data bus/port	Open
N1	PTV2/NAF5/VIO_D13	Port/AND-NAND flash memory data bus/VIO data input	Open
N2	SCL	I ² C serial clock input/output	Pulled up
N3	PTV3/NAF6/VIO_D14	Port/AND-NAND flash memory data bus/VIO data input	Open
N4	PTV4/NAF7/VIO_D15	Port/AND-NAND flash memory data bus/VIO data input	Open
N5	V _{ss}	Ground	Always used
N10	V _{DD}	Internal power supply (1.2 V)	Always used
N11	V _{ss}	Ground	Always used
N12	V _{ss}	Ground	Always used
N13	V _{ss}	Ground	Always used
N14	V _{ss}	Ground	Always used
N15	V _{ss}	Ground	Always used
N16	V _{DD}	Internal power supply (1.2 V)	Always used
N21	V _{ss}	Ground	Always used
N22	HPD56/PTN0	SDRAM upper data bus/port	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
N23	HPD55/PTB7	SDRAM upper data bus/port	Open
N24	HPD54/PTB6	SDRAM upper data bus/port	Open
N25	HPD57/PTN1	SDRAM upper data bus/port	Open
P1	SDA	I ² C serial data input/output	Pulled up
P2	PTA1/VIO_D1	Port/VIO data input	Open
P3	PTA2/VIO_D2	Port/VIO data input	Open
P4	PTA0/VIO_D0/LCDLCLK	Port/VIO data input/LCD clock source input	Open
P5	V _{ss}	Ground	Always used
P10	V _{DD}	Internal power supply (1.2 V)	Always used
P11	V _{ss}	Ground	Always used
P12	V _{ss}	Ground	Always used
P13	V _{ss}	Ground	Always used
P14	V_{ss}	Ground	Always used
P15	V _{ss}	Ground	Always used
P16	V _{DD}	Internal power supply (1.2 V)	Always used
P21	V _{ss}	Ground	Always used
P22	HPD31	SDRAM lower data bus	Open
P23	HPD30	SDRAM lower data bus	Open
P24	HPD16	SDRAM lower data bus	Open
P25	HPCLKR	SDRAM interface synchronous clock	Open
R1	PTA3/VIO_D3	Port/VIO data input	Open
R2	PTA4/VIO_D4	Port/VIO data input	Open
R3	PTA5/VIO_D5/SCIF1_TXD	Port/VIO data input/SCIF transmit data	Open
R4	PTW2/VIO_HD/SCIF2_RXD	Port/VIO horizontal sync/SCIF receive data	Open
R5	V _{cc} Q	I/O power supply (3.3 V)	Always used
R10	V _{DD}	Internal power supply (1.2 V)	Always used
R11	V _{DD}	Internal power supply (1.2 V)	Always used
R12	V _{ss}	Ground	Always used
R13	V _{ss}	Ground	Always used

R15 \\ R16 \\ R21 \\ R22 \\ R23 \\ R24 \\	V _{SS} V _{DD} V _{DD} V _{CC} Q HPD19 HPD18 HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	Ground Internal power supply (1.2 V) Internal power supply (1.2 V) I/O power supply (3.3 V) SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus	Always used Always used Always used Always used Open Open Open Open
R15 \ \ R16 \ \ R21 \ \ R22 \ \ R23 \ \ R24 \ \ R	V _{DD} V _{CC} Q HPD19 HPD18 HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	Internal power supply (1.2 V) I/O power supply (3.3 V) SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus	Always used Always used Open Open Open
R21 \\R22 \\R23 \\R24 \\R24 \\R	V _{cc} Q HPD19 HPD18 HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	I/O power supply (3.3 V) SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus	Always used Open Open Open
R21 \\R22 \\R23 \\R24 \\R24 \\R	V _{cc} Q HPD19 HPD18 HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus	Open Open Open
R23 H	HPD18 HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	SDRAM lower data bus SDRAM lower data bus SDRAM lower data bus	Open Open
R24 H	HPD29 HPD17 PTA6/VIO_D6/SCIF1_RXD	SDRAM lower data bus SDRAM lower data bus	Open
	HPD17 PTA6/VIO_D6/SCIF1_RXD	SDRAM lower data bus	
	PTA6/VIO_D6/SCIF1_RXD		Open
R25 H		Dort///O data input/CCIE rogative data	
T1 F	DTAZAMO DZ/COIE4 COM	Port/VIO data input/SCIF receive data	Open
T2 F	PTA7/VIO_D7/SCIF1_SCK	Port/VIO data input/SCIF serial clock	Open
T3 F	PTW0/VIO_CLK/SCIF1_RTS	Port/VIO clock input/SCIF RTS output	Open
T4 F	RDWR	Read/write signal	Open
T5 \	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
T10 \	V_{DD}	Internal power supply (1.2 V)	Always used
T11 \	V_{DD}	Internal power supply (1.2 V)	Always used
	V_{DD}	Internal power supply (1.2 V)	Always used
T13 \	V _{DD}	Internal power supply (1.2 V)	Always used
	V _{DD}	Internal power supply (1.2 V)	Always used
T15 \	V_{DD}	Internal power supply (1.2 V)	Always used
	V_{DD}	Internal power supply (1.2 V)	Always used
T21 \	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
T22 H	HPD26	SDRAM lower data bus	Open
T23 H	HPD20	SDRAM lower data bus	Open
T24 H	HPD27	SDRAM lower data bus	Open
T25	HPD28	SDRAM lower data bus	Open
U1 F	PTW1/VIO_VD/SCIF1_CTS	Port/VIO vertical sync/ SCIF CTS input	Open
U2 F	PTW3/VIO_STEM/SCIF2_TXD	Port/VIO strobe emission signal/ SCIF transmit data	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
U3	PTW4/VIO_STEX/SCIF2_SCK	Port/VIO strobe emission signal/ SCIF serial clock	Open
U4	D3	Data bus	Open
U5	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
U21	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
U22	HPD24	SDRAM lower data bus	Open
U23	HPD22	SDRAM lower data bus	Open
U24	HPD25	SDRAM lower data bus	Open
U25	HPD21	SDRAM lower data bus	Open
V1	PTW5/VIO_CKO/SCIF2_RTS	Port/VIO clock output/ SCIF RTS output	Open
V2	PTW6/VIO_FLD/SCIF2_CTS	Port/VIO field signal/SCIF CTS input	Open
V3	CS5B/CE1A	Chip select/PCMCIA card select	Open
V4	CS4	Chip select	Open
V5	V _{cc} Q	I/O power supply (3.3 V)	Always used
V21	V _{cc} Q	I/O power supply (3.3 V)	Always used
V22	HPDQM0	SDRAM interface lower LL side data mask	Open
V23	HPDQM1	SDRAM interface lower LU side data mask	Open
V24	HPDQM3	SDRAM interface lower UU side data mask	Open
V25	HPD23	SDRAM lower data bus	Open
W1	PTX6/CS6A/CE2B	Port/chip select/PCMCIA card select	Open
W2	D15	Data bus	Open
W3	D7	Data bus	Open
W4	D14	Data bus	Open
W5	V _{ss}	Ground	Always used
W21	V _{ss}	Ground	Always used
W22	HPA7	SDRAM interface address bus	Open
W23	HPA15	SDRAM interface address bus	Open
W24	HPA16	SDRAM interface address bus	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
W25	HPDQM2	SDRAM interface lower UL side data mask	Open
Y1	D6	Data bus	Open
Y2	D13	Data bus	Open
Y3	D5	Data bus	Open
Y4	D12	Data bus	Open
Y5	V _{ss}	Ground	Always used
Y21	V _{ss}	Ground	Always used
Y22	HPA2	SDRAM interface address bus	Open
Y23	HPA12	SDRAM interface address bus	Open
Y24	HPA13	SDRAM interface address bus	Open
Y25	HPA14	SDRAM interface address bus	Open
AA1	D4	Data bus	Open
AA2	D11	Data bus	Open
AA3	D10	Data bus	Open
AA4	D2	Data bus	Open
AA5	V _{ss}	Ground	Always used
AA6	V _{ss}	Ground	Always used
AA7	V _{ss}	Ground	Always used
AA8	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA9	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA10	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA11	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA12	V _{ss}	Ground	Always used
AA13	V _{ss}	Ground	Always used
AA14	V _{ss}	Ground	Always used
AA15	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA16	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA17	V _{cc} Q	I/O power supply (3.3 V)	Always used
AA18	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
AA19	V _{ss}	Ground	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
AA20	V _{ss}	Ground	Always used
AA21	V _{SS}	Ground	Always used
AA22	HPA9	SDRAM interface address	Open
AA23	HPA8	SDRAM interface address	Open
AA24	HPA10	SDRAM interface address	Open
AA25	HPA11	SDRAM interface address	Open
AB1	D9	Data bus	Open
AB2	D1	Data bus	Open
AB3	D8	Data bus	Open
AB4	WE1/WE	D15 to D8 write/PCMCIA memory write	Open
AB5	A25/PTE7	Address bus/port	Open
AB6	A15	Address bus	Open
AB7	A21	Address bus	Open
AB8	A3	Address bus	Open
AB9	A11	Address bus	Open
AB10	A9	Address bus	Open
AB11	A5	Address bus	Open
AB12	IOIS16/PTC5	PCMCIA-IF 16 bits/port	Pulled up
AB13	D31/HPD47	Upper data bus/ SDRAM upper data bus	Open
AB14	D27/HPD43	Upper data bus/ SDRAM upper data bus	Open
AB15	D26/HPD42	Upper data bus/ SDRAM upper data bus	Open
AB16	D24/HPD40	Upper data bus/ SDRAM upper data bus	Open
AB17	HPD0	SDRAM lower data bus	Open
AB18	HPD4	SDRAM lower data bus	Open
AB19	HPD9	SDRAM lower data bus	Open
AB20	HPD7	SDRAM lower data bus	Open
AB21	HPDQM7/PTC4	SDRAM interface upper UU side data mask/port	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AB22	HPA4	SDRAM interface address bus	Open
AB23	HPA5	SDRAM interface address bus	Open
AB24	HPA6	SDRAM interface address bus	Open
AB25	HPCLK	SDRAM interface synchronous clock	Open
AC1	D0	Data bus	Open
AC2	CS0	Chip select	Open
AC3	RD	Read signal	Open
AC4	WE3/ICIOWR	D31 to D24 write/PCMCIA IO write	Open
AC5	A23/PTE5	Address bus/port	Open
AC6	A19	Address bus	Open
AC7	A18	Address bus	Open
AC8	A13	Address bus	Open
AC9	A7	Address bus	Open
AC10	A4	Address bus	Open
AC11	A0	Address bus	Open
AC12	PTC7	Port	Open
AC13	D30/HPD46	Upper data bus/ SDRAM upper data bus	Open
AC14	D18/HPD34	Upper data bus/ SDRAM upper data bus	Open
AC15	D20/HPD36	Upper data bus/ SDRAM upper data bus	Open
AC16	D22/HPD38	Upper data bus/ SDRAM upper data bus	Open
AC17	HPD14	SDRAM lower data bus	Open
AC18	HPD12	SDRAM lower data bus	Open
AC19	HPD10	SDRAM lower data bus	Open
AC20	HPD8	SDRAM lower data bus	Open
AC21	HPDQM6/PTC3	SDRAM interface upper UL side data mask	Open
AC22	HPRAS	SDRAM interface row address	Open
AC23	HPCS3	SDRAM interface chip select	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AC24	HPA1	SDRAM interface address bus	Open
AC25	HPA3	SDRAM interface address bus	Open
AD1	V _{ss}	Ground	Always used
AD2	V _{ss}	Ground	Always used
AD3	WE0	D7 to D0 write	Open
AD4	MD3	Data bus width set	Always used
AD5	A22/PTE4	Address bus/port	Open
AD6	A17	Address bus	Open
AD7	A14	Address bus	Open
AD8	A10	Address bus	Open
AD9	A6	Address bus	Open
AD10	A1	Address bus	Open
AD11	CS5A/CE2A	Chip select/PCMCIA card select	Open
AD12	PTE0/IRQ4/BS	Port/interrupt request/bus start	Pulled up
AD13	D17/HPD33	Upper data bus/ SDRAM upper data bus	Open
AD14	D28/HPD44	Upper data bus/ SDRAM upper data bus	Open
AD15	D21/HPD37	Upper data bus/ SDRAM upper data bus	Open
AD16	D23/HPD39	Upper data bus/ SDRAM upper data bus	Open
AD17	HPD1	SDRAM lower data bus	Open
AD18	HPD2	SDRAM lower data bus	Open
AD19	HPD11	SDRAM lower data bus	Open
AD20	HPD6	SDRAM lower data bus	Open
AD21	HPDQM5/PTC2	SDRAM interface upper LU side data mask/port	Open
AD22	HPCAS	SDRAM interface column address	Open
AD23	HPCS2	SDRAM interface chip select	Open
AD24	V _{ss}	Ground	Always used
AD25	V _{ss}	Ground	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
AE1	V _{ss}	Ground	Always used
AE2	V _{SS}	Ground	Always used
AE3	WE2/ICIORD	D23 to D16 write/PCMCIA IO read	Open
AE4	A24/PTE6	Address bus/port	Open
AE5	A20	Address bus	Open
AE6	A16	Address bus	Open
AE7	A12	Address bus	Open
AE8	A8	Address bus	Open
AE9	A2	Address bus	Open
AE10	СКО	System clock	Open
AE11	PTE1/IRQ5	Port/interrupt request	Pulled up
AE12	D16/HPD32	Upper data bus/ SDRAM upper data bus	Open
AE13	D29/HPD45	Upper data bus/ SDRAM upper data bus	Open
AE14	D19/HPD35	Upper data bus/ SDRAM upper data bus	Open
AE15	D25/HPD41	Upper data bus/ SDRAM upper data bus	Open
AE16	HPCLKD	SDRAM interface synchronous clock	Open
AE17	HPD15	SDRAM lower data bus	Open
AE18	HPD13	SDRAM lower data bus	Open
AE19	HPD3	SDRAM lower data bus	Open
AE20	HPD5	SDRAM lower data bus	Open
AE21	HPDQM4/PTC0	SDRAM interface upper LL side data bus/port	Open
AE22	HPRDWR	SDRAM interface read/write	Open
AE23	HPCKE	SDRAM interface clock enable	Open
AE24	V _{ss}	Ground	Always used
AE25	V _{ss}	Ground	Always used

1.3.2 BGA-417 Pin Assignments

Figure 1.3 and table 1.3 show the pin assignments of BGA-417.

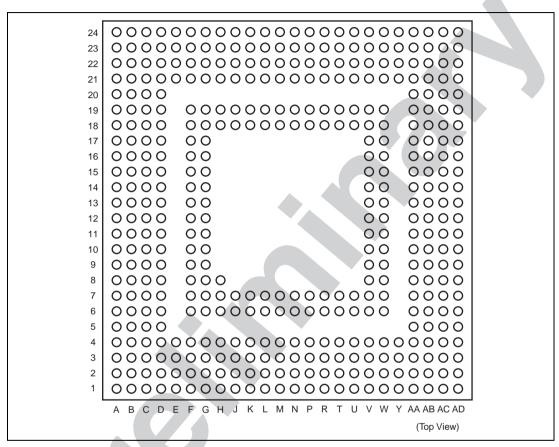


Figure 1.3 Pin Assignments (BGA-417)

Table 1.3 Pin Assignments (BGA-417)

A2 XTAL Clock output Open A3 EXTAL External clock input Pulled dow A4 PTG4/AUDSYNC Port/AUD sync signal Open A5 PTG0/AUDATA0 Port/AUD data output Open A6 TRST H-UDI test reset input Always use A7 TCK H-UDI test clock input Open A8 STATUS0/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input Serial data A12 PTS0/SCIF0_TXD Port/SCIF CTS input/SPDIF input serial data A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN PTS1/SIUBOST/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial Open A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	Pin No.	Pin Name	Description	Treatment of Unused Pin
A3 EXTAL External clock input Pulled dow A4 PTG4/AUDSYNC Port/AUD sync signal Open A5 PTG0/AUDATA0 Port/AUD data output Open A6 TRST H-UDI test reset input Always use A7 TCK H-UDI test clock input Open A8 STATUS0/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTG2/SIOF0_RXD/TS_SDAT/ port/SIOF0 reception data/TS serial lrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use A21 V _{SS} _PLL PLL ground Always use	A1	DV33		Always used
A4 PTG4/AUDSYNC Port/AUD sync signal Open A5 PTG0/AUDATA0 Port/AUD data output Open A6 TRST H-UDI test reset input Always use A7 TCK H-UDI test clock input Open A8 STATUSO/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ lrDa_IN data input/IrDA reception data/TS serial lock A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound output bit clock/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A2	XTAL	Clock output	Open
A5 PTG0/AUDATA0 Port/AUD data output Open A6 TRST H-UDI test reset input Always use A7 TCK H-UDI test clock input Open A8 STATUSO/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A3	EXTAL	External clock input	Pulled down
A6 TRST H-UDI test reset input Always use A7 TCK H-UDI test clock input Open A8 STATUSO/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ IrDA_IN PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIOF1 port B sound output bit clock/SIOF1 input data A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound input serial data/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A4	PTG4/AUDSYNC	Port/AUD sync signal	Open
A7 TCK H-UDI test clock input Open A8 STATUSO/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port/SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A5	PTG0/AUDATA0	Port/AUD data output	Open
A8 STATUSO/PTJ7 Port/status output Open A9 RCLK 32.768 kHz clock input Always use A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{D0} _PLL PLL power supply Always use	A6	TRST	H-UDI test reset input	Always used
A9 RCLK A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port/SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{D0} _PLL PLL power supply Always use A21 V _{ss} _PLL PLL ground A18 A18 A19 A19 PLL ground A19	A7	TCK	H-UDI test clock input	Open
A10 TSTMD Test mode setting Pulled up A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN Port/SIU port B sound output bit clock/SIO input data A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A8	STATUS0/PTJ7	Port/status output	Open
A11 PTS4/SCIF0_CTS/SIUAISPD Port/SCIF CTS input/SPDIF input serial data A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A9	RCLK	32.768 kHz clock input	Always used
A12 PTS0/SCIF0_TXD Port /SCIF transmission data Open A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN Port/SIU port B sound output bit clock/SIO input data A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound input serial clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A10	TSTMD	Test mode setting	Pulled up
A13 PTK3/SIUAOBT/SIOF1_SCK Port/SIU port A sound output bit clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN data input/IrDA reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use A21 V _{SS} _PLL PLL ground Always use	A11	PTS4/SCIF0_CTS/SIUAISPD		Open
Clock/SIOF1 serial clock A14 PTQ6/SIOF0_SS2/SIM_RST Port/SIOF0 slave device selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial open data input/IrDA_IN Port/SIU port B sound output bit clock/SIO input data A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound input serial data/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A12	PTS0/SCIF0_TXD	Port /SCIF transmission data	Open
Selection/SIM reset A15 PTQ2/SIOF0_RXD/TS_SDAT/ Port/SIOF0 reception data/TS serial data input/IrDA_IN Port/SIUFO reception data input A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use A21 V _{SS} _PLL PLL ground Always use	A13	PTK3/SIUAOBT/SIOF1_SCK		Open
IrDA_IN A16 PTF5/SIUBOBT/SIOSCK Port/SIU port B sound output bit clock/SIO input data A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} _PLL PLL power supply Always use	A14	PTQ6/SIOF0_SS2/SIM_RST		Open
A17 PTF1/SIUBISLD/SIORXD Port/SIU port B sound input serial data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} PLL PLL power supply Always use A21 V _{SS} PLL PLL ground Always use	A15			Open
data/SIO input data A18 PTD5/SDHID3 Port/SD data bus Pulled up A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} PLL PLL power supply Always use A21 V _{SS} PLL PLL ground Always use	A16	PTF5/SIUBOBT/SIOSCK		Open
A19 PTD0/SDHICLK Port/SD clock Open A20 V _{DD} PLL PLL power supply Always use A21 V _{SS} PLL PLL ground Always use	A17	PTF1/SIUBISLD/SIORXD		Open
A20 V _{DD} PLL PLL power supply Always use A21 V _{SS} PLL PLL ground Always use	A18	PTD5/SDHID3	Port/SD data bus	Pulled up
A21 V _{ss} -PLL PLL ground Always use	A19	PTD0/SDHICLK	Port/SD clock	Open
	A20	V _{DD} _PLL	PLL power supply	Always used
A22 V _{sp.} DLL DLL power supply Always use	A21	V _{ss} _PLL	PLL ground	Always used
1 117	A22	V _{DD} _DLL	DLL power supply	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
A23	V _{ss} _DLL	DLL ground	Always used
A24	V _{ss}	Ground	Always used
B1	DM	USB DM pin	Open
B2	PTZ1/KEYIN0/IRQ6	Port/key input/interrupt request	Open
B3	NMI	Nonmaskable interrupt	Pulled up
B4	PTG2/AUDATA2	Port/AUD data output	Open
B5	AUDCK	AUD clock	Open
B6	TDI	H-UDI test data input	Open
B7	PDSTATUS/PTJ5	Power-down status output/port	Open
B8	RESETP	Power-on reset	Always used
B9	MD8	Mode setting pin	Always used
B10	MD1	Mode setting pin	Always used
B11	PTS2/SCIF0_SCK/TPUTO	Port/SCIF serial clock/TPU output	Open
B12	PTK5/SIUAIBT/SIOF1_SS1	Port/SIU port A sound input bit clock/SIOF1 slave device selection	Open
B13	PTK1/SIUAOSLD/SIOF1_TXD	Port/SIU port A sound output serial data/SIOF1 output data	Open
B14	PTQ4/SIOF0_SYNC/TS_SDEN	Port/SIOF frame signal/IrDA port/TS serial data enable	Open
B15	PTQ0/SIOF0_MCK/IRQ3/ SIM_D	Port/SIOF0 master clock input/ interrupt request/SIM data	Open
B16	PTF3/SIUBIBT/SIOSTRB0	Port/SIU port B sound input bit clock/SIO serial strobe	Open
B17	PTD4/SDHID2/IRQ2	Port/SD data bus/interrupt request	Pulled up
B18	PTD6/SDHIWP	Port/SD write protect	Pulled up
B19	PTD2/SDHID0	Port/SD data bus	Pulled up
B20	PTR4/LCDRD	Port/read strobe	Open
B21	WAIT/PTR2	WAIT/port	Pulled up
B22	PTH3/LCDHSYN/LCDCS	Port/LCD horizontal sync signal/LCD chip selection	Open
B23	PTX5/LCDD23	Port/LCD data bus	Open
_			

Pin No.	Pin Name	Description	Treatment of Unused Pin
B24	PTX4/LCDD22	Port/LCD data bus	Open
C1	DP	USB DP pin	Open
C2	DG33	3.3 V power supply ground for USB driver-receiver	Always used
C3	PTZ2/KEYIN1	Port/key input	Open
C4	MPMD	E10 ASE mode setting input	Pulled up
C5	PTG3/AUDATA3	Port/AUD data output	Open
C6	TDO	H-UDI test data output	Open
C7	TST	Test pin (fixed at V _{cc} Q level)	Pulled up
C8	RESETOUT	Reset output	Open
C9	MD5	Mode setting pin	Always used
C10	MD0	Mode setting pin	Always used
C11	PTS1/SCIF0_RXD	Port/SCIF reception data	Open
C12	PTK4/SIUAOLR/SIOF1_SYNC	Port/SIU port B sound output L-R clock/SIOF1 frame signal	Open
C13	PTK0/SIUMCKA/SIUFCKA/ SIOF1_MCK	Port/SIU port A master clock input/SIU port A sampling clock output/SIOF1 master clock input	Open
C14	PTQ3/SIOF0_SCK/TS_SCK	Port/SIOF0 serial clock/IrDA clock/TS serial clock	Open
C15	PTF6/SIUMCKB/SIUFCKB/ SIOMCK	Port/SIU port B master clock input/SIU port B sampling clock output/SIO serial clock	Open
C16	PTF2/SIUBILR/SIOD	Port/SIU port B sound input L-R clock/SIO transmission and reception data	Open
C17	PTD7/SDHICD	Port/SD card detection	Pulled up
C18	PTD3/SDHID1	Port/SD data bus	Pulled up
C19	PTR0/LCDVEPWC/ LCDVEPWC2	Port/LCD power supply control/LCD power supply control	Open
C20	PTH7/LCDVCPWC/ LCDVCPWC2	Port/LCD power supply control/LCD power supply control	Open
C21	PTH6/LCDVSYN2/DACK0	Port/LCD vertical sync signal/ DMA transfer request acknowledge	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
C22	PTH2/LCDDON/LCDDON2	Port/LCD display ON-OFF signal/LCD display ON-OFF signal	Open
C23	PTX2/LCDD20	Port/LCD data bus	Open
C24	PTX0/LCDD18/DV_CLK	Port/LCD data bus/clock output	Open
D1	DV12	1.2 V power supply for USB driver/receiver (1.2 V)	Always used
D2	DG12	1.2 V power supply ground for USB driver/receiver	Always used
D3	PTJ1/IRQ1	Port/Interrupt request	Open
D4	ASEBRK/BRKAK	E10A emulator brake input/acknowledge	Open
D5	PTG1/AUDATA1	Port/AUD data output	Open
D6	TMS	H-UDI test mode selection input	Open
D7	PTJ6	Port	Open
D8	RESETA	Reset input	Pulled up
D9	MD2	Mode setting pin	Always used
D10	PTS3/SCIF0_RTS/SIUAOSPD	Port/SCIF RTS output/SPDIF output serial data	Open
D11	PTK6/SIUAILR/SIOF1_SS2	Port/SIU port A sound input L-R clock/SIOF slave device selection	Open
D12	PTK2/SIUAISLD/SIOF1_RXD	Port/SIU port A sound input serial data/SIOF1 input data	Open
D13	PTQ5/SIOF0_SS1/ TS_SPSYNC	Port/SIOF0 slave device selection/TS serial data sync signal	Open
D14	PTQ1/SIOF0_TXD/SIM_CLK/ IrDA_OUT	Port/SIOF0 transmission data/SIM clock/IrDA transmission data output	Open
D15	PTF4/SIUBOLR/SIOSTRB1	Port/SIU port B sound output L-R clock/SIO serial strobe	Open
D16	PTF0/SIUBOSLD/SIOTXD	Port/SIU port B sound output serial data/SIO output data	Open
D17	PTD1/SDHICMD	Port/SD command	Open
D18	PTR3/CS6B/CE1B/LCDCS2	Port/Port/chip selection/LCD chip selection 2	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
D19	PTR1/LCDDCK/LCDWR	Port/LCD dot clock signal/write strobe	Open
D20	PTH5/LCDVSYN	Port/LCD vertical sync signal	Open
D21	PTH4/LCDDISP/LCDRS	Port/LCD display enable signal/LCD register selection	Open
D22	PTX1/LCDD19/DV_CLKI	Port/LCD data bus/video clock input	Open
D23	PTH0/LCDD16/DV_VSYNC	Port/LCD data bus/VOU vertical sync signal	Open
D24	PTL7/LCDD15/DV_D15	Port/LCD data bus/pixel data	Open
E1	UV12	1.2 V power supply for USB-UTM480	Always used
E2	UG12	1.2 V power supply ground for USB- UTM480	Always used
E3	VBUS	USB VBUS pin	Pulled down
E4	PTJ0/IRQ0	Port/interrupt request	Open
E21	PTX3/LCDD21	Port/LCD data bus	Open
E22	PTH1/LCDD17/DV_HSYNC	Port/LCD data bus/VOU horizontal sync signal	Open
E23	PTL4/LCDD12/DV_D12	Port/LCD data bus/pixel data	Open
E24	PTL5/LCDD13/DV_D13	Port/LCD data bus/pixel data	Open
F1	AG33	3.3 V power supply ground for USB standard current circuit	Always used
F2	REFRIN	External resistor pin for USB constant current circuit	Pulled down
F3	PTZ4/KEYIN3	Port/key input	Open
F4	PTZ3/KEYIN2	Port/key input	Open
F6	V _{ss}	Ground	Always used
F7	V _{cc} Q	I/O power supply (3.3 V)	Always used
F8	V _{SS}	Ground	Always used
F9	V _{cc} Q	I/O power supply (3.3 V)	Always used
F10	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
F11	V _{ss}	Ground	Always used
F12	V _{cc} Q	I/O power supply (3.3 V)	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
F13	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
F14	V _{SS}	Ground	Always used
F15	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
F16	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
F17	V _{SS}	Ground	Always used
F18	V _{cc} Q	I/O power supply (3.3 V)	Always used
F19	V _{ss}	Ground	Always used
F21	PTL6/LCDD14/DV_D14	Port/LCD data bus/pixel data	Open
F22	PTL3/LCDD11/DV_D11	Port/LCD data bus/pixel data	Open
F23	PTL2/LCDD10/DV_D10	Port/LCD data bus/pixel data	Open
F24	PTL0/LCDD8/DV_D8	Port/LCD data bus/pixel data	Open
G1	EXTALUSB	48 MHz-oscillator connection pin input for USB	Pulled down
G2	PTY1/KEYOUT1	Port/key output	Open
G3	PTZ5/KEYIN4/IRQ7	Port/key input	Open
G4	PTY0/KEYOUT0	Port/key output	Open
G6	AG12	1.2 V power supply ground for USB-PLL	Always used
G7	V _{ss}	Ground	Always used
G8	V _{DD}	Internal power supply (1.2 V)	Always used
G9	V _{ss}	Ground	Always used
G10	V _{SS}	Ground	Always used
G11	V _{DD}	Internal power supply (1.2 V)	Always used
G12	V _{ss}	Ground	Always used
G13	V _{ss}	Ground	Always used
G14	V _{DD}	Internal power supply (1.2 V)	Always used
G15	V _{ss}	Ground	Always used
G16	V _{ss}	Ground	Always used
G17	V _{DD}	Internal power supply (1.2 V)	Always used
G18	V _{SS}	Ground	Always used

G19 V _{cc} Q I/O power supply (3.3 V) Always used G21 PTL1/LCDD9/DV_D9 Port/LCD data bus/pixel data Open G22 PTM7/LCDD7/DV_D7 Port/LCD data bus/pixel data Open G23 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G24 PTM4/LCDD4/DV_D4 Port/LCD data bus/pixel data Open H1 XTALUSB 48 MHz-oscillator connection pin output for USB H2 PTY3/KEYOUT3 Port/key output Open H3 PTY2/KEYOUT2 Port/key output Open H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H18 V _{ss} Ground Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel da	Pin No.	Pin Name	Description	Treatment of Unused Pin
G22 PTM7/LCDD7/DV_D7 Port/LCD data bus/pixel data Open G23 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G24 PTM4/LCDD4/DV_D4 Port/LCD data bus/pixel data Open H1 XTALUSB 48 MHz-oscillator connection pin output for USB H2 PTY3/KEYOUT3 Port/key output Open H3 PTY2/KEYOUT2 Port/key output Open H6 V₅s Ground Always used H7 V₅s Ground Always used H8 V₅s Ground Always used H18 V₀o Internal power supply (1.2 V) Always used H19 V₅s Ground Always used H19 V₅s Ground Always used H19 V₅s Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open H25 PTM3/LCDD5/DV_D0 Port/LCD data bus/pixel data Open H26 PTM5/KEYOUT5/KEYIN5 Port/key output-input Open H27 PTM5/FCDE Port/DMA transmission request Open H28 PTT1/PREQ Port/DMA transmission request Open H29 PTT2/FSC Port/DMA transmission request Open H20 PTT2/FSC Port/DMA transmission request Open H210 POrt/DMA transmission request Open H2	G19	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
G23 PTM6/LCDD6/DV_D6 Port/LCD data bus/pixel data Open G24 PTM4/LCDD4/DV_D4 Port/LCD data bus/pixel data Open H1 XTALUSB 48 MHz-oscillator connection pin output for USB H2 PTY3/KEYOUT3 Port/key output Open H3 PTY2/KEYOUT2 Port/key output Open H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H8 V _{ss} Ground Always used H18 V _{po} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3 V) Always used J7 AV33 3.3 V power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	G21	PTL1/LCDD9/DV_D9	Port/LCD data bus/pixel data	Open
G24 PTM4/LCDD4/DV_D4 Port/LCD data bus/pixel data Open H1 XTALUSB 48 MHz-oscillator connection pin output for USB H2 PTY3/KEYOUT3 Port/key output Open H3 PTY2/KEYOUT2 Port/key output Open H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H8 V _{ss} Ground Always used H18 V _{po} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT0/FCDE Port/command data enable Open J5 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3 V) Always used J7 AV33 3.3 V power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	G22	PTM7/LCDD7/DV_D7	Port/LCD data bus/pixel data	Open
H1 XTALUSB 48 MHz-oscillator connection pin output for USB H2 PTY3/KEYOUT3 Port/key output Open H3 PTY2/KEYOUT2 Port/key output Open H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H8 V _{ss} Ground Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	G23	PTM6/LCDD6/DV_D6	Port/LCD data bus/pixel data	Open
Output for USB	G24	PTM4/LCDD4/DV_D4	Port/LCD data bus/pixel data	Open
H3 PTY2/KEYOUT2 Port/key output Open H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H18 V _{pp} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H21 PTM5/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H22 PTM3/LCDD2/DV_D3 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/AND-NAND flash memory chip Open J4 PTT2/FSC Port/AND-NAND flash memory chip Open J6 V _{cc} Q	H1	XTALUSB	·	Open
H4 PTY4/KEYOUT4/KEYIN6 Port/key output and input Open H6 V _{ss} Ground Always used H7 V _{ss} Ground Always used H8 V _{ss} Ground Always used H8 V _{ss} Ground Always used H18 V _{oo} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used	H2	PTY3/KEYOUT3	Port/key output	Open
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H3	PTY2/KEYOUT2	Port/key output	Open
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H4	PTY4/KEYOUT4/KEYIN6	Port/key output and input	Open
H8 V _{ss} Ground Always used H18 V _{po} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used J8 V _{ss} Ground Always used J9 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used	H6		Ground	Always used
H8 V _{ss} Ground Always used H18 V _{po} Internal power supply (1.2 V) Always used H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used J8 V _{ss} Ground Always used J9 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used	H7	V _{SS}	Ground	Always used
H19 V _{ss} Ground Always used H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H8		Ground	Always used
H21 PTM5/LCDD5/DV_D5 Port/LCD data bus/pixel data Open H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used J8 V _{ss} Ground Always used J9 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J19 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H18	V _{DD}	Internal power supply (1.2 V)	Always used
H22 PTM3/LCDD3/DV_D3 Port/LCD data bus/pixel data Open H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H19	V _{ss}	Ground	Always used
H23 PTM2/LCDD2/DV_D2 Port/LCD data bus/pixel data Open H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H21	PTM5/LCDD5/DV_D5	Port/LCD data bus/pixel data	Open
H24 PTM0/LCDD0/DV_D0 Port/LCD data bus/pixel data Open J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H22	PTM3/LCDD3/DV_D3	Port/LCD data bus/pixel data	Open
J1 PTY5/KEYOUT5/KEYIN5 Port/key output-input Open J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H23	PTM2/LCDD2/DV_D2	Port/LCD data bus/pixel data	Open
J2 PTT1/DREQ0 Port/DMA transmission request Open J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	H24	PTM0/LCDD0/DV_D0	Port/LCD data bus/pixel data	Open
J3 PTT0/FCDE Port/command data enable Open J4 PTT2/FSC Port/AND-NAND flash memory chip enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J1	PTY5/KEYOUT5/KEYIN5	Port/key output-input	Open
J4 PTT2/FSC Port/AND-NAND flash memory chip open enable J6 V _{cc} Q I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J2	PTT1/DREQ0	Port/DMA transmission request	Open
enable J6 $V_{cc}Q$ I/O power supply (3.3V) Always used J7 AV33 3.3 V power supply for USB standard current circuit J18 V_{ss} Ground Always used J19 $V_{cc}Q$ I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J3	PTT0/FCDE	Port/command data enable	Open
J7 AV33 3.3 V power supply for USB standard Always used current circuit J18 V _{ss} Ground Always used J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J4	PTT2/FSC		Open
	J6	V _{cc} Q	I/O power supply (3.3V)	Always used
J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J7			Always used
J19 V _{cc} Q I/O power supply (3.3 V) Always used J21 PTM1/LCDD1/DV_D1 Port/LCD data bus/pixel data Open	J18	V _{ss}	Ground	Always used
	J19		I/O power supply (3.3 V)	Always used
J22 HPD63/PTN7 SDRAM upper data bus/port Open	J21	PTM1/LCDD1/DV_D1	Port/LCD data bus/pixel data	Open
	J22	HPD63/PTN7	SDRAM upper data bus/port	Open

J23 HPD48/PTB0 SDRAM upper data bus/port Open J24 HPD62/PTN6 SDRAM upper data bus/port Open K1 PTT3/FWE Port/AND-NAND flash memory write open enable K2 PTU0/FCE/VIO_HD2 Port/AND-NAND flash memory chip open enable/VIO horizontal sync	
K1 PTT3/FWE Port/AND-NAND flash memory write Open enable K2 PTU0/FCE/VIO_HD2 Port/AND-NAND flash memory chip Open	
enable K2 PTU0/FCE/VIO_HD2 Port/AND-NAND flash memory chip Open	
	_
enable/ vio nonzoniai sync	
K3 PTT4/FOE/VIO_VD2 Port/AND-NAND flash memory output Open enable/VIO vertical sync	
K4 PTU1/FRB/VIO_CLK2 Port/AND-NAND flash memory ready- Open busy/VIO clock	
K6 V _{cc} Q I/O power supply (3.3 V) Always used	<u> </u>
K7 AV12 1.2 V power supply for USB-PLL Always used	ı
K18 V _{ss} Ground Always used	ı
K19 $V_{cc}Q$ I/O power supply (3.3 V) Always used	ı
K21 HPD61/PTN5 SDRAM upper data bus/port Open	
K22 HPD60/PTN4 SDRAM upper data bus/port Open	
K23 HPD49/PTB1 SDRAM upper data bus/port Open	
K24 HPD50/PTB2 SDRAM upper data bus/port Open	
L1 PTU2/NAF0/VIO_D8 Port/AND-NAND flash memory data Open bus/VIO data input	
L2 PTU4/NAF2/VIO_D10 Port/AND-NAND flash memory data Open bus/VIO data input	
L3 PTU3/NAF1/VIO_D9 Port/AND-NAND flash memory data Open bus/VIO data input	
L4 PTV0/NAF3/VIO_D11 Port/AND-NAND flash memory data Open bus/VIO data input	
L6 V _{ss} Ground Always used	
L7 V _{DD} Internal power supply (1.2 V) Always used	
L18 V _{DD} Internal power supply (1.2 V) Always used	I
L19 V _{ss} Ground Always used	ı
L21 HPD59/PTN3 SDRAM upper data bus/port Open	
L22 HPD58/PTN2 SDRAM upper data bus/port Open	

Pin No.	Pin Name	Description	Treatment of Unused Pin
L23	HPD51/PTB3	SDRAM upper data bus/port	Open
L24	HPD52/PTB4	SDRAM upper data bus/port	Open
M1	PTV1/NAF4/VIO_D12	Port/AND-NAND flash memory data bus/VIO data input	Open
M2	PTV3/NAF6/VIO_D14	Port/AND-NAND flash memory data bus/VIO data input	Open
M3	PTV2/NAF5/VIO_D13	Port/AND-NAND flash memory data bus/VIO data input	Open
M4	PTV4/NAF7/VIO_D15	Port/AND-NAND flash memory data bus/VIO data input	Open
M6	V _{cc} Q	I/O power supply (3.3 V)	Always used
M7	V _{ss}	Ground	Always used
M18	V _{SS}	Ground	Always used
M19	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
M21	HPD57/PTN1	SDRAM upper data bus/port	Open
M22	HPD56/PTN0	SDRAM upper data bus/port	Open
M23	HPD53/PTB5	SDRAM upper data bus/port	Open
M24	HPD54/PTB6	SDRAM upper data bus/port	Open
N1	SCL	I ² C serial clock I/O	Pulled up
N2	SDA	I ² C serial data I/O	Pulled up
N3	PTA0/VIO_D0/LCDLCLK	Port/VIO data input/LCD clock source input	Open
N4	PTA2/VIO_D2	Port/VIO data input	Open
N6	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
N7	V _{ss}	Ground	Always used
N18	V _{ss}	Ground	Always used
N19	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
N21	HPD17	SDRAM lower data bus	Open
N22	HPD16	SDRAM lower data bus	Open
N23	HPD55/PTB7	SDRAM lower data bus/port	Open
N24	HPCLKR	SDRAM interface sync clock	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
P1	PTA1/VIO_D1	Port/VIO data input	Open
P2	PTA3/VIO_D3	Port/VIO data input	Open
P3	PTA4/VIO_D4	Port/VIO data input	Open
P4	PTA6/VIO_D6/SCIF1_RXD	Port/VIO data input/SCIF reception data	Open
P6	V _{ss}	Ground	Always used
P7	V _{DD}	Internal power supply (1.2 V)	Always used
P18	V _{DD}	Internal power supply (1.2 V)	Always used
P19	V _{ss}	Ground	Always used
P21	HPD18	SDRAM lower data bus	Open
P22	HPD19	SDRAM lower data bus	Open
P23	HPD31	SDRAM lower data bus	Open
P24	HPD30	SDRAM lower data bus	Open
R1	PTA5/VIO_D5/SCIF1_TXD	Port/VIO data input/SCIF transmission data	Open
R2	PTA7/VIO_D7/SCIF1_SCK	Port/VIO data input/SCIF serial clock	Open
R3	PTW0/VIO_CLK/SCIF1_RTS	Port/VIO clock input/SCIF RTS output	Open
R4	PTW2/VIO_HD/SCIF2_RXD	Port/VIO horizontal sync/SCIF reception data	Open
R6	V _{cc} Q	I/O power supply (3.3 V)	Always used
R7	V _{ss}	Ground	Always used
R18	V _{ss}	Ground	Always used
R19	V _{cc} Q	I/O power supply (3.3 V)	Always used
R21	HPD21	SDRAM lower data bus	Open
R22	HPD20	SDRAM lower data bus	Open
R23	HPD29	SDRAM lower data bus	Open
R24	HPD28	SDRAM lower data bus	Open
T1	PTW1/VIO_VD/SCIF1_CTS	Port/VIO vertical sync/SCIF CTS input	Open
T2	PTW3/VIO_STEM/SCIF2_TXD	Port/VIO strobe emission signal/SCIF transmission data	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
Т3	PTW4/VIO_STEX/SCIF2_SCK	Port/VIO strobe dimmer signal/SCIF serial clock	Open
T4	PTW6/VIO_FLD/SCIF2_CTS	Port/VIO field signal/SCIF CTS input	Open
T6	V _{cc} Q	I/O power supply (3.3 V)	Always used
T7	V _{SS}	Ground	Always used
T18	V _{ss}	Ground	Always used
T19	V _{cc} Q	I/O power supply (3.3 V)	Always used
T21	HPD23	SDRAM lower data bus	Open
T22	HPD22	SDRAM lower data bus	Open
T23	HPD27	SDRAM lower data bus	Open
T24	HPD26	SDRAM lower data bus	Open
U1	PTW5/VIO_CKO/SCIF2_RTS	Port/VIO clock output/SCIF RTS output	Open
U2	CS5B/CE1A	Chip selection/chip selection	Open
U3	CS4	Chip selection	Open
U4	RDWR	Read/write signal	Open
U6	V _{ss}	Ground	Always used
U7	V _{DD}	Internal power supply (1.2 V)	Always used
U18	V _{DD}	Internal power supply (1.2 V)	Always used
U19	V _{ss}	Ground	Always used
U21	HPDQM0	SDRAM-I/F lower LL side data mask	Open
U22	HPDQM2	SDRAM-I/F lower UL side data mask	Open
U23	HPD25	SDRAM lower data bus	Open
U24	HPD24	SDRAM lower data bus	Open
V1	PTX6/CS6A/CE2B	Port/chip selection/PCMCIA card selection	Open
V2	D15	Data bus	Open
V3	D7	Data bus	Open
V4	D5	Data bus	Open
V6	V _{cc} Q	I/O power supply (3.3 V)	Open
V7	V _{ss}	Ground	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
V8	V _{DD}	Internal power supply (1.2 V)	Always used
V9	V _{ss}	Ground	Always used
V10	V _{ss}	Ground	Always used
V11	V _{DD}	Internal power supply (1.2 V)	Always used
V12	V _{SS}	Ground	Always used
V13	V _{ss}	Ground	Always used
V14	V _{DD}	Internal power supply (1.2 V)	Always used
V15	V _{ss}	Ground	Always used
V16	V _{ss}	Ground	Always used
V17	V_{DD}	Internal power supply (1.2 V)	Always used
V18	V _{SS}	Ground	Always used
V19	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
V21	HPA13	SDRAM interface address bus	Open
V22	HPA15	SDRAM interface address bus	Open
V23	HPDQM3	SDRAM-I/F lower LL side data mask	Open
V24	HPDQM1	SDRAM-I/F lower UL side data mask	Open
W1	D14	Data bus	Open
W2	D6	Data bus	Open
W3	D12	Data bus	Open
W4	D3	Data bus	Open
W6	V _{ss}	Ground	Open
W7	V _{cc} Q	I/O power supply (3.3 V)	Always used
W8	V _{ss}	Ground	Always used
W9	V _{cc} Q	I/O power supply (3.3 V)	Always used
W10	V _{cc} Q	I/O power supply (3.3 V)	Always used
W11	V _{ss}	Ground	Always used
W12	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
W13	V _{cc} Q	I/O power supply (3.3 V)	Always used
W14	V _{ss}	Ground	Always used
W15	$V_{cc}Q$	I/O power supply (3.3 V)	Always used

Pin No.	Pin Name	Description	Treatment of Unused Pin
W16	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
W17	V _{ss}	Ground	Always used
W18	$V_{cc}Q$	I/O power supply (3.3 V)	Always used
W19	V _{ss}	Ground	Always used
W21	HPA7	SDRAM interface address bus	Open
W22	HPA11	SDRAM interface address bus	Open
W23	HPA16	SDRAM interface address bus	Open
W24	HPA14	SDRAM interface address bus	Open
Y1	D13	Data bus	Open
Y2	D4	Data bus	Open
Y3	D2	Data bus	Open
Y4	D8	Data bus	Open
Y21	HPA5	SDRAM interface address bus	Open
Y22	HPA6	SDRAM interface address bus	Open
Y23	HPA12	SDRAM interface address bus	Open
Y24	HPA10	SDRAM interface address bus	Open
AA1	D11	Data bus	Open
AA2	D10	Data bus	Open
AA3	D9	Data bus	Open
AA4	WE0	Write in D7 to D0	Open
AA5	A23/PTE5	Address bus/port	Open
AA6	A21	Address bus	Open
AA7	A15	Address bus	Open
AA8	A11	Address bus	Open
AA9	A7	Address bus	Open
AA10	A3	Address bus	Open
AA11	IOIS16/PTC5	16-bit PCMCIA interface/port	Pulled up
AA12	D31/HPD47	Upper data bus/SDRAM upper data bus	Open
AA13	D28/HPD44	Upper data bus/SDRAM upper data bus	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AA14	D26/HPD42	Upper data bus/SDRAM upper data bus	Open
AA15	D25/HPD41	Upper data bus/SDRAM upper data bus	Open
AA16	HPD0	SDRAM lower data bus	Open
AA17	HPD13	SDRAM lower data bus	Open
AA18	HPD4	SDRAM lower data bus	Open
AA19	HPD6	SDRAM lower data bus	Open
AA20	HPDQM4/PTC0	SDRAM interface upper LL side data mask	Open
AA21	HPCS3	SDRAM interface chip selection	Open
AA22	HPA2	SDRAM interface address bus	Open
AA23	HPA9	SDRAM interface address bus	Open
AA24	HPA8	SDRAM interface address bus	Open
AB1	D1	Data bus	Open
AB2	CS0	Chip selection	Open
AB3	WE1/WE	Writ in D15 to D8/PCMCIA memory write	Open
AB4	WE3/ICIOWR	Write in D31 to D24/PCMCIA IO write	Open
AB5	A25/PTE7	Address bus/port	Open
AB6	A17	Address bus	Open
AB7	A13	Address bus	Open
AB8	A9	Address bus	Open
AB9	A5	Address bus	Open
AB10	A1	Address bus	Open
AB11	PTE1/IRQ5	Port/interrupt request	Pulled up
AB12	D30/HPD46	Upper data bus/SDRAM upper data bus	Open
AB13	D29/HPD45	Upper data bus/SDRAM upper data bus	Open
AB14	D27/HPD43	Upper data bus/SDRAM upper data bus	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AB15	D24/HPD40	Upper data bus/SDRAM upper data bus	Open
AB16	HPD1	SDRAM lower data bus	Open
AB17	HPD3	SDRAM lower data bus	Open
AB18	HPD10	SDRAM lower data bus	Open
AB19	HPD7	SDRAM lower data bus	Open
AB20	HPDQM7/PTC4	SDRAM interface upper UU side data mask	Open
AB21	HPCAS	SDRAM interface column address	Open
AB22	HPCS2	SDRAM interface chip selection	Open
AB23	HPA3	SDRAM interface address bus	Open
AB24	HPA4	SDRAM interface address bus	Open
AC1	D0	Data bus	Open
AC2	WE2/ICIORD	Write in D23 to D16/PCMCIA IO read	Open
AC3	A24/PTE6	Address bus/port	Open
AC4	A20	Address bus	Open
AC5	A18	Address bus	Open
AC6	A14	Address bus	Open
AC7	A10	Address bus	Open
AC8	A6	Address bus	Open
AC9	A2	Address bus	Open
AC10	A0	Address bus	Open
AC11	PTC7	Port	Open
AC12	D16/HPD32	Upper data bus/SDRAM upper data bus	Open
AC13	D18/HPD34	Upper data bus/SDRAM upper data bus	Open
AC14	D20/HPD36	Upper data bus/SDRAM upper data bus	Open
AC15	D22/HPD38	Upper data bus/SDRAM upper data bus	Open
AC16	HPD15	SDRAM lower data bus	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AC17	HPD14	SDRAM lower data bus	Open
AC18	HPD12	SDRAM lower data bus	Open
AC19	HPD5	SDRAM lower data bus	Open
AC20	HPD8	SDRAM lower data bus	Open
AC21	HPDQM6/PTC3	SDRAM interface upper UL side data mask	Open
AC22	HPRAS	SDRAM interface low address	Open
AC23	HPA1	SDRAM interface address bus	Open
AC24	HPCLK	SDRAM interface sync clock	Open
AD1	V _{ss}	Ground	Always used
AD2	RD	Read signal	Open
AD3	MD3	Mode setting pin	Open
AD4	A22/PTE4	Address bus/port	Always used
AD5	A19	Address bus	Open
AD6	A16	Address bus	Open
AD7	A12	Address bus	Open
AD8	A8	Address bus	Open
AD9	A4	Address bus	Open
AD10	СКО	System clock	Open
AD11	CS5A/CE2A	Chip selection/chip selection	Open
AD12	PTE0/IRQ4/BS	Port/interrupt request/bus start	Pulled up
AD13	D17/HPD33	Upper data bus/SDRAM upper data bus	Open
AD14	D19/HPD35	Upper data bus/SDRAM upper data bus	Open
AD15	D21/HPD37	Upper data bus/SDRAM upper data bus	Open
AD16	D23/HPD39	Upper data bus/SDRAM upper data bus	Open
AD17	HPCLKD	SDRAM interface sync clock	Open
AD18	HPD2	SDRAM lower data bus	Open
AD19	HPD11	SDRAM lower data bus	Open

Pin No.	Pin Name	Description	Treatment of Unused Pin
AD20	HPD9	SDRAM lower data bus	Open
AD21	HPDQM5/PTC2	SDRAM interface upper LU side data mask	Open
AD22	HPRDWR	SDRAM interface read-write	Open
AD23	HPCKE	SDRAM interface clock enable	Open
AD24	V _{ss}	Ground	Always used

1.4 Pin Functions

Table 1.4 lists the pin functions.

Table 1.4 Pin Functions

Classification	Symbol	I/O	Name	Function
Power supply	V_{DD}	Input	Power supply	Internal LSI power supply. Connect all V_{DD} pins to system power supply. If there is any open pin, the system will not work.
	V_{ss}	Input	Ground	Ground pin. Connect all $V_{\rm ss}$ pins to system power supply (0 V). If there is any open pin, the system will not work.
	VccQ	Input	Power supply	Power supply for I/O pins. Connect all $V_{\rm cc}$ pins to system power supply. If there is any open pin, the system will not work.
	DV33, DV12, AV33, AV12,	Input	Power supply for USB	DV33: 3.3 V-digital power supply for USB
	UV12			DV12: 1.2 V-digital power supply for USB
				AV33: 3.3 V-analog power supply for USB
				AV12: 1.2 V-analog power supply for USB
				UV12: 1.2 V-digital power supply for USB

Classification	Symbol	I/O	Name	Function
Clock	V _{DD} _PLL	Input	PLL power supply	Power supply pin for on-chip PLL oscillator
	Vss_PLL	Input	PLL ground	Ground pin for on-chip PLL oscillator
	V _{DD} _DLL	Input	DLL power supply	Power supply pin for on-chip DLL oscillator
	Vss_DLL	Input	DLL ground	Ground pin for on-chip DLL oscillator
	EXTAL	Input	External clock	Inputs external clock. When this pin is not used, this pin should be connected to V _{ss} .
	XTAL	Output	Clock output	This pin should be open.
	RCLK	Input	RTC clock	Connects the 32.768-kHz RTC clock. This clock must always be input while this LSI is operating.
	SIUMCKA SIUMCKB	Input	SIU external clock	Supplies external clock to the SIU module.
	EXTALUSB	Input	USB clock	48-MHz clock pin for USB
	XTALUSB	Output		Crystal resonator should be connected between EXTALUSB and XTALUSB. When using an external clock input, an external clock signal should be connected to EXTALSUB: and XTALUSB should be open.

Classification	Symbol	I/O	Name	Function
Operating mode control	MD8, MD5, TSTMD, MD3, MD2, MD1, MD0	Input	Mode setting	Sets operating mode. Do not change any of these pins during operation. MD2 to MD0 are for setting clock mode; MD3 for selecting bus width; MD5 for setting endian; MD8 for setting test mode. TSTMD is a test pin used during the shipping inspection of the LSIs, and should be fixed to VccQ.
System control	RESETP	Input	Power-on reset	System enters the power-on reset state when this pin goes low.
	RESETOUT	Output	Reset output	This pin goes low while this LSI is in the reset state.
	RESETA	Input	Reset input	System enters the reset state when this pin goes low with power being supplied.
	STATUS0	Output	Status output	This pin goes high while this LSI is in the U-standby mode.
	PDSTATUS	Output	Power-down status output	This pin goes high while this LSI at U-standby mode.
	TST	Input	Test pin	Test pin used during shipping inspection of the LSIs
				Should be fixed to VccQ.
Interrupt	NMI	Input	Nonmaskable interrupt	Nonmaskable interrupt request pin. Fix the pin high when not in use.
	IRQ7 to IRQ0	Input	Interrupt request 7 to 0	Maskable interrupt request pins. Either level input or edge input is selectable. For level input, high level and low level are selectable. For edge input, rising edge and falling edge are selectable.

Classification	Symbol	I/O	Name	Function
BSC	A25 to A0	Output	Address bus	Outputs an address.
(asynchronous bus)	D31 to D0	I/O	Data bus	16-/32-bit bidirectional bus
543)	CS0, CS4, CS5A, CS5B, CS6A, CS6B	Output	Chip select	Chip select signal for external memory or device
	СКО	Output	System clock	Supplies system clock to an external device.
	RD	Output	Read strobe	Indicates that data is read from an external device.
	RDWR	Output	Read/write	Read/write signal pin
	WE3 to WE0	Output	Write enable 3 to 0	Indicates that data is written to an external memory or device.
	WAIT	Input	Wait	Input for inserting a wait cycle into bus cycle during access to the external space
	BS	Output	Bus start	Signal to indicate the start of bus cycles.
				Asserted when normal space, burst ROM (clock asynchronous), or PCMCIA is accessed
	CE1A, CE2A, CE1B, CE2B	Output	PCICIA card select	PCMCIA card select signal
	ICIOWR	Output	PCMCIA IO write	Strobe signal to indicate the I/O write
	ICIORD	Output	PCMCIA IO read	Strobe signal to indicate the I/O read
	WE	Output	PCMCIA memory write	Strobe signal to indicate memory write cycles.
	IOIS16	Input	PCMCIA 16-bit I/O	Signal to indicate the 16-bit I/O of PCMCIA
				Enabled only in little endian mode.
				In big endian mode, drive this pin low.

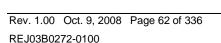
Classification	Symbol	I/O	Name	Function
SBSC	HPA16 to HPA1	Output	Address bus	Outputs an address.
(SDRAM bus)	HPD63 to HPD0	I/O	Data bus	16-/32-/64-bit bidirectional bus
	HPCS2, HPSC3	Output	Chip select 2, 3	Chip select signal for SDRAM
	HPCLK,	Output	Synchronous	SDRAM synchronous clock signal
	HPCLKR, HPCLKD		clock	The same clock signals are output.
	HPRDWR	Output	Read/write	Read/write signal pin
	HPDQM7 to HPDQM0	Output	Data mask 7 to 0	Indicates that data bits in SDRAM are selected.
	HPCAS	Output	Column address	Specifies the SDRAM column address.
	HPRAS	Output	Row address	Specifies the SDRAM row address
	HPCKE	Output	Clock enable	SDRAM clock enable signal
Direct memory access controller	DREQ0	Input	DMA transfer request	External DMA transfer request input pin
(DMAC)	DACK0	Output	DMA transfer request acknowledge	Output pin for acknowledgement of external DMA transfer request
Timer pulse unit (TPU)	TPUTO	Output	Output signal	Pulse output from the TPU
Serial I/O (SIO)	SIOTXD	Output	Transmit data	Transmit data pin
	SIORXD	Input	Receive data	Receive data pin
	SIOD	I/O	Transmit/receive data	Transmit/receive data pin
	SIOSTRB0, SIOSTRB1	Output	Serial strobe	Synchronizing signal pin
	SIOSCK	Output	Serial clock	Clock output pin
	SIOMCK	Input	Serial master clock	Serial master clock input pin (common to transmission and reception)

Classification	Symbol	I/O	Name	Function
Serial I/O with FIFO (SIOF)	SIOF0_TXD, SIOF1_TXD	Output	Transmit data	Transmit data pin
	SIOF0_RXD, SIOF1_RXD	Input	Receive data	Receive data pin
	SIOF0_SCK SIOF1_SCK	I/O	Serial clock	Serial clock pin (common to transmission and reception). This becomes an output fixed pin in SPI mode.
	SIOF0_MCK, SIOF1_MCK	Input	Master clock	Master clock input pin
	SIOF0_SYNC SIOF1_SYNC	I/O	Frame synchronizing signal	Frame synchronizing signal pin (common to transmission and reception). This selects fixed output and slave device 0 in SPI mode.
	SIOF0_SS1, SIOF1_SS1	Output	Slave device 1 select	Pin for selecting slave device 1 in SPI mode
	SIOF0_SS2, SIOF1_SS2	Output	Slave device 2 select	Pin for selecting slave device 2 in SPI mode
Serial communication interface with	SCIF0_TXD, SCIF1_TXD, SCIF2_TXD	Output	Transmit data	Transmit data pin
FIFO (SCIF)	SCIF0_RXD, SCIF1_RXD, SCIF2_RXD	Input	Receive data	Receive data pin
	SCIF0_SCK, SCIF1_SCK, SCIF2_SCK	1/0	Serial clock	Clock I/O pin
	SCIF0_RTS, SCIF1_RTS, SCIF2_RTS	Output	RTS signal	RTS output pin
	SCIF0_CTS, SCIF1_CTS, SCIF2_CTS	Input	CTS signal	CTS input pin

Classification	Symbol	I/O	Name	Function
SIM card module	SIM_RST	Output	Reset	Smart card reset output pin
(SIM)	SIM_CLK	Output	Clock	Smart card clock output pin
	SIM_D	I/O	Transmit/ receive data	Smart card transmit/receive data I/O pin
IrDA interface (IrDA)	IrDA_IN	Input	Receive data input	Receive data input
	IrDA_OUT	Output	Transmit data output	Transmit data output
I ² C bus interface (IIC)	SCL	I/O	I ² C clock I/O	I ² C bus clock I/O pin with bus drive function. Output type is NMOS open drain.
	SDA	I/O	I ² C data I/O	I ² C bus data I/O pin with bus drive function. Output type is NMOS open drain.
AND/NAND flash memory controller	FOE	Output	Flash memory output enable	Address latch enable: Asserted for address output and negated for data I/O.
(FLCTL)				Output enable: Asserted for data input/status read.
	FSC	Output	Flash memory serial clock	Read enable: Reads data at failing edge.
				Serial clock: Inputs/outputs data in synchronization with the signal.
	FCE	Output	Flash memory chip enable	Chip enable: Enables the flash memory connected to this LSI.
	FCDE	Output	Flash memory command data	Command latch enable: Asserted at command output.
			enable	Command data enable: Asserted at command output.
	FRB	Input	Flash memory ready/busy	Ready/busy: High level indicates ready state and low level indicates busy state.
V	FWE	Output	Flash memory write enable	Write enable: Flash memory latches commands, addresses, and data at rising edge.
	NAF7 to NAF0	I/O	Flash memory data	Data I/O pins

Classification	Symbol	I/O	Name	Function
Video I/O (VIO)	VIO_D15 to VIO_D0	Input	VIO data bus	VIO camera image data input
	VIO_CLK, VIO_CLK2	Input	VIO clock	VIO camera clock input
	VIO_VD, VIO_VD2	Input	VIO vertical sync	VIO camera vertical sync signal input
	VIO_HD, VIO_HD2	Input	VIO horizontal sync	VIO camera horizontal sync signal input
	VIO_STEM	Output	Strobe emission	Strobe emission signal
	VIO_STEX	Input	Strobe exposed	Strobe exposed signal
	VIO_FLD	Input	Field signal	Field identification signal
	VIO_CKO	Output	Clock output for camera	Clock output to camera
LCD controller (RGB interface)	LCDD23 to LCDD0	Output	LCD data bus	24-bit LCD panel data
	LCDDON	Output	Display ON/OFF signal	Display ON/OFF signal (for main LCD)
	LCDDON2	Output	Display ON/OFF signal 2	Display ON/OFF signal (for sub LCD)
	LCDHSYN	Output	Horizontal sync signal	Horizontal sync signal
	LCDDISP	Output	Display enable signal	Display enable signal
	LCDVSYN	Output	Vertical sync signal	Vertical sync signal
	LCDVSYN2	Output	Vertical sync signal 2	Vertical sync signal (for sub LCD)
	LCDVCPWC	Output	Power supply control	LCD module power supply control signal (for main LCD)
	LCDVCPWC2	Output	Power supply control 2	LCD module power supply control signal (for sub LCD)
	LCDVEPWC	Output	Power supply control	LCD module power supply control signal (for main LCD)
	LCDVEPWC2	Output	Power supply control 2	LCD module power supply control signal (for sub LCD)
	LCDDCK	Output	Dot clock signal	Data synchronizing signal

Classification	Symbol	I/O	Name	Function
LCD controller (RGB interface)	LCDLCLK	Input	Input clock	Input clock signal
LCD controller (SYS interface)	LCDD23 to LCDD0	I/O	LCD data bus	24-bit LCD panel data
	LCDDON	Output	Display ON/OFF signal	Display ON/OFF signal (for main LCD)
	LCDDON2	Output	Display ON/OFF signal 2	Display ON/OFF signal (for sub LCD)
	LCDCS	Output	Chip select	Chip select signal (for main LCD)
	LCDRD	Output	Read strobe	Read strobe signal
	LCDRS	Output	Register select	Register select signal
	LCDVSYN	I/O	Vertical sync signal	Vertical sync signal
	LCDVSYN2	I/O	Vertical sync signal 2	Vertical sync signal (for sub LCD)
	LCDVCPWC	Output	Power supply control	LCD module power supply control signal (for main LCD)
	LCDVCPWC2	Output	Power supply control 2	LCD module power supply control signal (for sub LCD)
	LCDVEPWC	Output	Power supply control	LCD module power supply control signal (for main LCD)
	LCDVEPWC2	Output	Power supply control 2	LCD module power supply control signal (for sub LCD)
	LCDWR	Output	Write strobe	Write strobe signal
	LCDCS2	Output	Chip select 2	Chip select signal 2 (for sub LCD)
	LCDLCLK	Input	Input clock	Input clock signal
Video output unit (VOU)	DV_D15 to DV_D0	Output	Data output	Data output
	DV_CLK	Output	Clock output	Pixel clock output
	DV_VSYNC	Output	Vertical sync signal output	VOU vertical sync signal output
	DV_HSYNC	Output	Horizontal sync signal output	VOU horizontal sync signal output
	DV_CLKI	Input	Video clock input	Video clock input pin


Classification	Symbol	I/O	Name	Function	
TS interface	TS_SCK	Input	Clock	TS input clock	
(TSIF)	TS_SDAT	Input	Receive data	TS serial data	
	TS_SDEN	Input	Data enable	TS data enable signal	
	TS_SPSYNC	Input	Data sync signal	TS data sync signal	
Sound interface	SIUAOLR	I/O	Sound output L/R	Sound output L/R clock pins	
unit (SIUA/SIUB)	SIUBOLR		clock	(master or slave).	
(3107/3106)	SIUAOBT	I/O	Sound output bit	Sound output bit clock pins	
	SIUBOBT		clock	(master or slave).	
	SIUAOSLD	Output	Sound output	Sound output serial data pins	
	SIUBOSLD		serial data		
	SIUAOSPD	Output	SPDIF output serial data	SPDIF output serial data pin	
	SIUAILR	I/O	Sound input L/R	Sound input L/R clock pins	
	SIUBILR		clock	(master or slave).	
	SIUAIBT	I/O	Sound input bit	Sound input bit clock pins	
	SIUBIBT		clock	(master or slave).	
	SIUAISLD	Input	Sound input Sound input seri	Sound input serial data pins	
	SIUBISLD		serial data		
	SIUAISPD	Input	SPDIF input serial data	SPDIF input serial data pin	
	SIUFCKA, SIUFCKB	Output	Sampling clock output	Sampling clock (clk_fsa and clk_fsb) output pins	
USB function module (USBF)	VBUS	Input	USB power source detection	USB cable connection monitor pin	
	DP	I/O	D+ I/O	USB internal transceiver D+ I/O pin	
	DM	I/O	D- I/O	USB internal transceiver D- I/O pin	
	REFRIN	_	_	Reference resistor connection pin for constant current circuit. Should be pulled down and connected to AG33.	

Classification	Symbol	I/O	Name	Function
Key scan interface	KEYIN6 to KEYIN0	Input	Key input	Key scan interface for input
(KEYSC)	KEYOUT5 to KEYOUT0	Output	Key output	Key scan interface for output
I/O ports	PTA to PTZ	I/O Input Output	General port	General I/O port pins
SD host interface	SDHICD	Input	Card detection	SD card detection signal
(SDHI)	SDHIWP	Input	Write protection	SD write protection signal
	SDHID3 to SDHID0	I/O	Data bus	SD data bus signals
	SDHICMD	I/O	Command output and response input	SD command output and response input signal
	SDHICLK	Output	Clock	SD clock output pin
User debugging	TCK	Input	Test clock	Test clock input pin
interface (H-UDI)*	TMS	Input	Test mode select	Test mode select signal input pin
(11-001)	TDI	Input	Test data input	Serial input pin for instructions and data
	TDO	Output	Test data output	Serial output pin for instructions and data
	TRST	Input	Test reset	H-UDI reset pin
				When supplying a power, the TRST pin should be asserted at least for the same period as the RESETP pin.
	ASEBRK/ BRKACK	I/O	Break input/ acknowledge	Break signal input from emulator/break acknowledge output signal
	MPMD	Input	ASE mode	Sets ASE mode. When an emulator is not used, this pin should be open.

Classification	Symbol	I/O	Name	Function
Advanced user debugger (AUD)	AUDATA3 to AUDATA0	Output	AUD data	Branch destination address output pins in branch trace mode
	AUDCK	Output	AUD clock	Synchronizing clock output pin in branch trace mode
	AUDSYNC	Output	AUD synchronizing signal	Data start position recognition signal output pin in branch trace mode

Note: * When an emulator is used, see the relevant User's Manual.

Section 2 DSP Unit

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

2.1 Overview

This LSI incorporates a DSP unit and X/Y memory directly connected to the DSP unit. The SH4AL-DSP supports the DSP extended function instruction sets needed to control the DSP unit and X/Y memory. The DSP extended function instructions are divided into four groups.

(1) Extended System Control Instructions for the CPU

If the DSP extended function is enabled, the following extended system control instructions can be used for the CPU.

- Repeat loop control instructions and repeat loop control register access instructions are added.
 Looped programs can be executed efficiently by using the zero-overhead repeat control unit.
 For details, refer to section 6.3, CPU Extended Instructions, in the SH7722 Hardware Manual.
- Modulo addressing control instructions and control register access instructions are added.
 Function allows access to data with a circular structure. For details, refer to section 6.4, DSP Data Transfer Instructions, in the SH7722 Hardware Manual.
- DSP unit register access instructions are added. Some of the DSP unit registers can be used in the same way as the CPU system registers. For details, refer to section 6.4, DSP Data Transfer Instructions, in the SH7722 Hardware Manual.

Note: This LSI emulates the conventional repeat control of SETRC instruction by using the extended repeat control of LDRC instruction. It changes the value of RF bits in SR register, RS and RE registers during the conventional repeat control. This specification is different from the original SH3-DSP's one. If the conventional repeat is used, then replace it to the repeat macro (REPEAT) or perform LDRS and LDRE instructions before setting the repeat count more than one cycle by SETRC instruction. The extended repeat control of LDRC instruction is highly recommended, because the conventional repeat control has some restrictions.

(2) Data Transfer Instructions for Data Transfers between DSP Unit and On-Chip X/Y Memory

Data transfer instructions for data transfers between the DSP unit and on-chip X/Y memory are called double-data transfer instructions. Instruction codes for these double-transfer instructions are 16 bit codes like CPU instruction codes. These data transfer instructions perform data transfers between the DSP unit and on-chip X/Y memory that is directly connected to the DSP unit. These data transfer instructions can be described in combination with other DSP unit operation instructions. For details, refer to section 6.4, DSP Data Transfer Instructions, in the SH7722 Hardware Manual.

(3) Data Transfer Instructions for Data Transfers between DSP Unit Registers and All Logical Address Spaces

Data transfer instructions for data transfers between DSP unit registers and all logical address spaces are called single-data transfer instructions. Instruction codes for the single-transfer instructions are 16 bit codes like CPU instruction codes. These data transfer instructions performs data transfers between the DSP unit registers and all logical address spaces. For details, refer to section 6.4, DSP Data Transfer Instructions, in the SH7722 Hardware Manual.

(4) DSP Unit Operation Instructions

DSP unit operation instructions are called DSP data operation instructions. These instructions are provided to execute digital signal processing operations at high speed using the DSP. Instruction codes for these instructions are 32 bits. The DSP data operation instruction fields consist of two fields: field A and field B. In field A, a function for double data transfer instructions can be descried. In field B, ALU operation instructions and multiply instructions can be described. The instructions described in fields A and B can be executed in parallel. A maximum of four instructions (ALU operation, multiply, and two data transfers) can be executed in parallel. For details, refer to section 6.5, DSP Data Operation Instructions, in the SH7722 Hardware Manual.

- Notes: 1. 32-bit instruction codes are handled as two consecutive 16-bit instruction codes. Accordingly, 32-bit instruction codes can be assigned to a word boundary. 32-bit instruction codes must be stored in memory, address 2n and address 2n + 2, in this order, in word units.
 - 2. In little endian, the upper and lower words must be stored in memory as data to be accessed in word units.

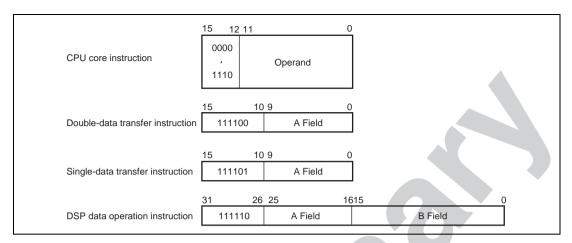


Figure 2.1 DSP Instruction Format

Section 3 Memory Management Unit (MMU)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

This LSI supports an 8-bit address space identifier, a 32-bit virtual address space, and a 29-bit or 32-bit physical address space. Address translation from virtual addresses to physical addresses is enabled by the memory management unit (MMU) in this LSI. The MMU performs high-speed address translation by caching user-created address translation table information in an address translation buffer (translation lookaside buffer: TLB).

This LSI has four instruction TLB (ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by hardware. A paging system is used for address translation. It is possible to set the virtual address space access right and implement memory protection independently for privileged mode and user mode.

The MMU of this LSI runs in several operating modes. In view of flag functions of the MMU, TLB compatible mode (four paging sizes with four protection bits) and TLB extended mode (eight paging sizes with six protection bits) are provided.

Selection between TLB compatible mode and TLB extended mode is made by setting the relevant control register (bit ME in the MMUCR register) by software.

The flag functions of the MMU are explained in parallel for both TLB compatible mode and TLB extended mode.

Note: The 32-bit address extended mode is an option. For support/unsupport of this mode, see the hardware manual of the product.

3.1 Overview of MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in (0) in figure 3.1, when a process is smaller in size than the physical memory, the entire process can be mapped onto physical memory, but if the process increases in size to the point where it does not fit into physical memory, it becomes necessary to divide the process into smaller parts, and map the parts requiring execution onto physical memory as occasion arises ((1) in figure 3.1). Having this mapping onto physical memory executed consciously by the process itself imposes a heavy burden on the process. The virtual memory system was devised as a means of handling all physical memory mapping to reduce this burden ((2) in figure 3.1). With a virtual memory system, the size of the available virtual memory is much larger than the actual physical memory, and processes are mapped onto this virtual memory. Thus processes only have to consider their operation in virtual memory, and mapping from virtual memory to physical memory is handled by the MMU. The MMU is normally managed by the OS, and physical memory switching is carried out so as to enable the virtual memory required by a process to be mapped smoothly onto physical memory. Physical memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing system (TSS) that allows a number of processes to run simultaneously ((3) in figure 3.1). Running a number of processes in a TSS did not increase efficiency since each process had to take account of physical memory mapping. Efficiency is improved and the load on each process reduced by the use of a virtual memory system ((4) in figure 3.1). In this virtual memory system, virtual memory is allocated to each process. The task of the MMU is to map a number of virtual memory areas onto physical memory in an efficient manner. It is also provided with memory protection functions to prevent a process from inadvertently accessing another process's physical memory.

When address translation from virtual memory to physical memory is performed using the MMU, it may happen that the translation information has not been recorded in the MMU, or the virtual memory of a different process is accessed by mistake. In such cases, the MMU will generate an exception, change the physical memory mapping, and record the new address translation information.

Although the functions of the MMU could be implemented by software alone, having address translation performed by software each time a process accessed physical memory would be very inefficient. For this reason, a buffer for address translation (the translation lookaside buffer: TLB) is provided by hardware, and frequently used address translation information is placed here. The TLB can be described as a cache for address translation information. However, unlike a cache, if address translation fails—that is, if an exception occurs—switching of the address translation information is normally performed by software. Thus memory management can be performed in a flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical memory: the paging method, using fixed-length address translation, and the segment method, using variable-length address translation. With the paging method, the unit of translation is a fixed-size address space called a page.

In the following descriptions, the address space in virtual memory is referred to as virtual address space, and the address space in physical memory as physical address space.

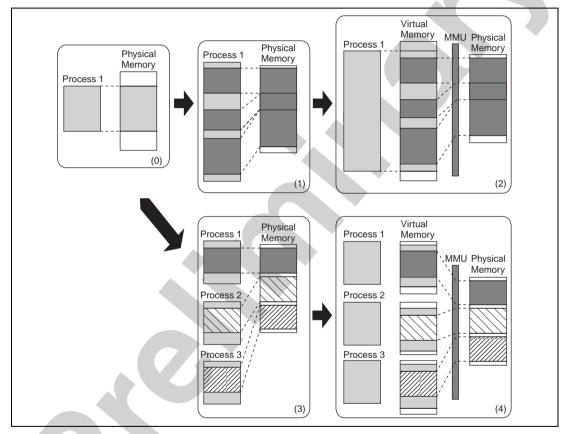


Figure 3.1 Role of MMU

3.1.1 Address Spaces

(1) Virtual Address Space

This LSI supports a 32-bit virtual address space, and can access a 4-Gbyte address space. The virtual address space is divided into a number of areas, as shown in figures 3.2 and 3.3. In privileged mode, the 4-Gbyte space from the P0 area to the P4 area can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. When the DSP bit in SR is 1 or the RMD bit in the on-chip memory control register (RAMCR) is 1, a 16-Mbyte space in the Uxy area can be accessed. Accessing areas other than the U0 area and Uxy area in user mode will cause an address error.

When the AT bit in MMUCR is set to 1 and the MMU is enabled, the P0, P3, and U0 areas can be mapped onto any physical address space in 1-, 4-, 64-Kbyte, or 1-Mbyte page units in TLB compatible mode and in 1-, 4-, 8-, 64-, 256-Kbyte, 1-, 4-, or 64-Mbyte page units in TLB extended mode. By using an 8-bit address space identifier, the P0, P3, and U0 areas can be increased to a maximum of 256. Mapping from the virtual address space to the 29-bit physical address space is carried out using the TLB.

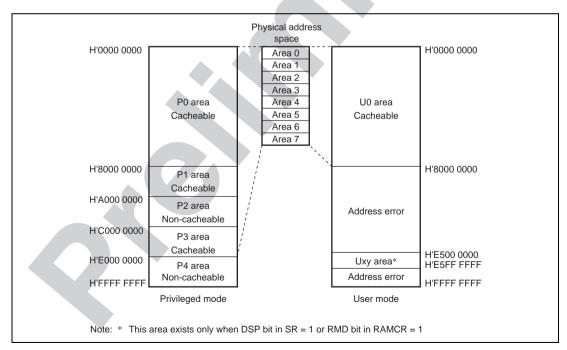


Figure 3.2 Virtual Address Space (AT in MMUCR= 0)

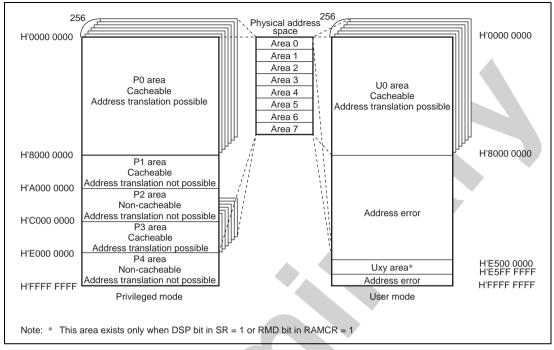


Figure 3.3 Virtual Address Space (AT in MMUCR= 1)

(a) P0, P3, and U0 Areas

The P0, P3, and U0 areas allow address translation using the TLB and access using the cache.

When the MMU is disabled, replacing the upper 3 bits of an address with 0s gives the corresponding physical address. Whether or not the cache is used is determined by the CCR setting. When the cache is used, switching between the copy-back method and the write-through method for write accesses is specified by the WT bit in CCR.

When the MMU is enabled, these areas can be mapped onto any physical address space in 1-, 4-, 64-Kbyte, or 1-Mbyte page units in TLB compatible mode and in 1-, 4-, 8-, 64-, 256-Kbyte, 1-, 4-, or 64-Mbyte page units in TLB extended mode using the TLB. When CCR is in the cache enabled state and the C bit for the corresponding page of the TLB entry is 1, accesses can be performed using the cache. When the cache is used, switching between the copy-back method and the write-through method for write accesses is specified by the WT bit of the TLB entry.

When the P0, P3, and U0 areas are mapped onto the control register area which is allocated in the areas 1 and 7 in physical address space by means of the TLB, the C bit for the corresponding page must be cleared to 0.

(b) P1 Area

The P1 area does not allow address translation using the TLB but can be accessed using the cache.

Regardless of whether the MMU is enabled or disabled, clearing the upper 3 bits of an address to 0 gives the corresponding physical address. Whether or not the cache is used is determined by the CCR setting. When the cache is used, switching between the copy-back method and the write-through method for write accesses is specified by the CB bit in CCR.

(c) P2 Area

The P2 area does not allow address translation using the TLB and access using the cache.

Regardless of whether the MMU is enabled or disabled, clearing the upper 3 bits of an address to 0 gives the corresponding physical address.

(d) P4 Area

The P4 area is mapped onto the internal resource. This area does not allow address translation using the TLB. This area cannot be accessed using the cache. The P4 area is shown in detail in figure 3.4.

		1
H'E000 0000	Reserved area	
H'E500 0000 H'E5FF FFFF	On-chip memory area	
	Reserved area	
H'F000 0000	Instruction cache address array	
H'F100 0000	Instruction cache data array	
H'F200 0000	Instruction TLB address array	
H'F300 0000	Instruction TLB data array	
H'F400 0000	Operand cache address array	
H'F500 0000	Operand cache data array	
H'F600 0000	Unified TLB address array	
H'F700 0000	Unified TLB data array	
H'F800 0000		
	Reserved area	
H'FC00 0000		
	Control register area	
H'FFFF FFFF		

Figure 3.4 P4 Area

The area from H'F000 0000 to H'F0FF FFFF is used for direct access to the instruction cache address array. For details, see section 8.6.1, IC Address Array, in the SH7722 Hardware Manual.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data array. For details, see section 8.6.2, IC Data Array, in the SH7722 Hardware Manual.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB address array. For details, see section 7.7.1, ITLB Address Array, in the SH7722 Hardware Manual.

The area from H'F300 0000 to H'F37F FFFF is used for direct access to instruction TLB data array. For details, see section 7.7.2, ITLB Data Array (TLB Compatible Mode) and section 7.7.3, ITLB Data Array (TLB Extended Mode), in the SH7722 Hardware Manual.

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache address array. For details, see section 8.6.3, OC Address Array, in the SH7722 Hardware Manual.

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data array. For details, see section 8.6.4, OC Data Array, in the SH7722 Hardware Manual.

The area from H'F600 0000 to H'F60F FFFF is used for direct access to the unified TLB address array. For details, see section 7.7.4, UTLB Address Array, in the SH7722 Hardware Manual.

The area from H'F700 0000 to H'F70F FFFF is used for direct access to unified TLB data array. For details, see section 7.7.5, UTLB Data Array (TLB Compatible Mode) and section 7.7.6, UTLB Data Array (TLB Extended Mode), in the SH7722 Hardware Manual.

The area from H'FC00 0000 to H'FFFF FFFF is the on-chip peripheral module control register area. For details, see register descriptions in each section of the hardware manual of the product.

(e) Uxy Area

The Uxy area is available in user mode when the DSP bit in SR is 1 or the RMD bit in RAMCR is 1. This area is mapped to the on-chip memory of this LSI. In user mode, accessing this area when the DSP bit in SR is 0 and the RMD bit in RAMCR is 0 will cause an address error. This area does not allow address translation using the TLB and access using the cache. For details on the Uxy area, see section 9, On-Chip Memory, in the SH7722 Hardware Manual.

(2) Physical Address Space

This LSI supports a 29-bit physical address space. The physical address space is divided into eight areas as shown in figure 3.5. Area 7 is a reserved area. For details, see the section 11, Bus State Controller (BSC).

Only when area 7 in the physical address space is accessed using the TLB, addresses H'1C00 0000 to H'1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the control register area in the P4 area in the virtual address space.

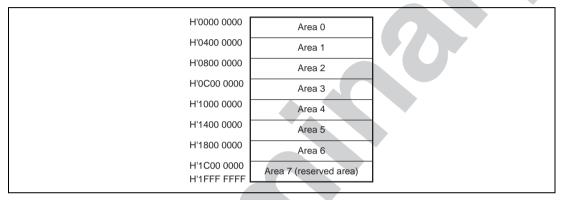


Figure 3.5 Physical Address Space

(3) Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and translation to physical addresses is carried out in these page units. The address translation table in external memory contains the physical addresses corresponding to virtual addresses and additional information such as memory protection codes. Fast address translation is achieved by caching the contents of the address translation table located in external memory into the TLB. Basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In the event of an access to an area other than the P4 area, the accessed virtual address is translated to a physical address. If the virtual address belongs to the P1 or P2 area, the physical address is uniquely determined without accessing the TLB. If the virtual address belongs to the P0, U0, or P3 area, the TLB is searched using the virtual address, and if the virtual address is recorded in the TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and processing switches to the TLB miss exception handling routine. In the TLB miss exception handling routine, the address translation table in external memory is searched, and the corresponding physical address and page management information are recorded in the TLB. After the return from the exception handling routine, the instruction which caused the TLB miss exception is re-executed.

(4) Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either of which can be selected with the SV bit in MMUCR. In the single virtual memory system, a number of processes run simultaneously, using virtual address space on an exclusive basis, and the physical address corresponding to a particular virtual address is uniquely determined. In the multiple virtual memory system, a number of processes run while sharing the virtual address space, and particular virtual addresses may be translated into different physical addresses depending on the process. The only difference between the single virtual memory and multiple virtual memory systems in terms of operation is in the TLB address comparison method (see section 7.3.3, Address Translation Method), in the SH7722 Hardware Manual.

(5) Address Space Identifier (ASID)

In multiple virtual memory mode, an 8-bit address space identifier (ASID) is used to distinguish between multiple processes running simultaneously while sharing the virtual address space. Software can set the 8-bit ASID of the currently executing process in PTEH in the MMU. The TLB does not have to be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for multiple processes running simultaneously while using the virtual address space on an exclusive basis.

Note: Two or more entries with the same virtual page number (VPN) but different ASID must not be set in the TLB simultaneously in single virtual memory mode.

Section 4 Caches

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

This LSI has an on-chip 32-kbyte instruction cache (IC) for instructions and an on-chip 32-kbyte operand cache (OC) for data.

4.1 Features

The features of the cache are given in table 4.1.

Table 4.1 Cache Features

Item	Instruction Cache	Operand Cache
Capacity	32-kbyte cache	32-kbyte cache
Туре	4-way set-associative, virtual address index/physical address tag	4-way set-associative, virtual address index/physical address tag
Line size	32 bytes	32 bytes
Entries	256 entries/way	256 entries/way
Write method		Copy-back/write-through selectable
Replacement method	LRU (least-recently-used) algorithm	LRU (least-recently-used) algorithm

The operand cache of this LSI is the 4-way set-associative, each way comprising 256 cache lines. Figure 4.1 shows the configuration of the operand cache.

The instruction cache is 4-way set-associative, each way comprising 256 cache lines. Figure 4.2 shows the configuration of the instruction cache.

This LSI incorporates an instruction cache (IC) way-prediction scheme to reduce power consumption. In addition, the non-support detection exception register (EXPMASK) can be used to detect memory-mapped associative write functions as exceptions. For details, see section 5, Exception Handling, in the SH7722 Hardware Manual.

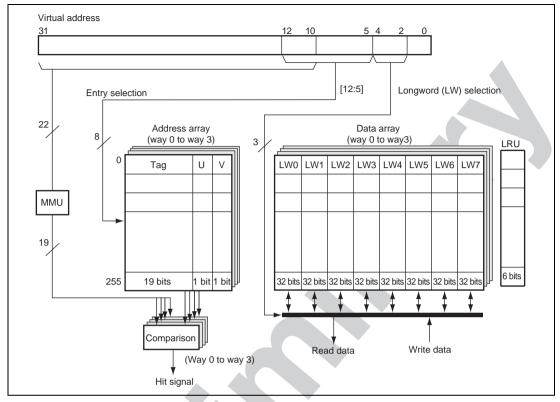


Figure 4.1 **Configuration of Operand Cache (OC)**

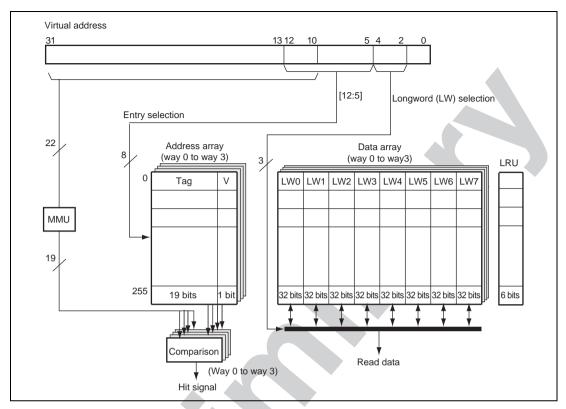


Figure 4.2 Configuration of Instruction Cache (IC)

(1) Tag

Stores the upper 19 bits of the 29-bit physical address of the data line to be cached. The tag is not initialized by a power-on or manual reset.

(2) V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

(3) U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-back mode. That is, the U bit indicates a mismatch between the data in the cache line and the data in external memory. The U bit is never set to 1 while the cache is being used in write-through mode, unless it is modified by accessing the memory-mapped cache (see section 8.6, Memory-Mapped Cache Configuration), in the SH7722 Hardware Manual. The U bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

(4) Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized by a power-on or manual reset.

(5) LRU

In a 4-way set-associative method, up to 4 items of data can be registered in the cache at each entry address. When an entry is registered, the LRU bit indicates which of the 4 ways it is to be registered in. The LRU mechanism uses 6 bits of each entry, and its usage is controlled by hardware. The LRU (least-recently-used) algorithm is used for way selection, and selects the less recently accessed way. The LRU bits are initialized to 0 by a power-on reset but not by a manual reset. The LRU bits cannot be read from or written to by software.

Section 5 On-Chip Memory

This LSI includes three types of memory modules for storage of instructions and data: X/Y memory, IL memory, and U memory. The X/Y memory holds DSP-processing and other data, while the IL memory is suitable for instruction storage. The U memory can store instructions and/or data.

5.1 Features

(1) X/Y Memory

- Capacity
- Total X/Y memory is 16 kbytes.

 Page
 - There are four pages. The X memory is divided into two pages (pages 0 and 1) and the Y memory is divided into two pages (pages 0 and 1).
- Memory map

Both X memory and Y memory are allocated in a virtual address space, physical address space, and either an X bus address space or Y bus address space.

With virtual address space, X/Y memory is allocated in the addresses shown in table 5.1. These addresses are included either in the area called P4 (when SR.MD = 1) or the area called Uxy (when SR.MD = 0 and SR.DSP = 1) according to CPU operating mode.

Table 5.1 X/Y Memory Virtual Addresses

	Memory Size (Four Pages Total)
Page	16 kbytes
Page 0 of X memory	H'E5007000 to H'E5007FFF
Page 1 of X memory	H'E5008000 to H'E5008FFF
Page 0 of Y memory	H'E5017000 to H'E5017FFF
Page 1 of Y memory	H'E5018000 to H'E5018FFF

On the other hand, with physical address space, the X/Y memory is allocated in a part of area 1. When X/Y memory is accessed from the physical address space, addresses where the upper three bits of the addresses shown in table 5.1 are made 0 are used.

The X bus and Y bus address spaces are 16-bit address spaces; therefore, addresses where the respective upper sixteen bits of the X memory and Y memory addresses shown in table 5.1 are ignored are used.

Ports

Each page has four independent read/write ports and is connected to each bus. The X memory is connected to the SuperHyway bus, the cache/RAM internal bus, the X bus, and the operand bus. The Y memory is connected to the SuperHyway bus, the cache/RAM internal bus, the Y bus, and the operand bus. The operand bus is used for memory access from the virtual address space. The cache/RAM internal bus is used for memory access from the physical address space. The X bus and the Y bus are used for memory access from the X bus and Y bus address spaces. The SuperHyway bus is used for memory access from the SuperHyway bus master module.

In the event of simultaneous accesses to the same page from different buses, access is processed according to priority. For the X memory, the priority order is: SuperHyway bus > cache/RAM internal bus > X bus > operand bus. For the Y memory, the priority order is: SuperHyway bus > cache/RAM internal bus > Y bus > operand bus.

• Priority order

In the event of simultaneous accesses to the same page from different buses, access is processed according to priority. For X memory the priority order is: SuperHyway bus > cache/RAM internal bus > X bus > operand bus. For Y memory the priority order is: SuperHyway bus > cache/RAM internal bus > Y bus > operand bus.

(2) IL Memory

- Capacity
 - The IL memory is 4 kbytes.
- Page

The IL memory is only one page.

Memory map

The IL memory is allocated to both the virtual address space and the physical address space. With virtual address space, the IL memory is allocated in the addresses shown in table 5.2. These addresses are included either in the area called P4 (when SR.MD = 1) or the area called Uxy (when SR.MD = 0 and SR.DSP = 1) according to CPU operating mode.

Table 5.2 IL Memory Addresses

	Memory Size		
Page	4 kbytes		
IL memory	H'E520 0000 to H'E520 0FFF		

On the other hand, in physical address space, the IL memory is allocated in part of the area 1. When the IL memory is accessed from the physical address space, addresses where the upper three bits of the addresses shown in table 5.2 are made 0 are used.

Ports

The page has three independent read/write ports and is connected to the SuperHyway bus, the cache/RAM internal bus, and the instruction bus. The instruction bus is used for memory access from the virtual address space through instruction fetch. The cache/RAM internal bus is used when the IL memory is accessed through instruction fetch and operand access. The SuperHyway bus is used for IL memory access from the SuperHyway bus master module.

Priority

In the event of simultaneous accesses to the same page from different buses, the access requests are processed according to priority. The priority order is: SuperHyway bus > cache/RAM internal bus > instruction bus.

(3) U Memory

Capacity

Total U memory is 128 kbytes.

· Methods for accessing the U memory

U memory can be accessed both through cacheable access suitable for instruction fetch and random access, as well as through non-cacheable access which is optimized for sequential operand access by using the read buffer.

Memory map

U memory is allocated in the addresses shown in table 5.3 in both the virtual address space and the physical address space.

The address in the virtual address space can be accessed from the P4 area (when SR.MD = 1) or from the Uxy area (when SR.MD = 0 and SR.DSP = 1) according to CPU operating mode. When this address is used, the U memory is always accessed through non-cacheable access.

The address in the physical address space can be accessed from areas U0, P0, P1 or P3. When one of these addresses is used, whether the U memory is accessed through cacheable access or non-cacheable access depends on the settings of the CCR register, the MMUCR register, and TLB

Table 5.3 U Memory Addresses

	Memory Size			
Address Space	128 kbytes			
Virtual address	H'A55F0000 to H'A560FFFF			
Physical address	H'055F0000 to H'0560FFFF			

Ports

The U memory has three independent read/write ports and is connected to the operand bus, the cache/RAM internal bus, and the SuperHyway bus. The operand bus is used when U memory is accessed through non-cacheable operand access. The cache/RAM internal bus is used when U memory is accessed through instruction fetch and cacheable operand access. The SuperHyway bus is used for U memory access from the SuperHyway bus master module.

Priority

In the event of simultaneous access to the U memory from different buses, the access requests are processed according to priority. The priority order is: SuperHyway bus > cache/RAM internal bus > operand bus.

Section 6 Interrupt Controller (INTC)

The interrupt controller (INTC) determines the priority of interrupt sources and controls interrupt requests to the CPU. Some INTC registers set the priority of each interrupt and interrupt requests are processed according to the user-set priority.

6.1 Features

The INTC has the following features.

- Fifteen levels of interrupt priority can be set
 By setting the interrupt priority registers, the priorities of on-chip peripheral module interrupts can be selected from 15 levels for individual request sources.
- NMI noise canceler function
 An NMI input-level bit indicates the NMI pin state. By reading this bit in the interrupt exception handling routine, the pin state can be checked, enabling it to be used as a noise canceler.
- NMI request masking when the block bit (BL) in the status register (SR) is set to 1 Whether to mask NMI requests when the BL bit in SR is set to 1 can be selected.
- User-mode interrupt disabling function
 Specifying an interrupt mask level in the user interrupt mask level register (USERIMASK)
 disables interrupts which are not higher in priority than the specified mask level in user mode.

Figure 6.1 shows a block diagram of the INTC.

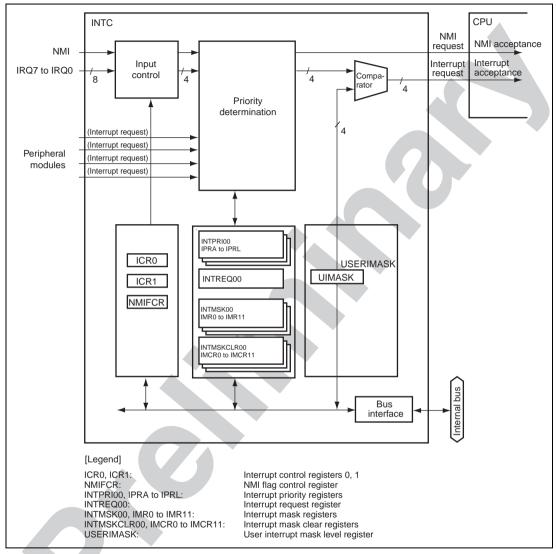


Figure 6.1 Block Diagram of INTC

6.2 Input/Output Pins

Table 6.1 shows the INTC pin configuration.

Table 6.1 Pin Configuration

Pin Name	Function	I/O	Description
NMI	Nonmaskable interrupt input pin	Input	Input of interrupt request signal that is not maskable
IRQ7 to IRQ0	IRQ7 to IRQ0 interrupt input pins	Input	Input of IRQ7 to IRQ0 interrupt request signals (maskable by the IMASK bit setting in SR)

6.3 Interrupt Sources

There are three types of interrupt sources: NMI, IRQ, and on-chip peripheral modules. Each interrupt has a priority level (16 to 0), with 1 the lowest and 16 the highest. Priority level 0 masks an interrupt, so the interrupt request is ignored.

6.3.1 NMI Interrupt

The NMI interrupt has the highest priority level of 16. When the BL bit in SR of the CPU is 0, NMI interrupts are always accepted. In sleep or standby mode, NMI interrupts are accepted regardless of the BL setting. In addition, NMI interrupts are accepted by setting the NMIB bit in ICR0 regardless of the BL setting.

The NMI signal is edge-detected. The NMIE bit in ICR0 is used to select either rising or falling edge detection. After the NMIE bit in ICR0 is modified, NMI interrupts are not detected for a maximum of six bus clock cycles.

NMI interrupt exception handling does not affect the interrupt mask level (IMASK) in SR.

6.3.2 IRQ Interrupts

IRQ interrupts are input from pins IRQ7 to IRQ0. When level-sensing is selected for IRQ interrupts by the IRQnS bits (n = 0 to 7) in ICR1, the pin levels must be retained until the CPU accepts the interrupts and starts interrupt handling.

If an interrupt request is canceled before the CPU accepts it, the INTC holds the interrupt source until the CPU accepts another interrupt. The interrupt held in the INTC can be cleared by setting the corresponding interrupt mask bit (IMR bit in the interrupt mask register) to 1.

When the INTMU bit in CPUOPM is set to 1, the interrupt mask level (IMASK) in SR is automatically modified to the level of the accepted interrupt. When the INTMU bit is cleared to 0, the IMASK value in SR is not affected by the accepted interrupt.

6.3.3 On-Chip Peripheral Module Interrupts

On-chip peripheral module interrupts are generated by the peripheral modules.

Not every interrupt source is assigned a different interrupt vector. Sources are reflected in the interrupt event register (INTEVT). It is easy to identify sources by using the value of INTEVT as a branch offset in the exception handling routine.

A priority level (from 15 to 0) can be set for each module by writing to IPRA to IPRL.

When the INTMU bit in the CPUOPM is set to 1, the interrupt mask level (IMASK) in SR is automatically modified to the level of the accepted interrupt. When the INTMU bit in CPUOPM is cleared to 0, the IMASK value in SR is not affected by the accepted interrupt.

The interrupt source flags and interrupt enable flags in each peripheral module must be updated only while the BL bit in SR is set to 1 or corresponding interrupt request is masked by the IMASK bit in SR, IMRs, or USERIMASK. To prevent accepting unintentional interrupts that should have been updated, read the on-chip peripheral register with the corresponding flag, wait for the priority determination time for peripheral modules shown in table 10.8 (e.g. a period required to read a register in INTC once which are driven by the peripheral module clock), and then clear the BL bit to 0 or clear the corresponding interrupt mask by changing the mask setting. Thus, the necessary interval for internal processing is ensured. To update multiple flags, after updating the last flag, read only the register that includes the last flag.

If a flag is updated while the BL bit is 0, execution may branch to the interrupt handling routine with INTEVT = 0; interrupt handling may start depending on the timing relationship between flag updating and interrupt request detection in the LSI. In this case, operation can be continued without causing any problems by executing the RTE instruction.

6.3.4 Interrupt Exception Handling and Priority

Tables 6.2 and 6.3 show the interrupt sources, the codes for the interrupt event register (INTEVT), and the interrupt priority.

Each interrupt source is assigned to a unique INTEVT code. The start address of the exception handling routine is common for all interrupt sources. This is why, for instance, the value of INTEVT is used as an offset at the start of the exception handling routine to branch execution in order to identify the interrupt source.

On-chip peripheral module interrupt priorities can be set freely between 15 and 0 for each module by using IPRA to IPRL. A reset assigns priority level 0 to the on-chip peripheral module interrupts.

If the same priority level is assigned to two or more interrupt sources and interrupts from those sources occur simultaneously, their priority is determined according to the default priority indicated at the right in tables 6.2 and 6.3.

Interrupt priority registers and interrupt mask registers must be updated only while the BL bit in SR is set to 1. To prevent accepting unintentional interrupts, read any interrupt priority register and then clear the BL bit to 0, which ensures the necessary interval for internal processing.

Table 6.2 External Interrupt Sources and Priority

Interrupt	Source	INTEVT Code	Interrupt Priority (Initial Value)	IPR (Bit Numbers)	Priority within IPR Setting Range	Default Priority
NMI		H'1C0	16	_	_	High
IRQ	IRQ0	H'600	15 to 0 (0)	INTPRI00 (31 to 28)	_	_ ♦
	IRQ1	H'620	15 to 0 (0)	INTPRI00 (27 to 24)	_	_
	IRQ2	H'640	15 to 0 (0)	INTPRI00 (23 to 20)	_	_
	IRQ3	H'660	15 to 0 (0)	INTPRI00 (19 to 16)	_	_
	IRQ4	H'680	15 to 0 (0)	INTPRI00 (15 to 12)	_	_
	IRQ5	H'6A0	15 to 0 (0)	INTPRI00 (11 to 8)	_	_
	IRQ6	H'6C0	15 to 0 (0)	INTPRI00 (7 to 4)	_	_
	IRQ7	H'6E0	15 to 0 (0)	INTPRI00 (3 to 0)	_	Low

Table 6.3 On-Chip Peripheral Module Interrupt Sources and Priority

Interrupt So	ource	INTEVT Code	Interrupt Priority (Initial Value)	Corresponding IPR (Bit Numbers)	Priority within IPR Setting Range	Default Priority
HUDI		H'5E0	15	_	_	High
SIM	ERI	H'700	15 to 0 (0)	IPRB (7 to 4)	High	A
	RXI	H'720	15 to 0 (0)		†	
	TXI	H'740	15 to 0 (0)			
	TEI	H'760	15 to 0 (0)		Low	
RTC	ATI	H'780	15 to 0 (0)	IPRI (3 to 0)	High	
	PRI	H'7A0	15 to 0 (0)			
	CUI	H'7C0	15 to 0 (0)		Low	
DMAC0/	DEI0	H'800	15 to 0 (0)	IPRE (15 to 12)	High	-
DMAC1/ DMAC2/	DEI1	H'820	15 to 0 (0)		A	
DMAC3	DEI2	H'840	15 to 0 (0)		\	
	DEI3	H'860	15 to 0 (0)		Low	
VIO/VOU	CEUI	H'880	15 to 0 (0)	IPRE (11 to 8)	High	_
	BEUI	H'8A0	15 to 0 (0)		↑	
	VEUI	H'8C0	15 to 0 (0)		\forall	
	VOUI	H'8E0	15 to 0 (0)		Low	_
VPU	VPUI	H'980	15 to 0 (0)	IPRE (3 to 0)	_	
TPU	TPUI	H'9A0	15 to 0 (0)	IPRL (7 to 4)	_	_
USB	USBI0	H'A20	15 to 0 (0)	IPRF (7 to 4)	_	_
DMAC4/	DEI4	H'B80	15 to 0 (0)	IPRF (11 to 8)	High	
DMAC5	DEI5	H'BA0	15 to 0 (0)		↑	
				<u>_</u>	\forall	
	DADERR	H'BC0	15 to 0 (0)		Low	
KEYSC	KEYI	H'BE0	15 to 0 (0)	IPRF (15 to 12)	_	_
SCIF	SCIF0	H'C00	15 to 0 (0)	IPRG (15 to 12)	_	-
	SCIF1	H'C20	15 to 0 (0)	IPRG (11 to 8)	_	-
	SCIF2	H'C40	15 to 0 (0)	IPRG (7 to 4)		
SIOF	SIOFI0	H'C80	15 to 0 (0)	IPRH (15 to 12)	_	₩
	SIOFI1	H'CA0	15 to 0 (0)	IPRH (11 to 8)	_	Low

Interrupt S	Source	INTEVT Code	Interrupt Priority (Initial Value)	Corresponding IPR (Bit Numbers)	Priority within IPR Setting Range	Default Priority
SIO	SIOI	H'D00	15 to 0 (0)	IPRI (15 to 12)	_	High
FLCTL	FLSTEI	H'D80	15 to 0 (0)	IPRK (7 to 4)	High	
	FLTENDI	H'DA0	15 to 0 (0)	_	A	
	FLTREQ0I	H'DC0	15 to 0 (0)	_	V .	
	FLTREQ1I	H'DE0	15 to 0 (0)	_	Low	
I ² C(0)	ALI0	H'E00	15 to 0 (0)	IPRH (3 to 0)	High	
	TACKI0	H'E20	15 to 0 (0)	_	A	
	WAITI0	H'E40	15 to 0 (0)	_		
	DTEI0	H'E60	15 to 0 (0)		Low	
SDHI	SDHII0	H'E80	15 to 0 (0)	IPRK (3 to 0)	High	-
	SDHII1	H'EA0	15 to 0 (0)		*	
	SDHII2	H'EC0	15 to 0 (0)			
	SDHII3	H'EE0	15 to 0 (0)	_	Low	
CMT	CMTI	H'F00	15 to 0 (0)	IPRF (3 to 0)	_	-
TSIF	TSIFI	H'F20	15 to 0 (0)	IPRI (7 to 4)	_	-
SIU	SIUI	H'F80	15 to 0 (0)	IPRJ (7 to 4)	_	-
2DG	2DGI	H'FA0	15 to 0 (0)	IPRL (15 to 12)	_	-
TMU0	TUNI0	H'400	15 to 0 (0)	IPRA (15 to 12)	_	-
TMU1	TUNI1	H'420	15 to 0 (0)	IPRA (11 to 8)	_	-
TMU2	TUNI2	H'440	15 to 0 (0)	IPRA (7 to 4)	_	-
IrDA	IRDAI	H'480	15 to 0 (0)	IPRA (3 to 0)	_	-
JPU	JPEGI	H'560	15 to 0 (0)	IPRB (15 to 12)	_	_ ↓
LCDC	LCDCI	H'580	15 to 0 (0)	IPRB (11 to 8)	_	Low

6.4 Operation

6.4.1 Interrupt Sequence

The sequence of interrupt operations is described below. Figures 6.2 and 6.3 are flowcharts of the operations.

- 1. The interrupt request sources send interrupt request signals to the INTC.
- 2. The INTC selects the highest-priority interrupt from the sent interrupt requests according to the interrupt priority registers. Lower-priority interrupts are held pending. If two of these interrupts have the same priority level or if multiple interrupts occur within a single module, the interrupt with the highest priority is selected according to tables 6.2 and 6.3.
- 3. The priority level of the interrupt selected by the INTC is compared with the interrupt mask level (IMASK) set in SR of the CPU. If the priority level is higher than the mask level, the INTC accepts the interrupt and sends an interrupt request signal to the CPU.
- 4. The CPU accepts an interrupt at a break in instructions.
- 5. The interrupt source code is set in the interrupt event register (INTEVT).
- 6. SR and program counter (PC) are saved to SSR and SPC, respectively. R15 is saved to SGR at this time.
- 7. The BL, MD, and RB bits in SR are set to 1.
- 8. Execution jumps to the start address of the interrupt exception handling routine (the sum of the value set in the vector base register (VBR) and H'0000 0600).

In the exception handling routine, execution may branch with the INTEVT value used as its offset in order to identify the interrupt source. This enables execution to branch to the handling routine for the individual interrupt source.

- Notes: 1. When the INTMU bit in the CPU operating mode register (CPUOPM) is set to 1, the interrupt mask level (IMASK) in SR is automatically set to the level of the accepted interrupt. When the INTMU bit is cleared to 0, the IMASK value in SR is not affected by the accepted interrupt.
 - 2. The interrupt source flag should be cleared in the interrupt handler. To ensure that an interrupt source that should have been cleared is not inadvertently accepted again, read the interrupt source flag, wait for the priority determination time for peripheral modules shown in table 6.4 (e.g. a period required to read a register in INTC once which is driven by the peripheral module clock), and then clear the BL bit or execute an RTE instruction.

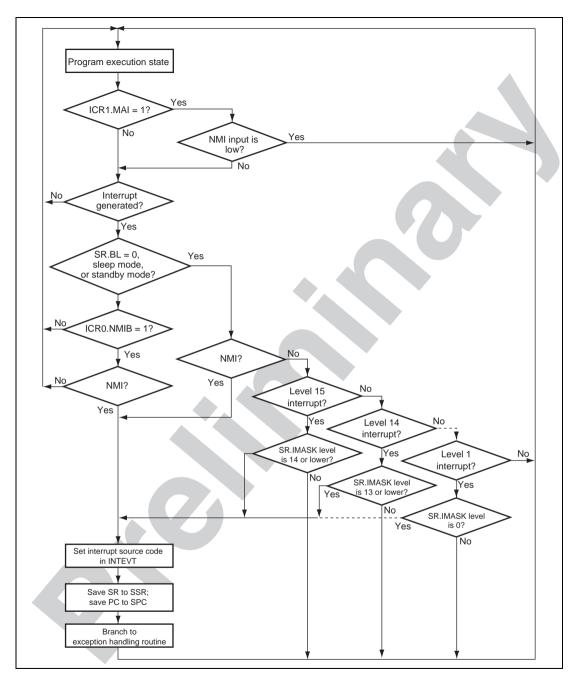
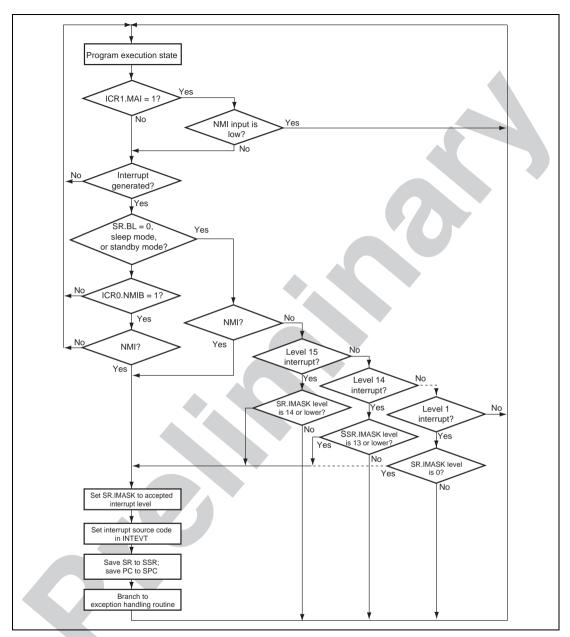



Figure 6.2 Interrupt Operation Flowchart (when CPUOPM.INTMU = 0)

Figure 6.3 Interrupt Operation Flowchart (when CPUOPM.INTMU = 1)

6.4.2 Multiple Interrupts

When handling multiple interrupts, an interrupt handling routine should include the following procedures:

- 1. To identify the interrupt source, branch to a specific interrupt handling routine for the interrupt source by using the INTEVT code as an offset.
- 2. Clear the interrupt source in each specific interrupt handling routine.
- 3. Save SSR and SPC to the stack.
- 4. Clear the BL bit in SR. When the INTMU bit in CPUOPM is set to 1, the interrupt mask level (IMASK) in SR is automatically modified to the level of the accepted interrupt. When the INTMU bit in CPUOPM is cleared to 0, set the IMASK bit in SR by software to the accepted interrupt level.
- 5. Handle the interrupt as required.
- 6. Set the BL bit in SR to 1.
- 7. Restore SSR and SPC from memory.
- 8. Execute the RTE instruction.

When these procedures are followed in order, an interrupt of higher priority than the one being handled can be accepted if multiple interrupts occur after step 4. This reduces the interrupt response time for urgent processing.

6.4.3 Interrupt Masking by MAI Bit

Setting the MAI bit in ICR0 to 1 masks interrupts while the NMI signal is low regardless of the BL and IMASK bit settings in SR.

- Normal operation or sleep mode
 All interrupts are masked while the NMI signal is low. Note that only NMI interrupts due to NMI signal input occur.
- Standby mode

All interrupts including NMI are masked while the NMI signal is low. While the MAI bit is set to 1, the NMI interrupt cannot be used to clear standby mode.

6.4.4 Interrupt Disabling Function in User Mode

Setting the interrupt mask level in USERIMASK disables interrupts having an equal or lower priority level than the specified mask level. This function can disable less-urgent interrupts in a task (such as device driver) operating in user mode to accelerate urgent processing.

USERIMASK is allocated to a different 64-Kbyte page than where the other INTC registers are allocated. When accessing this register in user mode, translate the address through the MMU. In the system that uses a multitasking OS, processes that can access USERIMASK must be controlled by using memory protection functions of the MMU. When terminating the task or switching to another task, be sure to clear USERIMASK to 0 before quitting the task. If the UIMASK bits are left set to a non-zero value, interrupts which are not higher in priority than the UIMASK level are held disabled, and correct operation may not be performed (for example, the OS cannot switch tasks).

A sample sequence of user-mode interrupt disabling operation is described below.

- 1. Classify interrupts into A and B shown below, and assign higher interrupt levels to A than B.
 - A. Interrupts that should be accepted in the device driver (interrupts used by the OS, such as timer interrupts)
 - B. Interrupts that should be disabled in the device driver
- 2. Make the MMU settings so that the address space including USERIMASK can only be accessed by the device driver in which interrupts should be disabled.
- 3. Branch to the device driver.
- 4. Specify the UIMASK bits so that interrupts B are masked in the device driver operating in user mode.
- 5. Perform urgent processing in the device driver.
- 6. Clear the UIMASK bits to 0 to return from the device driver processing.

6.5 Interrupt Response Time

Table 6.4 shows the interrupt response time, which is the interval from when an interrupt request occurs until the interrupt exception handling is started and the start instruction of the exception handling routine is fetched.

Table 6.4 Interrupt Response Time

			Number of States			
Item		NMI	IRQ	Peripheral Module Remarks		
Priority determination time		5 Bcyc + 2 Pcyc	4 Bcyc + 2 Pcyc	5 Pcyc		
Wait time until the finishes the curre		,	S - 1 (≥ 0) × lcyc	70		
Interval from whe exception handlin (saving SR and F SuperHyway bus issued to fetch th instruction of the handling routine	ng begins PC) until an request is se start		11 lcyc + 1 Scyc			
Response time	Total	(S + 10) lcyc + 1 Scyc + 5 Bcyc + 2 Pcyc	(S + 10) lcyc + 1 Scyc + 4 Bcyc + 2 Pcyc	(S + 10) lcyc + 1 Scyc + 5 Pcyc		
	Minimum	18 lcyc + S × lcyc	17 lcyc + S × lcyc	16 lcyc + S × lcyc	When lcyc:Scyc:Bcyc: Pcyc = 1:1:1:1	

[Legend]

Icyc: Period for one CPU clock cycle
Scyc: Period for one SH clock cycle
Bcyc: Period for one bus clock cycle
Pcyc: Period for one peripheral clock cycle
S: Number of instruction execution states

Section 7 Bus State Controller (BSC)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

The bus state controller (BSC) outputs control signals for various types of memory that is connected to the external address space and external devices. The BSC functions enable this LSI to connect directly with SRAM, burst ROM, and other memory storage devices, and external devices. SDRAM is controlled by the bus state controller for SDRAM (SBSC).

7.1 Features

The BSC has the following features:

- 1. External address space
- Supports totally 256 Mbytes at a maximum. The space is divided into either six or four areas as shown below.
 - Address map 1: Six areas of $\overline{\text{CS0}}$, $\overline{\text{CS4}}$, $\overline{\text{CS5A}}$, $\overline{\text{CS5B}}$, $\overline{\text{CS6A}}$, and $\overline{\text{CS6B}}$
 - Address map 2: Four areas of $\overline{CS0}$, $\overline{CS4}$, $\overline{CS5}$, and $\overline{CS6}$
- Can specify the normal space interface, SRAM interface with byte selection, burst ROM (clock asynchronous), or various PCMCIA interfaces for each address space
- Can select the data bus width (8, 16, or 32 bits) for each address space
- Controls insertion of wait cycle for each address space
- Controls insertion of wait cycle for each read access and write access
- Can set independent idle cycles in the continuous access for five cases: read-write (in the same space/different spaces), read-read (in the same space/different spaces), or the first cycle is a write access
- 2. Normal space interface
- Supports the interface that can be connected directly to SRAM
- 3. Burst ROM interface (clock asynchronous)
- High-speed access to ROM that has the page mode function
- 4. SRAM interface with byte selection
- Supports the interface that can be connected directly to SRAM with byte selection
- PCMCIA direct-connection interfaces.
- Supports the "IC memory card and I/O card interface" provided with JEIDA Ver4.2 (PCMCIA2.1)

- Controls the insertion of wait states by the program
- Supports the bus-sizing function of the I/O bus width. (only in little endian mode.)

Note: For the PCMCIA direct-connection interfaces, the BSC supports only the signals and bus protocols listed in table 7.1. Use an external circuit for the other control signals.

A block diagram of the BSC is shown in figure 7.1.

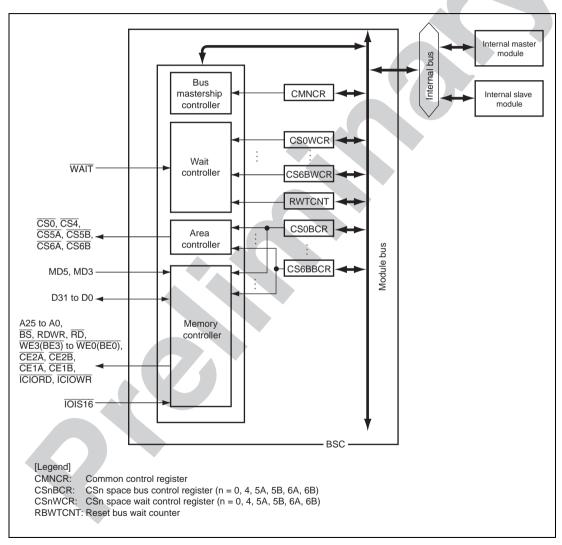


Figure 7.1 Block Diagram of BSC

7.2 Input/Output Pins

Table 7.1 lists the BSC pin configuration.

Table 7.1 Pin Configuration

Name	I/O	Description
A25 to A0	Output	Address output
D31 to D0	I/O	Data bus
BS	Output	Signal to indicate the start of bus cycles
		Asserted when normal space, burst ROM (clock asynchronous), or PCMCIA is accessed.
CS0, CS4	Output	Chip select
CS5A/CE2A	Output	Chip select
		Activated only when address map 1 is selected
		Correspond to PCMCIA card select signals D15 to D8 when PCMCIA is used
CS5B/CE1A	Output	Chip select
		Correspond to PCMCIA card select signals D7 to D0 when PCMCIA is used
CS6A/CE2B	Output	Chip select
		Activated only when address map 1 is selected
		Correspond to PCMCIA card select signals D15 to D8 when PCMCIA is used
CS6B/CE1B	Output	Chip select
		Correspond to PCMCIA card select signals D7 to D0 when PCMCIA is used
RDWR	Output	Read/write signal
		Connected to the $\overline{\text{WE}}$ pin when SRAM with byte selection is connected
RD	Output	Read pulse signal (read data output enable signal)
		Strobe signal to indicate memory read cycles when PCMCIA is used
WE3(BE3)/	Output	Byte write indication signal corresponding to D31 to D24
ICIOWR		Connected to the byte select pin when SRAM with byte selection is connected
		Strobe signal to indicate the I/O write when PCMCIA is used

Name	I/O	Description
WE2(BE2)/	Output	Byte write indication signal corresponding to D23 to D16
ĪCIORD		Connected to the byte select pin when SRAM with byte selection is connected
		Strobe signal to indicate the I/O read when PCMCIA is used
WE1(BE1)/	Output	Byte write indication signal corresponding to D15 to D8
WĒ		Connected to the byte select pin when SRAM with byte selection is connected
		Strobe signal to indicate the memory write cycles when PCMCIA is used
WE0(BE0)	Output	Byte write indication signal corresponding to D7 to D0
		Connected to the byte select pin when SRAM with byte selection is connected
IOIS16	Input	Signal to indicate the 16-bit I/O of PCMCIA
		Enabled only in little endian mode.
		In big endian mode, drive this pin low.
WAIT	Input	External wait input
MD5, MD3	Input	MD5: Data alignment (big/little endian selectable)
		MD3: Bus width of area 0 (16/32 bits), HPD[47:32]/D[31:16] selectable

7.3 Area Overview

7.3.1 Area Division

In the architecture, this LSI has 32-bit address spaces. The cache access method that is classified into P0 to P4 spaces by the upper three bits is shown. For details, see section 8, Caches, in the SH7722 Hardware Manual. The remaining 29 bits are used for division of the space into ten areas (address map 1) or eight areas (address map 2) according to the setting of the MAP bit in CMNCR. The BSC performs control for this 29-bit space.

As listed in tables 11.2 and 11.3, in the SH7722 Hardware Manual, this LSI can connect eight or six physical areas to each type of memory, and it outputs chip select signals ($\overline{CS0}$, $\overline{HPCS2}$, $\overline{HPCS3}$ (see section 12, Bus State Controller for SDRAM (SBSC)), $\overline{CS4}$, $\overline{CS5A}$, $\overline{CS5B}$, $\overline{CS5A}$, and $\overline{CS6B}$) for each of them. $\overline{CS0}$ is asserted during area 0 access. During area 5A access, $\overline{CS5A}$ is asserted when address map 1 is selected, and $\overline{CS5B}$ is asserted when address map 2 is selected.

Section 8 Bus State Controller for SDRAM (SBSC)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

The bus state controller for SDRAM (SBSC) outputs control signals for SDRAM that is connected to the external address space. The SBSC functions enable this LSI to connect directly with SDRAM.

8.1 Features

The SBSC has the following features:

- External address space
 - A maximum 64 Mbytes of external address space
 - Can select the data bus width as 16 or 32 bits
 - Controls insertion of wait states according to the SDRAM specifications
- SDRAM interface
 - Multiplex output for row address/column address
 - Single read/write and burst read/write selectable
 - High-speed access by bank-active mode
 - Supports auto-refresh and self-refresh
- Write protect function
 - Three types of write protected area are selectable; 128 Mbits, 256 Mbits, or 512 Mbits from the start address of area 3
- Refresh function
 - Supports auto-refresh and self-refresh
 - Specifies the refresh interval using the refresh counter and clock selection
 - Can execute concentrated refresh by specifying the refresh count (1, 2, 4, 6, or 8)

A block diagram of the SBSC is shown in figure 8.1.

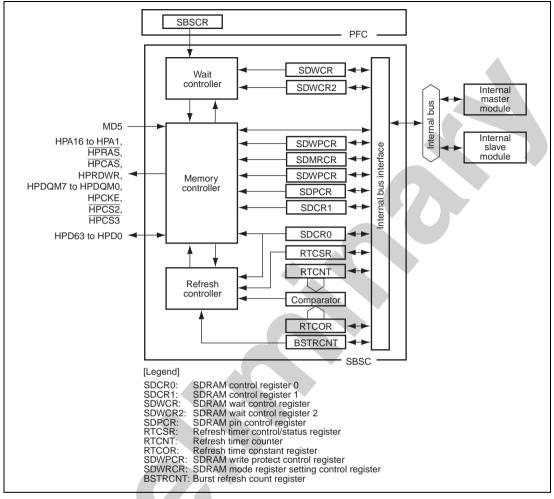


Figure 8.1 Block Diagram of SBSC

8.2 Input/Output Pins

Table 8.1 lists the SBSC pin configuration.

Table 8.1 Pin Configuration

Name	Function	I/O	Description
HPA16 to HPA1	Address bus	Output	Address output
HPD63 to HPD0	Data bus	I/O	16-/32-/64-bit bidirectional bus
HPCS2	Chip select	Output	Chip select signal for area 2
HPCS3	Chip select	Output	Chip select signal for area 3
HPRDWR	Read/write	Output	Read/write signal pin. Connected to the WE pin of SDRAM.
HPDQM7	Mask for UU data	Output	Byte-selection signal corresponding to D63 to D56 of SDRAM
HPDQM6	Mask for UU data	Output	Byte-selection signal corresponding to D55 to D48 of SDRAM
HPDQM5	Mask for UU data	Output	Byte-selection signal corresponding to D47 to D40 of SDRAM
HPDQM4	Mask for UU data	Output	Byte-selection signal corresponding to D39 to D32 of SDRAM
HPDQM3	Mask for UU data	Output	Byte-selection signal corresponding to D31 to D24 of SDRAM
HPDQM2	Mask for UL data	Output	Byte-selection signal corresponding to D23 to D16 of SDRAM
HPDQM1	Mask for LU data	Output	Byte-selection signal corresponding to D15 to D8 of SDRAM
HPDQM0	Mask for LL data	Output	Byte-selection signal corresponding to D7 to D0 of SDRAM
HPRAS	Row address	Output	Specifies the SDRAM row address. Connected to the RAS pin of SDRAM.
HPCAS	Column address	Output	Specifies the SDRAM column address. Connected to the CAS pin of SDRAM.
HPCKE	Clock enable	Output	SDRAM clock enable signal. Connected to the CKE pin of SDRAM.
HPCLK	Synchronous clock	Output	Synchronous clock output pin
MD5, MD3	Mode setting	Input	MD5: Data alignment (big endian or little endian selectable) MD3: Selects HPD[47:32]/D[31:16]

8.3 Area Overview

8.3.1 Address Map

The external address space of this LSI has a capacity of 384 Mbytes and is used divided into six partial spaces. Among these partial spaces, the SBSC controls area 3. Areas 0, and 4 to 6 are controlled by the BSC. The kind of memory to be connected and the data bus width are specified in each partial space. The address map for the external address space is listed in table 8.2.

Table 8.2 Address Map of External Address Space

Address	Area	Memory to be Connected	Capacity
H'0000 0000 to H'03FF FFFF	Area 0 (BSC)	Normal memory	64 Mbytes
		Burst ROM (asynchronous)	
		SRAM with byte selection	
H'0400 0000 to H'07FF FFFF	Area 1	Internal I/O register area*3	
H'0800 0000 to H'0BFF FFFF	Area 2 (SBSC)	SDRAM*1	64 Mbytes
H'0C00 0000 to H'0FFF FFFF	Area 3 (SBSC)	SDRAM*1	64 Mbytes
H'1000 0000 to H'13FF FFFF	Area 4 (BSC)	Normal memory	64 Mbytes
		SRAM with byte selection	
		Burst ROM (asynchronous)	
H'1400 0000 to H'17FF FFFF	Area 5*2 (BSC)	Normal memory	64 Mbytes
		SRAM with byte selection	
H'1800 0000 to H'1BFF FFFF	Area 6*2 (BSC)	Normal memory	64 Mbytes
		SRAM with byte selection	
H'1C00 0000 to H'1FFF FFFF	Area 7	Reserved area*3	

Notes: 1. The access between DDR and SDRAM is not supported.

- Areas 5 and 6 can each be further divided into two 32-Mbyte spaces by the BSC register settings.
- 3. Do not access the reserved area. If the reserved area is accessed, correct operation cannot be guaranteed.

8.3.2 Memory Bus Width

The memory bus width in this LSI can be set as 16, 32, or 64 bits by the SZ[1:0] bits in the SDRAM control registers 0 and 1 (SDCR0, SDCR1). When the width of 64 bits is specified, select HPD[47:32] while the MD3 pin is low at a power-on reset. When the width of 16 or 32 bits is specified, set the MD3 pin in accordance with the bus width in area 0. For details, see table 11.4, Correspondence between External Pin (MD3) and Bus Width, in the SH7722 Hardware Manual.

8.3.3 Data Alignment

This LSI supports the big endian and little endian methods of data alignment. The data alignment method is specified using the external pin (MD5) at a power-on reset.

Table 8.3 Correspondence between External Pin (MD5) and Endians

MD5	Endian	
0	Big endian	
1	Little endian	

RENESAS

Section 9 Direct Memory Access Controller (DMAC)

This LSI includes the direct memory access controller (DMAC).

The DMAC can be used in place of the CPU to perform high-speed transfers between external devices that have DACK (transfer request acknowledge signal), external memory, on-chip memory, memory-mapped external devices, and on-chip peripheral modules.

9.1 Features

- Six channels (one channel can receive an external request)
- 4-Gbyte physical address space
- Data transfer unit is selectable: Byte, word (2 bytes), longword (4 bytes), 8 bytes, 16 bytes, and 32 bytes
- Maximum transfer count: 16,777,216 transfers
- Address mode: Dual address mode
- Transfer requests:

External request, on-chip peripheral module request, or auto request can be selected.

The following modules can issue an on-chip peripheral module request.

- SCIF0/1/2, IrDA, SIOF0/1, USB, FLCTL, SIM, SIUA/B, SDHI, and TSIF
- Selectable bus modes:

Cycle steal mode (normal mode and intermittent mode) or burst mode can be selected.

- Selectable channel priority levels:
 - The channel priority levels are selectable between fixed mode and round-robin mode.
- Interrupt request: An interrupt request can be generated to the CPU after half of the transfers ended, all transfers ended, or an address error occurred.
- External request detection: There are following four types of DREQ input detection.
 - Low level detection
 - High level detection
 - Rising edge detection
 - Falling edge detection
- Transfer request acknowledge signal:

Active levels for DACK can be set independently.

Figure 9.1 shows the block diagram of the DMAC.

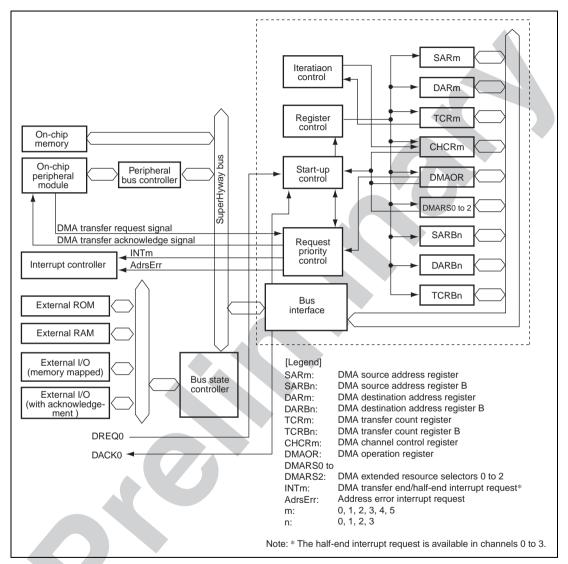


Figure 9.1 Block Diagram of DMAC

9.2 **Input/Output Pins**

The external pins for the DMAC are described below. Table 9.1 lists the configuration of the pins that are connected to external bus. The DMAC has pins for one channel (channel 0) for external bus use.

Pin Configuration Table 9.1

Channel	Pin Name	Function	I/O	Description
0	DREQ0	DMA transfer request	Input	DMA transfer request input from external device to channel 0
	DACK0	DMA transfer request acknowledge	Output	DMA transfer request acknowledge output from channel 0 to external device

RENESAS

Section 10 Clock Pulse Generator (CPG)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

The clock pulse generator generates the clocks used in this LSI and consists of a PLL circuit, a DLL circuit, dividers, and the associated control circuit.

10.1 Features

• Generation of the various clocks for LSI internal operations

CPU clock (I\phi): Operating clock for the CPU core

SH clock (SHφ): Operating clock for the SuperHyway bus

U memory clock (U ϕ): Operating clock for the U memory

Bus clock ($B\phi$): Operating clock for the BSC. Operating clock for peripheral modules on the SuperHyway bus

SDRAM clock (B3 ϕ): Operating clock for the SBSC

Peripheral clock ($P\phi$): Operating clock for peripheral modules on the HPB (peripheral bus).

• Generation of clocks for external interfaces

Bus clock (CKO): Clock for the BSC bus interface (same as Bφ)

SDRAM clock (HPCLK): Clock for the SDRAM interface (same as B3\$\phi\$)

Video clock (VIO CKO): Clock output for cameras

SIU clock A (SIUCKA): Clock for the SIU external interface

SIU clock B (SIUCKB): Clock for the SIU external interface

IrDA clock (IrDACK): IrDA clock output

• Frequency-change function

The frequency of each clock can be changed independently by using the PLL circuit, DLL circuit, or dividers within the CPG. Frequencies are changed under software control by register settings.

Clock mode

The clock mode pin setting selects the EXTAL or RCLK input as the clock source. In addition, the PLL and DLL can be turned on or off by the clock mode pin setting after a power-on reset.

• Power-down mode control

The clocks are stopped in sleep mode, software standby mode, and U-standby mode; clocks for specific modules can be stopped by using the module standby function. For details, see section 15, Reset and Power-Down Modes, in the SH7722 Hardware Manual.

10.2 Block Diagram

A block diagram of the CPG is shown in figure 10.1.

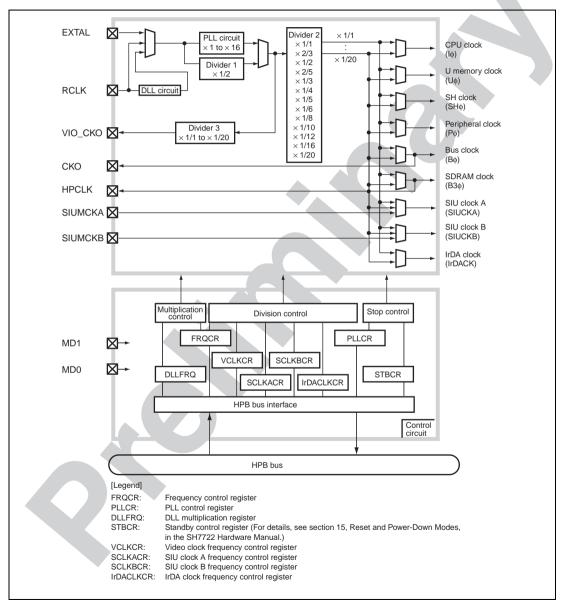


Figure 10.1 Block Diagram of CPG

The CPG blocks function as follows:

(1) DLL Circuit

The DLL circuit multiples the clock frequency (32.768 kHz) input from the RCLK pin. This circuit is only enabled in clock mode 3. The multiplication rate is set in the DLL multiplication register (DLLFRQ). The initial value of the multiplication rate is 824 and the generated clock is at $32.768 \text{ kHz} \times 824 = 27.00 \text{ MHz}$.

(2) PLL Circuit

The PLL circuit multiples, by factors from 1 to 16, the frequency of the clock input from the EXTAL pin or of the multiplied clock signal produced by the DLL circuit. The multiplication rate is set in the frequency control register (FRQCR). The PLL circuit is turned on or off by the settings of the clock mode pins or the PLL control register (PLLCR).

The input clock frequency for the PLL circuit is in the range from 10 to 66 MHz. The output clock frequency is in the range from 10 to 333 MHz (when VDD = 1.25 to 1.35 V, the output frequency is in the range from 266 to 333 MHz).

(3) Divider 1

Divider 1 halves the frequency of the clock input from the EXTAL pin or of the multiplied clock produced by the DLL circuit. When the PLL circuit is turned off, the clock output from divider 1 is input to dividers 2 and 3.

(4) Divider 2

Divider 2 divides the frequency of the clock output from the PLL circuit or divider 1 and generates the operating clocks. The division ratio is set in the relevant frequency control register.

(5) Divider 3

Divider 3 generates the video clock (VIO_CKO) by dividing the frequency of the clock output by the PLL circuit or divider 1. The division ratio is set by VCLKCR.

(6) Control Circuit

The control circuit controls the clock frequency according to the settings of the MD0 and MD1 pins and the frequency control registers.

10.3 Input/Output Pins

Table 10.1 lists the CPG pin configuration.

Table 10.1 Pin Configuration and Functions of CPG

Pin Name	Function	I/O	Description			
MD0	Clock mode control	Input	Sets the clock operating mode.			
MD1	pins -	Input	Sets the clock operating mode.			
MD2	_	Input	Reserved* ¹			
EXTAL	Clock pins	Input	Used as an external clock input pin.			
XTAL	_	Output	Reserved			
RCLK	_	Input	Inputs the RTC clock (32.768 kHz).*2			
SIUMCKA	_	Input	Clock input for SIU interface			
SIUMCKB	_	Input	Clock input for SIU interface			
СКО	Bus clock output pin	Output	Used as a BSC interface clock output pin.			
HPCLK	SDRAM clock output pin	Output	Used as a SDRAM interface clock output pin.			
VIO_CKO	Video clock	Output	Used as a clock output pin for cameras.			

Notes: 1. Always input low level to the MD2 pin.

2. Always input RCLK in this LSI even when the DLL circuit is not used.

Section 11 Reset and Power-Down Modes

This LSI supports U-standby mode, in which low power consumption is achieved by turning off the internal power-supply to part of the chip. This LSI also supports sleep mode, software standby mode, and module standby function, in which clock supply to the LSI is controlled optimally.

11.1 Features

- Supports a variety of power-down modes, i.e. sleep, software standby, module standby, and Ustandby modes.
- In U-standby mode, the RWDT, CMT, KEYSC, and RTC that operate on RCLK are operational.

11.1.1 Division of Power-Supply Areas

To realize power-down modes, this LSI is divided into the following three power-supply areas.

- Core area
 - This area is operated by the $V_{\tiny DD}$ power supply and encompasses all areas other than the following two. Power consumption on standby is greatly reduced in U-standby mode by turning off the power to this area.
- Sub area
 - This area is operated by the $V_{\tiny DD}$ power supply and encompasses the RWDT, CMT, KEYSC, and RTC.
- I/O area
 - This area is operated by the V_{CC} power supply and encompasses the I/O buffer.

11.1.2 Types of Resets and Power-Down Modes

This LSI has the following types of power-down modes. Table 11.1 shows the state in each mode and methods for making transitions and canceling each mode.

- Sleep mode: Supply of the clock to the CPU core is stopped.
- Software standby mode: Supply of the clock is stopped throughout the LSI.
- Module standby function: The operation of modules that are not in use can be stopped under software control.
- U-standby mode: The supply of power to core areas is stopped. (A power is supplied to I/O area and sub area.)

Table 11.1 States of Resets and Power-Down Modes

					State				
Power-Down Mode	Transition Conditions	CPG	CPU Core	CPU Registers	On-Chip Memory	On-Chip Peripheral Modules* ¹	External SDRAM		celing hod
Sleep mode	Execute the SLEEP instruction with STBY = 0 and USTBY = 0 in STBCR.	Operating	Stopped	Retained	U memory continues to operate while others are stopped (contents retained)	Operating	Auto- refreshing	•	Interrupt Power-on reset System reset
Software standby mode	Execute the SLEEP instruction with STBY = 1 and USTBY = 0 in STBCR.	Stopped	Stopped	Retained	Stopped (contents retained)	Stopped* ²	Self- refreshing	•	IRQ, NMI, CMT, KEYSC, RTC Power-on reset System reset
Module standby function	Set the MSTP bit of the respective module to 1 in MSTPCR.	Operating	Operating or stopped	Retained	Specified module stopped (contents retained)	Specified module stopped	Auto- refreshing	•	Clear the MSTP bit to 0.

					State			
Power-Down Mode	Transition Conditions	CPG	CPU Core	CPU Registers	On-Chip Memory	On-Chip Peripheral Modules* ¹	External SDRAM	Canceling Method
U-standby mode	Execute the SLEEP instruction with USTBY = 1 and STBY = 0 in STBCR.	Stopped	Stopped	Not retained	Not retained	Stopped*2	Self-refreshing	CMT, KEYSC, RTC Power-on reset System reset
Power-on reset	Drive the RESETP pin low.	Initial state	Initial state	Initial state	Initial state	Initial state	Initial state	_
System reset	Drive the RESETA pin low. RWDT overflows.	Initial state	Initial state	Initial state	Initial state	Initial state	Initial state	_
Manual reset	Generate an exception other than a user break while SR.BL = 1.	Retained	Initial state	Initial state	Initial state/retained*3	Initial state/retained*3	Auto- refreshing	_

Notes: 1 The on-chip peripheral modules refer to modules that are directly connected to the Super-Hyway bus or peripheral bus.

- 2 Modules with RCLK operation (RWDT, CMT, KEYSC, and RTC) continue to operate.
- 3. This depends on the module. See the sections on the individual modules.

11.2 Input/Output Pins

Table 11.2 lists the pin configuration related to resets and power-down modes.

Table 11.2 Pin Configuration

Pin Name	Function	1/0	Description
STATUS0	Processing state 0	Output	Becomes high level in various standby modes (software standby mode and U-standby mode).
RESETP	Reset input pin	Input	This LSI enters the power-on reset state when this pin becomes low level.
RESETA	Reset input pin	Input	This LSI enters the system reset state when this pin becomes low level.
RESETOUT	Reset output signal	Output	Becomes low level while this LSI is being reset.
PDSTATUS	Power-down state signal	Output	Becomes high level when the power-supply separating region is turned off. PDSTATUS can control the supply current to the regulator.

Section 12 RCLK Watchdog Timer (RWDT)

This LSI includes the RCLK watchdog timer (RWDT).

The RWDT is a single-channel timer that uses a RTC clock as an input and can be used as a watchdog timer for the system monitoring.

This LSI can be reset by the overflow of the counter when the value of the counter has not been updated because of a system runaway.

12.1 Features

- Can be used as a watchdog timer. A system reset is generated when the counter overflows.
- Choice of eight counter input clocks.
 Eight clocks (RCLK/1 to RCLK/4096) that are obtained by dividing the RCLK.

Figures 12.1 shows block diagrams of the RWDT.

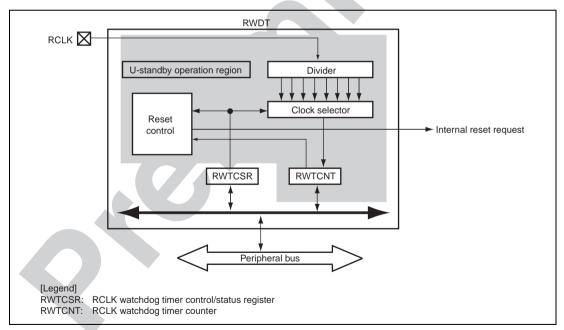


Figure 12.1 Block Diagram of RWDT

12.2 Input/Output Pins for RWDT

Table 12.1 lists the pin configuration and functions of the RWDT.

Table 12.1 RWDT Pin Configuration

Pin Name	Function	I/O	Description	
RCLK	RTC clock	Input	Clock input from an external RTC	

Section 13 Timer Unit (TMU)

This LSI includes a three-channel 32-bit timer unit (TMU).

13.1 Features

- Each channel is provided with an auto-reload 32-bit down counter
- All channels are provided with 32-bit constant registers and 32-bit down counters that can be read or written to at any time
- All channels generate interrupt requests when the 32-bit down counter underflows (H'00000000 → H'FFFFFFF)
- Allows selection among five counter input clocks: $P\phi/4$, $P\phi/16$, $P\phi/64$, $P\phi/256$, and $P\phi/1024$

RENESAS

Figure 13.1 shows a block diagram of the TMU.

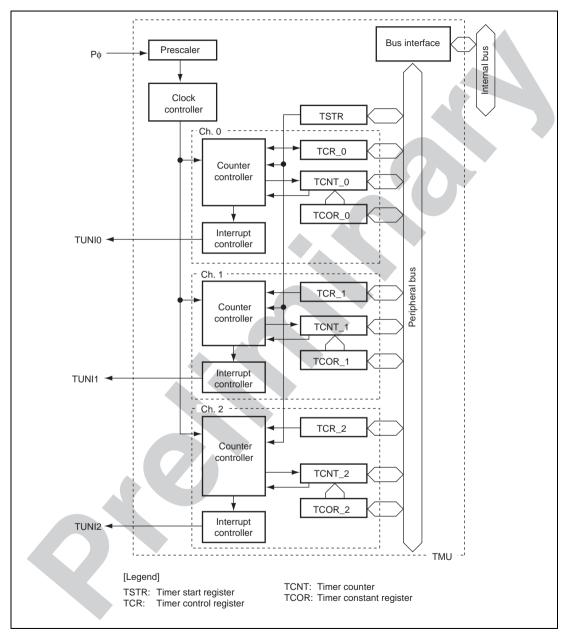


Figure 13.1 Block Diagram of TMU

Section 14 16-Bit Timer Pulse Unit (TPU)

This LSI has an on-chip 16-bit timer pulse unit (TPU) which consists of four 16-bit timer channels.

14.1 Features

• Various timer general registers

TPU has a total of 16 timer general registers provided with four registers (TPU_TGRA to TPU_TGRD) for each channel. TPU_TGRA enables an output compare setting. TPU_TGRB, TPU_TGRC, and TPU_TGRD in each channel can be used as the timer counter clear registers. TPU_TGRC and TPU_TGRD can be used as the buffer registers.

- The following operation can be set for each channel:
 - Counter clear operation: Counter clearing possible by compare match
- Buffer operation settable for each channel
 Automatic rewriting of output compare register possible
- One interrupt request
 - Enabling or disabling the compare match/overflow interrupt request can be set independently for each interrupt source.
- The following output can be made from only channel 0.
 - Waveform output at compare match: Selection of 0, 1, or toggle output
 - PWM mode: Any PWM output duty cycle can be set

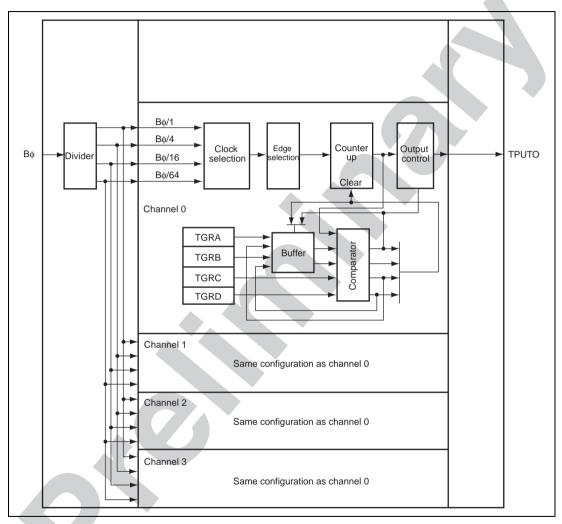
Table 14.1 describes the TPU functions.

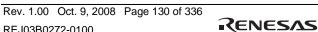
Table 14.1 TPU Functions

Item		TPU: Channel 0	TPU: Channel 1	TPU: Channel 2	TPU: Channel 3
Count clock		Вф/1	Вф/1	Вф/1	Вф/1
		Вф/4	Вф/4	Вф/4	Вф/4
		Вф/16	Вф/16	Вф/16	Вф/16
		Вф/64	Вф/64	Вф/64	Вф/64
General register		TPU_TGR0A	TPU_TGR1A	TPU_TGR2A	TPU_TGR3A
		TPU_TGR0B	TPU_TGR1B	TPU_TGR2B	TPU_TGR3B
General register/ Buffer register		TPU_TGR0C	TPU_TGR1C	TPU_TGR2C	TPU_TGR3C
		TPU_TGR0D	TPU_TGR1D	TPU_TGR2D	TPU_TGR3D
Output pin		TPUTO	Not assigned	Not assigned	Not assigned
Counter clear function		TPU_TGR compare match	TPU_TGR compare match	TPU_TGR compare match	TPU_TGR compare match
Compare match output	0 output	0	×	×	×
	1 output	0	×	×	×
	Toggle output	0	×	×	×
PWM mode		0	×	×	×
Buffer mode		0	0	0	0
Interrupt request		5 sources	5 sources	5 sources	5 sources
		Compare matchOverflow	Compare match Overflow	Compare matchOverflow	Compare matchOverflow

14.2 Block Diagram

A block diagram of the TPU is shown in figure 14.1.




Figure 14.1 TPU Block Diagram

14.3 **Input/Output Pin**

Table 14.2 shows the pin configuration of the TPU.

Table 14.2 Pin Configuration

Channel	Pin Name	Function	I/O	Description
0	TPUTO	TPU output compare match 0	Output	TPU_TGR0A output compare output/ PWM output pin

Section 15 Compare Match Timer (CMT)

This LSI includes a 32-bit compare match timer (CMT) of one channel.

15.1 Features

- 16 bits/32 bits can be selected.
- Provided with an auto-reload up counter.
- Provided with 32-bit constant registers and 32-bit up counters that can be written or read at any time
- The CMT of this LSI can operate the counting even in U-standby mode.
- Allows selection among 3 counter input clocks:
 - External clock (RCLK) input: 1/8, 1/32, and 1/128
- One-shot operation and free-running operation are selectable.
- Allows selection of compare match or overflow for the interrupt source.
- Supports canceling of the standby state in U-standby mode.
- Module standby mode can be set.

Figure 15.1 shows a block diagram of the CMT.

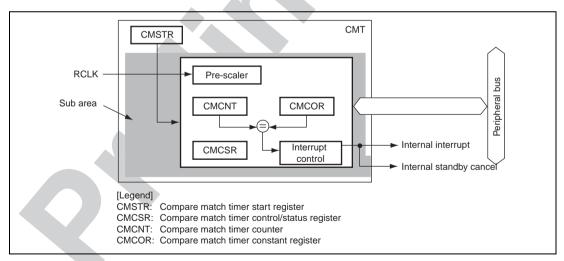


Figure 15.1 Block Diagram of CMT

Section 16 Serial I/O (SIO)

This LSI includes a serial I/O module (SIO).

16.1 Features

Serial transfer

32-bit double-buffering (independent transmission/reception)

Two separately settable strobe circuits

Supports 7/8/9/12/14/16/17/20/24-bit I/O frame formats

MSB/LSB-selectable for data transmission and reception

Synchronization by either pulse or level

Serial clock

An external pin input (SIOMCK) or internal clock ($P\phi$) can be selected as the clock source.

• Interrupts: One type

Transmission interrupt source

Reception interrupt source

Error interrupt source

Figure 16.1 shows a block diagram of the SIO.

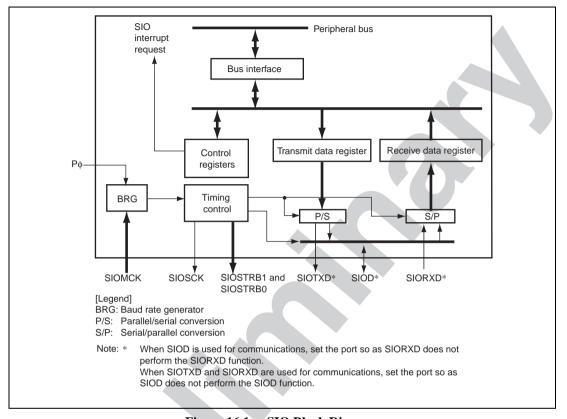


Figure 16.1 SIO Block Diagram

The pin configuration in this module is shown in table 16.1.

Table 16.1 Pin Configuration

Name	Function	I/O	Description
SIOTXD	Transmit data	Output	Transmit data pin
SIORXD	Receive data	Input	Receive data pin
SIOD	Transmit/receive data	I/O	Transmit/receive data pin
SIOSTRB0	Serial strobe 0	Output	Synchronous signal pin, channel 0 (for transmission)
SIOSTRB1	Serial strobe 1	Output	Synchronous signal pin, channel 1 (for transmission)
SIOSCK	Serial clock	Output	Serial clock output pin (common to transmission and reception)
SIOMCK	Serial master clock	Input	Serial master clock input pin (Common to transmission and reception)

Section 17 Serial I/O with FIFO (SIOF)

This LSI includes a clock-synchronized serial I/O module with FIFO (SIOF) of two channels. The SIOF can perform serial communication with a serial peripheral interface bus (SPI).

17.1 Features

Serial transfer

16-stage 32-bit FIFOs (transmission and reception are independent of each other)

Supports 8-bit data/16-bit data/16-bit stereo audio input/output

MSB first for data transmission

Supports a maximum of 48-kHz sampling rate

Synchronization by either frame synchronization pulse or left/right channel switch

Supports CODEC control data interface

Connectable to linear, audio, or A-Law or µ-Law CODEC chip

Supports both master and slave modes

· Serial clock

An external pin input or internal clock ($P\phi$) can be selected as the clock source.

- Interrupts: One type
- DMA transfer

Supports DMA transfer by a transfer request for transmission and reception

SPI mode

Fixed master mode can perform the full-duplex communication with the SPI slave devices continuously.

Selects the falling/rising edge of the SCK as data sampling.

Selects the clock phase of the SCK as a transmit timing.

Possible to select three slave devices.

The length of transmit/receive data is fixed to 8 bits.

Figure 17.1 shows a block diagram of the SIOF.

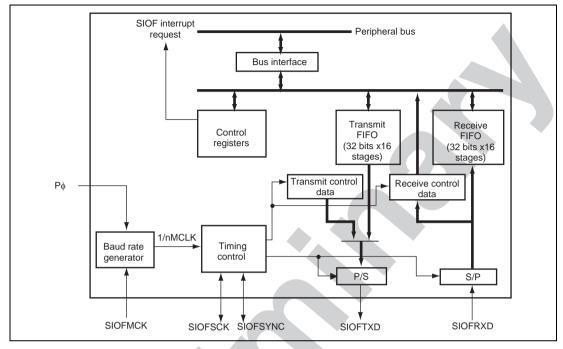
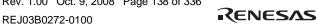



Figure 17.1 **Block Diagram of One-Channel SIOF**

The pin configuration in this module is shown in table 17.1.

Table 17.1 Pin Configuration

Channel	Pin Name	Abbreviation*1	I/O	Description
0	SIOF0_MCK	SIOFMCK	Input	Master clock input
	SIOF0_SCK (SCK)	SIOFSCK (SCK)	I/O* ²	Serial clock (common to transmission/reception)
	SIOF0_SYNC (SS0)	SIOFSYNC (SS0)	I/O* ²	Frame synchronous signal (common to transmission/reception)
				In SPI mode, this pin selects slave device 0.
	SIOF0_SS1	(SS1)	Output	In SPI mode, this pin selects slave device 1.
	SIOF0_SS2	(SS2)	Output	In SPI mode, this pin selects slave device 2.
	SIOF0_TXD	SIOFTXD (MOSI)	Output	Transmit data
	SIOF0_RXD	SIOFRXD (MISO)	Input	Receive data
1	SIOF1_MCK	SIOFMCK	Input	Master clock input
	SIOF1_SCK (SCK)	SIOFSCK (SCK)	I/O* ²	Serial clock (common to transmission/reception)
	SIOF1_SYNC (SS0)	SIOFSYNC (SS0)	I/O* ²	Frame synchronous signal (common to transmission/reception)
				In SPI mode, this pin selects slave device 0.
	SIOF1_SS1	(SS1)	Output	In SPI mode, this pin selects slave device 1.
	SIOF1_SS2	(SS2)	Output	In SPI mode, this pin selects slave device 2.
	SIOF1_TXD	SIOFTXD (MOSI)	Output	Transmit data
	SIOF1_RXD	SIOFRXD (MISO)	Input	Receive data

Notes: 1. The channel number is omitted in the following descriptions, and SIOFMCK, SIOFSCK, SIOFSYNC, SIOFTXD, and SIOFRXD are used as generic terms. In SPI mode, SCK, SSO, SS1, SS2, MOSI, and MISO are used respectively.

2. In SPI mode, these pins function as output pins.

Section 18 Serial Communication Interface with FIFO (SCIF)

This LSI has a serial communication interface with on-chip FIFO buffers (Serial Communication Interface with FIFO: SCIF) of three channels. The SCIF can perform both asynchronous and clock synchronous serial communications.

16-stage FIFO buffers are provided for both transmission and reception, enabling fast, efficient, and continuous communication.

18.1 Features

The SCIF has the following features.

Asynchronous mode

Serial data communication is executed using an asynchronous system in which synchronization is achieved character by character. Serial data communication can be carried out with standard asynchronous communication LSIs, such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA).

There is a choice of 8 serial data communication formats.

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even/odd/none
- Receive error detection: Parity, framing, and overrun errors
- Break detection: A break is detected when a framing error lasts for more than 1 frame length at space 0 (low level).

• Clock synchronous mode

Serial data communication is synchronized with a clock. Serial data communication can be carried out with other LSIs that have a synchronous communication function. There is a single serial data communication format.

- Data length: 8 bits
- Receive error detection: Overrun errors

- Full-duplex communication capability
 - The transmitter and receiver are independent units, enabling transmission and reception to be performed simultaneously. The transmitter and receiver both have a 16-stage FIFO buffer structure, enabling continuous serial data transmission and reception.
- On-chip baud rate generator allows any bit rate to be selected.
- Choice of serial clock source: Internal clock from baud rate generator or external clock from SCIFCLK pin
- Four interrupt sources
 - There are four interrupt sources for each channel—transmit-FIFO-data-empty, break, receive-FIFO-data-full, and receive-error—that can issue requests independently by each channel.
- The DMA controller (DMAC) can be activated to execute a data transfer by issuing a DMA transfer request in the event of a transmit-FIFO-data-empty or received DATA is in receive-FIFO.
- When not in use, the SCIF can be stopped by halting its clock supply to reduce power consumption.
- In asynchronous mode, modem control functions (SCIFRTS and SCIFCTS) are provided.
- The amount of data in the transmit/receive FIFO registers, and the number of receive errors in the receive data in the receive FIFO register, can be ascertained.
- In asynchronous mode, a timeout error (DR) can be detected during reception.

Figure 18.1 shows a block diagram of SCIF.

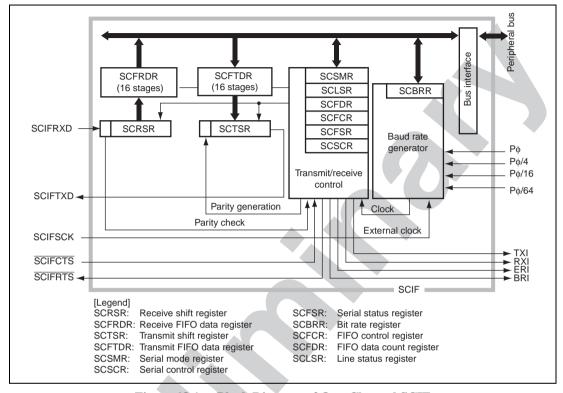


Figure 18.1 Block Diagram of One-Channel SCIF

Table 18.1 shows the SCIF pin configuration.

Table 18.1 Pin Configuration

Channel	Pin Name	Function	I/O	Description	
0	SCIF0_TXD	Transmit data	Output	Transmit data pin	
	SCIF0_RXD	Receive data	Input	Receive data pin	
	SCIF0_SCK	Serial clock	Input/output	Clock Input/output pin	
	SCIF0_RTS	Modem control	Output	RTS output pin	
	SCIF0_CTS	Modem control	Input	CTS input pin	
1	SCIF1_TXD	Transmit data	Output	Transmit data pin	
	SCIF1_RXD	Receive data	Input	Receive data pin	
	SCIF1_SCK	Serial clock	Input/output	Clock Input/output pin	
	SCIF1_RTS	Modem control	Output	RTS output pin	
	SCIF1_CTS	Modem control	Input	CTS input pin	
2	SCIF2_TXD	Transmit data	Output	Transmit data pin	
	SCIF2_RXD	Receive data	Input	Receive data pin	
	SCIF2_SCK	Serial clock	Input/output	Clock Input/output pin	
	SCIF2_RTS	Modem control	Output	RTS output pin	
	SCIF2_CTS	Modem control	Input	CTS input pin	

Notes: 1. The channel number is omitted in the following descriptions, and SCIFTXD, SCIFRXD, SCIFSCK, SCIFRTS, and SCIFCTS are used as generic terms.

2. These pins are made to function as serial pins by performing SCIF operation settings with the C/A bit in SCSMR, the TE, RE, and CKE1 bits in SCSCR, and the MCE bit in SCFCR. The SCIFCK pin can be set to be input (input valid or input ignored).

Section 19 SIM Card Module (SIM)

The smart card interface supports IC cards (smart cards) conforming to the ISO/IEC 7816-3 (Identification Card) specification.

19.1 Features

The smart card interface has the following features.

General functions

Asynchronous half-duplex transmission

Protocol selectable between T = 0 and T = 1 modes

Data length: 8 bits

Parity bit generation and check

Selectable character protection addition time N

Selectable output clock cycles per etu

Transmission of error signal (parity error) in receive mode when T = 0

Detection of error signal and automatic character retransmission in transmit mode when T = 0

Selectable minimum character interval of 11 etu (N=255) when T=1 (etu: Elementary Time Unit)

Selectable direct convention/inverse convention

Output clock can be fixed at high or low

- Freely selectable bit rate by on-chip baud rate generator
- Four types of interrupt source

The four interrupt sources, transmit data empty, receive data full, transmit/receive error, and transmit complete, can be requested separately.

DMA transfer

Through DMA transfer requests for transmit data empty and receive data full, the direct memory access controller (DMAC) can be started and used for data transfer.

• The time waiting for the operation when T = 0, and the time waiting for a character when T = 1 can be observed.

Figure 19.1 shows a block diagram of the smart card interface.

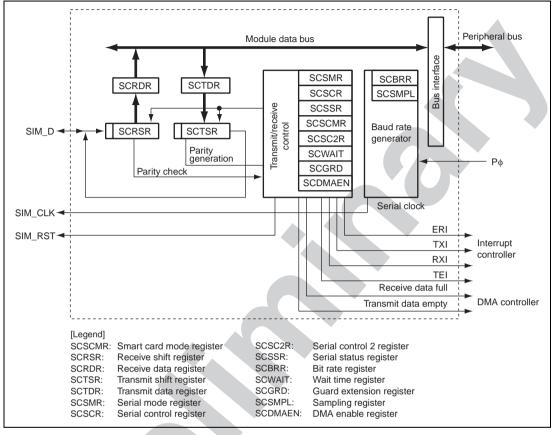


Figure 19.1 Smart Card Interface

The pin configuration of the smart card interface is shown in table 19.1.

Table 19.1 Pin Configuration

Pin Name	Function	I/O	Description
SIM_D*	Smart card data	I/O	Smart card data input/output
SIM_CLK	Smart card clock	Output	Smart card clock output
SIM_RST	Smart card reset	Output	Smart card reset output

Note: * In explaining transmit and receive operations, the transmit data and receive data sides shall be referred to as TXD and RXD, respectively.

Section 20 IrDA Interface (IrDA)

The IrDA interface (IrDA) performs infrared data communication conforming to IrDA standard 1.2a through an external infrared transceiver unit connected to this LSI.

The IrDA includes a UART block to control data transmission and reception as well as an infrared transmit and receive (light-emit and light-receive) pulse modulator/demodulator block and a CRC engine block in front of the UART. The UART block controls serial data transmission and reception in the asynchronous mode. The infrared transmit and receive pulse modulator/demodulator block controls communication pulses and checks pulses received through infrared baseband modulation/demodulation conforming to IrDA standard 1.2a. The CRC engine block reads 8-bit input data and outputs a 16-bit CRC calculation result.

20.1 Features

The IrDA has the following UART features.

- Asynchronous serial communication
 - Data length: Eight bits
 - Stop bit: One bit
 - Parity bit: None
- Reception error detection: Overrun error and framing error
- Baud rate error correction: 16 decimal fractions can be selected.
- Baud rate count: Up to 65536 can be specified.

The IrDA has the following infrared transmit and receive pulse modulator/demodulator features.

- Infrared transmit (light-emit) pulse width: 1-bit width × 3/16 or 1.63 μs can be selected.
- Pulse width check: An out-of-standard pulse (insufficient or excess width) can be detected.
- 1.8432-MHz clock generator
 - Up to 16 can be specified for the integer part of the baud rate count.
 - The fraction part can be selected from 16 values.

The IrDA has the following CRC calculation features.

- Generator polynomial: $X^{16} + X^{12} + X^5 + 1$
- Data input
 - Input in bytes
 - CRC is calculated in 8-bit units starting from the lower bits.
- CRC output: 16-bit CRC is output.
- Maximum data length: 4096 bytes

Figure 20.1 shows a block diagram of the IrDA.

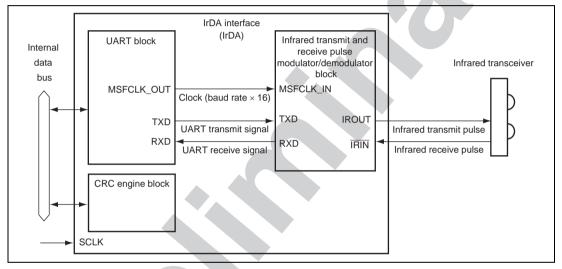


Figure 20.1 Block Diagram of IrDA

20.2 Input/Output Pins

Table 20.1 shows the IrDA pin configuration.

Table 20.1 Pin Configuration

Pin Name	Abbreviation	I/O	Function
IrDA_IN	ĪRIN	Input	Infrared receive (light-receive) pulse input (negative logic)
IrDA_OUT	IROUT	Output	Infrared transmit (light-emit) pulse output (positive logic)

Section 21 I²C Bus Interface (IIC)

This LSI has an I²C bus interface of one channel.

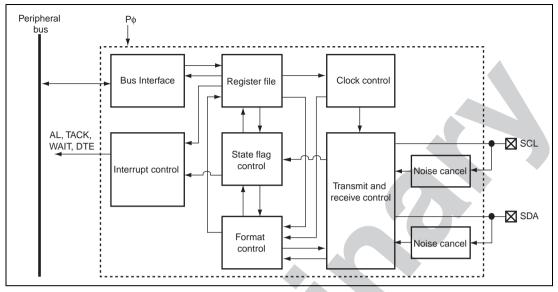
Each I²C bus interface uses only one data line (SDA) and one clock line (SCL) to transfer data, saving board and connector space.

21.1 Features

- Start and stop conditions generated automatically
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Data transfer conforming to the I²C format
- Wait function

A wait can be inserted by driving the SCL pin low after data transfer, excluding acknowledgement.

The wait can be cleared by clearing the interrupt flag.


• I²C module corresponds to single master bus only

This module is always in master mode. Since the slave mode is not incorporated, operation stops with bus open during loss of arbitration in data transfer.

- Four interrupt sources
 - Data transfer enable
 - Wait state
 - Non-acknowledge detection
 - Arbitration lost (operation stops with bus open when bus conflict is detected)
- · Data transfer speed
 - Standard mode (100 kHz) and high-speed mode (400 kHz)
 - SCL clock can be set by clock control register setting
- Clock synchronous processing of SCL line

A hazard (spike noise) generated in the high-count period by SCL is detected as an arbitration loss.

Figure 21.1 shows a block diagram of the I²C bus interface.

Block Diagram of I²C Bus Interface Figure 21.1

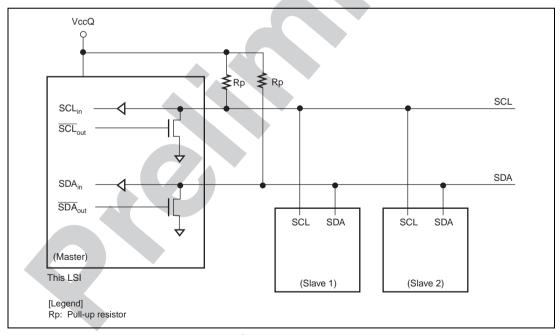


Figure 21.2 I²C Bus Interface Connections

Table 21.1 summarizes the input/output pins used by the I²C bus interface.

Table 21.1 I²C Bus Interface Pins

Abbreviation	Function	I/O	Description
SCL (O/D)	I ² C clock input/	I/O	I ² C bus clock input/output pin
			Equipped with the bus drive function. The output format is the NMOS open-drain.
SDA (O/D)	I ² C data input/	I/O	I ² C bus data input/output pin
	output		Equipped with the bus drive function. The output format is the NMOS open-drain.

Section 22 AND/NAND Flash Memory Controller (FLCTL)

The AND/NAND flash memory controller (FLCTL) provides interfaces for an external AND-type flash memory and NAND-type flash memory.

To take measures for errors specific to flash memory, the FLCTL supports the ECC-code generation function and error detection function. For supporting the flash memory using the multiple level cell (MLC) technology, the FLCTL has an ECC circuit capable of up to four-symbol ECC-code generation, error detection, and hardware error correction pattern circuit in addition to the three-symbol ECC detection circuit incorporated in the previous-version FLCTL.

22.1 Features

(1) AND-Type Flash Memory Interface

- Interface directly connectable to AND-type flash memory
- Read or write in sector units (512 + 16 bytes) and ECC processing executed
 An access unit of 2048 + 64 bytes, referred to as a page, is used in some datasheets for AND-type flash memory. In this manual, an access unit of 512 + 16 bytes, referred to as a sector, is always used.
- Read or write in byte units
- Supports addresses of up to 5 bytes

Note: An access unit of 512 + 16 bytes is referred to as a page in some AND-type flash memory datasheets. In this manual, however, an access unit of 512 + 16 bytes is referred to as a sector. For a product in which 2048 + 64 bytes are referred to as a page, the page is described as four sectors in this manual because 2048 + 64 bytes divided by 512 + 16 bytes (one sector) is four sectors.

(2) NAND-Type Flash Memory Interface

- Interface directly connectable to NAND-type flash memory
- Read or write in sector units (512 + 16 bytes) and ECC processing executed
- Read or write in byte units
- Supports addresses of up to 5 bytes

Note: An access unit of 512 + 16 bytes is referred to as a page in some NAND-type flash memory data sheets. In this manual, however, an access unit of 512 + 16 bytes is referred to as a sector. For a product in which 2048 + 64 bytes are referred to as a page, the page is described as four sectors in this manual because 2048 + 64 bytes divided by 512 + 16 bytes (one sector) is four sectors.

(3) Access Modes

The FLCTL can select one of the following two access modes.

- Command access mode: Performs an access by specifying a command to be issued from the
 FLCTL to flash memory, address, and data size to be input or output. Read, write, or erasure of
 data without ECC processing can be achieved.
- Sector access mode: Performs a read or write in physical sector units by specifying a physical sector and controls ECC-code generation and check. By specifying the number of sectors, the continuous physical sectors can be read or written.
- While using sector access mode, specify the start address of a page as a value to be set in the
 address register. Continuous access from an address in the middle of the page is not
 guaranteed.

(4) Sectors and Control Codes

- A sector is comprised of 512-byte data and 16-byte control code. The 16-byte control code includes 8-byte ECC.
- When the four-symbol ECC circuit is used, 10 bytes of ECC are included.
- The position of the ECC in the control code can be specified in 4-byte units.
- When the four-symbol ECC circuit is used, the user can write data to the 0th to 5th bytes of the control area.
- User information can be written to the control code other than the ECC.

(5) Three-Symbol ECC

- 8-byte ECC code is generated and error check is performed for a sector (512-byte data + 16-byte control code). Note that the ECC code generation in the 16-byte control code and the number of bytes to be checked differ depending on the specifications.
- Error correction capability is up to three errors.
- In a write operation, an ECC code is generated for data and control code prior to the ECC. The
 control code following the ECC is not considered.
- In a read operation, an ECC error is checked for data and control code prior to the ECC. An
 ECC on the control code in the FIFO is replaced with the check result by the ECC circuit, not
 an ECC code read from flash memory.
- An error correction is not performed even when an ECC error occurs. Error corrections must be performed by software.

(6) Four-Symbol ECC

- 80 bits (10 bytes) of ECC codes are added for a sector (512-byte data + 6-byte control code).
- Up to four errors can be detected and corrected in a random order (up to 40 bits).
- In a write operation, an ECC code is generated for data and control codes prior to the ECC.
- In a read operation, an ECC error is checked for data and control code prior to the ECC. Some part of the control area in the FIFO is used as a work area for the four-symbol ECC. Bytes 6th to 15th of the control area data that are saved are thus invalid.
- The four-symbol ECC circuit in the FLCTL can generate error correction patterns by hardware. The error correction pattern generation is executed for each sector.
- When the hardware error correction is performed, addresses indicating the error positions and error correction patterns are output. Data must be replaced by software.

(7) Data Error

- When a program error or erase error occurs, the error is reflected on the error source flags. Interrupts for each source can be specified.
- When a read error occurs, an ECC in the control code is other than 0. This read error is reflected on the ECC error source flag.
- When an ECC error occurs, perform an error correction, specify another sector to be replaced, and copy the contents of the block to another sector as required.

(8) Data Transfer FIFO and Data Register

- The 224-byte FLDTFIFO is incorporated for data transfer of flash memory.
- The 32-byte FLECFIFO is incorporated for data transfer of control code.
- The overrun/underrun detection flag is provided for the access from the CPU and DMA.

(9) DMA Transfer

 By individually specifying the destinations of data and control code of flash memory to the DMA controller, data and control code can be sent to different areas.

(10) Access Size

- Registers can be accessed in 32 bits or 8 bits. Registers must be accessed in the specified access size.
- The FIFO is accessed in 32-bit (4-byte) units. If reading/writing is performed with the number of bytes that is not a multiple of four, the fractional bytes are treated as padding data.
- When an access is performed with an illegal size, the register contents are destroyed.

(11) Access Time

- The FLCTL pins operate with the clock FLCK which is generated by dividing the frequency of the peripheral clock Pφ. The division ratio can be specified by the FCKSEL bit and the QTSEL bit in the common control register (FLCMNCR).
- In NAND-type flash memory, the FSC and FWE pins operate with the FCLK. In AND-type flash memory, the FSC pin operates with the FCLK and the FWE pin operates with the FCLK. To secure the setup time, these operating frequencies must be specified within the maximum operating frequency of memory to be connected.

Figure 22.1 shows a block diagram of the FLCTL.

Figure 22.1 FLCTL Block Diagram

The pin configuration of the FLCTL is listed in table 22.1.

Table 22.1 Pin Configuration

			Corresponding Flash Memory Pin		
Pin Name	Function	I/O	NAND Type	AND Type	Description
FCE	Chip enable	Output	CE	CE	Enables flash memory connected to this LSI.
NAF7 to NAF0	Data I/O pins	I/O	I/O7 to I/O0	I/O7 to I/O0	I/O pins for command, address, and data.
FCDE	Command data	Output	CLE	CDE	Command Latch Enable (CLE)
	enable				Asserted when a command is output.
					Command Data Enable (CDE)
					Asserted when a command is output.
FOE	Output enable	Output	ALE	ŌĒ	Address Latch Enable (ALE)
					Asserted when an address is output and negated when data is input or output.
					Output Enable (OE)
					Asserted when data is input or when a status is read.
FSC	Serial clock	Output	RE	sc	Read Enable (RE)
					Reads data at the falling edge of RE.
					Serial Clock (SC)
					Inputs or outputs data synchronously with the SC.
FWE	Write enable	Output	WE	WE	Write Enable
					Flash memory latches a command, address, and data at the rising edge of $\overline{\text{WE}}.$
FRB	Ready/busy	Input	R/B	R/B	Ready/Busy
					Indicates ready state at high level; indicates busy state at low level.
_*	-	$\overline{\forall}$	WP	RES	Write Protect/Reset
					When this pin goes low, erroneous erasure or programming at power on or off can be prevented.
*	7	_	SE	_	Spare Area Enable
					Used to access spare area. This pin must be fixed at low in sector access mode.

Rev. 1.00 Oct. 9, 2008 Page 160 of 336

Not supported in this LSI.

REJ03B0272-0100

Note:

Section 23 Realtime Clock (RTC)

This LSI has a realtime clock (RTC).

23.1 Features

- Clock and calendar functions (BCD format): Seconds, minutes, hours, date, day of the week, month, and year
- 1-Hz to 64-Hz timer (binary format)
 64-Hz counter indicates the state of the RTC divider circuit between 64 Hz and 1 Hz
- Start/stop function
- 30-second adjust function
- Alarm interrupt: Frame comparison of seconds, minutes, hours, date, day of the week, month, and year can be used as conditions for the alarm interrupt
- Periodic interrupts: the interrupt cycle may be 1/256 second, 1/64 second, 1/16 second, 1/4 second, 1/2 second, 1 second, or 2 seconds
- Carry interrupt: a carry interrupt indicates when a carry occurs during a counter read
- Automatic leap year adjustment

Note: This LSI does not have a separate power supply for the RTC. The RTC has the same power supply as that for input and output (VccQ and VssQ). Operating the RTC alone by shutting down the other power supplies is thus not possible.

Figure 23.1 shows the block diagram of RTC.

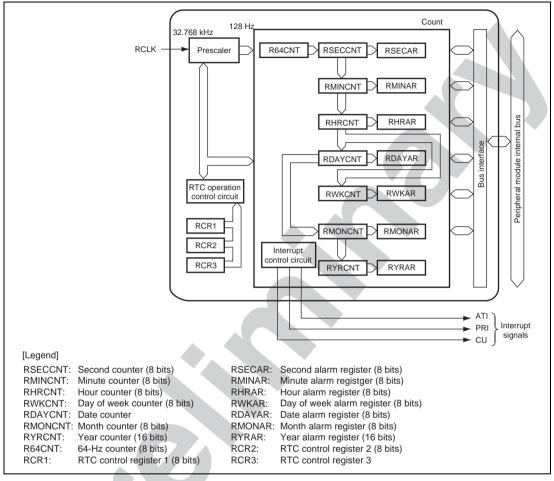


Figure 23.1 RTC Block Diagram

Table 23.1 shows the RTC pin configuration.

Table 23.1 Pin Configuration

Name	Abbreviation	1/0	Function
External clock for RTC	EXTAL_RTC	Input	Inputs the 32.768-kHz clock for RTC.

Section 24 Video Processing Unit (VPU)

The video processing unit (VPU) encodes and decodes bit streams conforming to the MPEG-4 standard (ISO/IEC 14496).

The VPU supports the simple profile (MPEG-4SP), advanced simple profile (MPEG-4ASP), short header, and AVC baseline profile, which are specified in the MPEG-4 video standard.

In this section, the simple profile, advanced simple profile, and short header are referred to as MPEG-4, and the AVC baseline profile as AVC.

24.1 Features

The VPU provides the following features.

- Dynamic timeslot method (DTME)
 - The slot lengths of the pipeline being processed can be changed dynamically depending on the bus state. This makes it possible to maintain the minimum processing time when the volume of bus traffic is large.
- VOP encoding for MPEG-4 and AVC
 - Images in memory are encoded for each video object plane (VOP) for MPEG-4 and for each slice for AVC, and a bit stream is generated. B-VOP encoding (bidirectional search) for MPEG and multi-reference encoding (two-plane) for AVC are supported. For AVC encoding, search in units of 1/4 pixel for an 8 × 8 block (minimum) is possible.
 - With adaptive realtime motion estimation (ARME), the quality of motion estimation can be enhanced by expanding the search range and increasing the search count (common to MPEG-4 and AVC).
 - With predict from original image (POI), an intra prediction mode allowing search at realtime is available (for AVC).
 - With active skip prediction (ASP), controlling search to increase the number of skipped macroblocks improves the image quality at a low bit rate (for AVC).
 - With custom weighted quantization (CWQ), code amount control is available for each macroblock (MB) in a plane to be encoded. When encoding a portrait, as an example, weighted codes in the center of the image can enable more detailed expression.

Decoding for MPEG-4 and AVC

A bit stream is read from memory. For MPEG-4, the stream data is decoded for each VOP, and for AVC, the stream data is decoded for each slice.

Multiple concealment modes are supported for concealing areas and block boundaries where an error has occurred.

• Deblocking filter

A deblocking filtered image can be output for both a decoded image and a local decode image when encoding.

• Video header search for MPEG-4

A bit stream is read from the memory and the next start code is detected.

Table 24.1 shows the VPU basic specifications. Note that the video syntax layer to be accelerated differs for each profile in the VPU. For details, see table 24.2.

Table 24.1 VPU Basic Specifications

Decoding

				MPEG-4	AVC/H.264	
Applicable Standard			MPEG-4	Advanced Simple	(Baseline & Main)@L2.1	
			Simple Profile L2	Profile L3		
General	Image	Maximum	352 × 288 (CIF)	640 × 480 (VGA)	640 × 480 (VGA)	
specifications	size	Minimum	48 × 48	48 × 48	48 × 48	
		Unit of size	Four horizontal pixels and four vertical pixels	Four horizontal pixels and four vertical pixels	16 horizontal pixels and 16 vertical pixels*	
	Bit rate		384 kbps	8 Mbps	8 Mbps	
	Supported type		I and P: VOP	I, P, and B: VOP	IDR, I, and P: Slice	
Supported format		upported format 4:2:0		4:2:0	4:2:0	
	Supported structure		Progressive	Progressive Interlace	Progressive	

			MPEG-4	AVC/H.264
Applicable Standard		MPEG-4 Simple Profile L2	Advanced Simple Profile L3	(Baseline & Main)@L2.1
ME/MC	Supported MV	UMV 4MV	UMV 4MV DirectB	UMV 1 to 16MV
	Unit of MV	1/2 pixel	1/2 pixel	1/4 pixel
	Maximum detection range	Horizontal position -2048 to +2047	Horizontal position –2048 to +2047	Horizontal position –2048 to +2047
	Detection mode	_	-	
	Unit of processed blocks	8 × 8 or 16 × 16	8 × 8 or 16 × 16	4 × 4 to 16 × 16
	Number of reference planes	1	2	16
	Deblocking filter	Output in parallel with post- processing	Output in parallel with post-processing	Output to inside of loop
Prediction	Mode	IntraDC/AC	IntraDC/AC	IntraDC/V/H/Diag
Q/IQ	Mode	Type 1 or type 2	Type 1 or type 2	IntDCT + QHadamard
VLC	Error resilience	Resync marker Data partitioning Reversible VLC (no inverse decoding) Error concealment	Resync marker Data partitioning Reversible VLC (no inverse decoding) Error concealment	Error concealment
Others		Short header vop_coded = 1 only supported	_	_

[Legend]

ME: Motion estimation
MC: Motion compensation

Q: Quantization

IQ: Inverse quantization

VLC: Variable length coding and decoding

Note: * Cropping is not performed, and it is always output as a 16-pixel image.

• Encoding

			MDEC 4	MPEG-4	AVC/H.264
Applicable Standard		MPEG-4 Simple Profile L2	Advanced Simple Profile L3	(Baseline & Main)@L2.1	
General	Image	Maximum	352 × 288 (CIF)	640 × 480 (VGA)	640 × 480 (VGA)
specifications	size	Minimum	48 × 48	48 × 48	48 × 48
		Unit of size	Four horizontal pixels and four vertical pixels	Four horizontal pixels and four vertical pixels	Four horizontal pixels and four vertical pixels
	Bit rate		384 kbps	8 Mbps	8 Mbps
	Supporte	d type	I and P: VOP	I, P, and B: VOP	IDR, I, and P: Slice
	Supporte	d format	4:2:0	4:2:0	4:2:0
	Supporte	d structure	Progressive	Progressive	Progressive
ME/MC	Supporte	d MV	UMV	UMV	UMV 1 to 4MV
	Unit of MV		1/2 pixel	1/2 pixel	1/4 pixel
	Maximum detection range		±32	±32	±32
	Detection	n mode	Tracking type	Tracking type	Tracking type
	Unit of pr	rocessed	16 × 16	16 × 16	8 × 8 to 16 × 16
	Number of planes	of reference	1	2	2
	Deblockii	ng filter	-	_	Output to inside of loop
Prediction	Mode		IntraDC/AC	IntraDC/AC	IntraDC/V/H/Diag
Q/IQ	Mode		Type 1 or type 2	Type 1 or type 2	IntDCT + QHadamard
VLC	Error res	ilience	Resync marker Data partitioning Reversible VLC	Resync marker Data partitioning Reversible VLC	_
Others			Short header	_	_

[Legend]

ME: Motion estimation
MC: Motion compensation

Q: Quantization

IQ: Inverse quantization

VLC: Variable length coding and decoding

Table 24.2 VPU Covered Processings

Units of Processing	Encoding	Decoding
MPEG-4 ASP	VOP	VOP
MPEG-4SP	Video packet	Video packet
	GOB	GOB
	Macroblock	Macroblock
	Block	Block
MPEG-4 AVC	I-slice	I-slice
	P-slice	P-slice
	IDR-slice	IDR-slice
_	Note: Slice header cannot be encoded.	Note: Slice header cannot be decoded.

[Legend]

VOP: Video object plane GOB: Group of block

IDR: Instantaneous decoding refresh in raw byte sequence payload (RBSP)

Figure 24.1 shows the VPU block diagram.

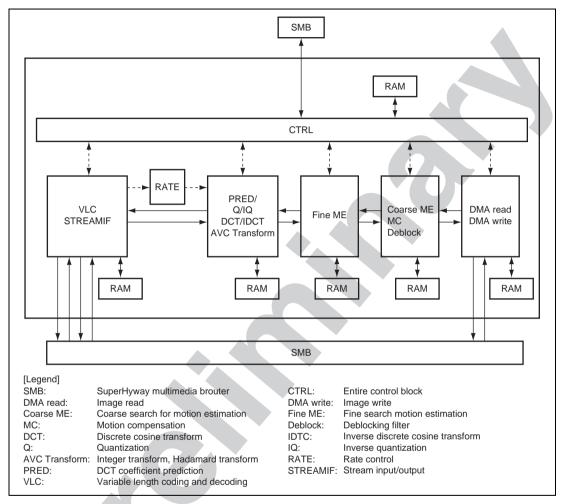


Figure 24.1 VPU Block Diagram

Section 25 Video I/O (VIO)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

This LSI incorporates a video I/O (VIO) module that can be used to perform capturing of an externally input image, format conversion of a YCbCr/RGB image, scaling, tone reduction, and blending of displays.

25.1 Features

The VIO consists of a capture engine unit (CEU), a video engine unit (VEU), and a blending engine unit (BEU). The features of each unit are listed below.

(1) CEU (Capture Engine Unit)

The CEU is a capture module that fetches image data externally input and transfers it to the memory. The CEU is connected to the system bus via bus bridge modules.

(2) VEU (Video Engine Unit)

The VEU is a module used connected to the buses via bus bridge modules. The VEU reads an image from a specified memory area, and writes it back to a specified address.

- Format conversion using the RGB ↔ YCbCr conversion function
- Scaling of an image using the filter function
- Tone reduction (quantization) to pack RGB data in 32-bit units
- Dithering for tone reduction of RGB data
- Removal of high-frequency components using the low-pass filter function
- Low-pass filter is applied to only the boundary of the blocks using the deblocking filter function
- Median filter function
- Edge enhancement of an image (enhancer function)

(3) BEU (Blending Engine Unit)

The BEU is a module used connected to the buses via bus bridge modules, and also connected to the VOU and the LCDC. The BEU blends three displays, and has a multiwindow function that displays four windows overlaying the blended display.

- Supports Video display
- Supports OSD (On Screen Display)
- Supports Graphic display
- Blends the three planes of Video1, Video2, and OSD/Graphic
- The three displays can be blended at desired positions.
- Any one of the three inputs can be used as the parent display.
- The location of a child display can overflow from the parent display, but the overflowed area is not output.
- Raster operation 2 function
- Multiwindow function (four windows are displayed overlaying the three blended displays)
- Selection between output to the memory, output to the VOU, output to the LCDC, and simultaneous output to the memory and VOU or LCDC

Figure 25.1 shows a block diagram of the VIO.

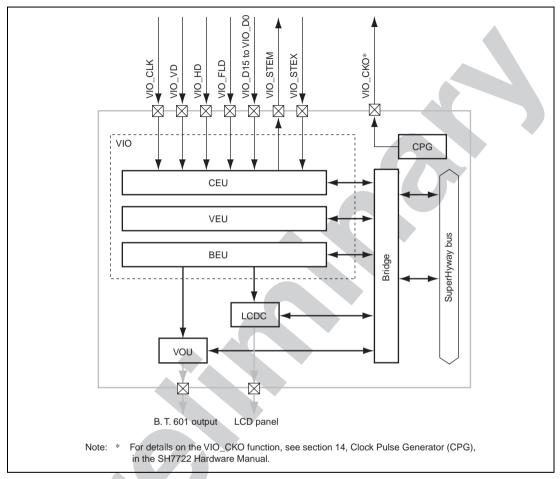


Figure 25.1 Block Diagram of VIO

25.2 Functional Overview of CEU

The CEU (Capture Engine Unit) is a capture module that fetches image data externally input and transfers it to the memory. The CEU is connected to the system bus via bus bridge modules. The functional overview of the CEU is shown in table 25.1, and the main functions and their details are shown in table 25.2.

Table 25.1 Functional Overview of CEU

Classification	Item	Function	Description	Note
Connectable	Size	5M pixels	2560 pixels × 1920 lines	Horizontal: 4-pixel units
camera		3M pixels	2048 pixels × 1536 lines	Vertical: 4-line units
		2M pixels	1632 pixels × 1224 lines	
		UXGA	1600 pixels × 1200 lines	
		SXGA (1)	1280 pixels × 1024 lines	
		SXGA (2)	1280 pixels × 960 lines	_
		XGA	1024 pixels × 768 lines	_
		SVGA	800 pixels × 600 lines	_
		VGA	640 pixels × 480 lines	_
		CIF	352 pixels × 288 lines	_
		QVGA	320 pixels × 240 lines	_
		QCIF	176 pixels × 144 lines	_
		QQVGA	160 pixels × 120 lines	_
		Sub-QCIF	128 pixels × 96 lines	_
	Input format	YCbCr 4:2:2	Cb ₀ , Y ₀ , Cr ₀ , Y ₁	Supports clock ratio of
		8 bits	Cr _o , Y _o , Cb _o , Y ₁	1:1
			Y ₀ , Cb ₀ , Y ₁ , Cr ₀	_
			Y ₀ , Cr ₀ , Y ₁ , Cb ₀	_
		YCbCr 4:2:2	{Y0, Cb0}, {Y1, Cr0},	_
		16 bits	{Y0, Cr0}, {Y1, Cb0},	_

Classification	Item	Function	Description	Note
Connectable camera	Input format	Binary data	Specified amount to be fetched on edges of the sync signal	Written sequentially
			Data is fetched with the horizontal sync signal as an enable signal.	
	Horizontal and vertical sync signal polarities	Arbitrary	High-active and low-active	
	Capture start	Arbitrary	Can be specified in	Horizontal: 1-cycle units
	location		camera input clock units	Vertical: 1-HD (horizontal sync signal) units
	Number of captured pixels	Arbitrary	Can be specified in 4-pixel units horizontally and in 4-line units vertically	·
	Interlace	Both-field capture	Stored as a field image	Capture: 2-VD (vertical
			Stored as a frame image	sync signal) units
		One-field capture	Top field or bottom field can be specified	Capture: 1-VD units
Memory write	Output format	YCbCr 4:2:2 YCbCr 4:2:0	YCbCr 4:2:0 is realized by simple skipping	
Strobe function	Strobe control	Automatic mode	Emission time is controlled by the emission start counter, strobe exposed signal, or vertical sync	Emission start = Register setting Emission stop = Strobe exposed signal
			signal	Emission start = Register setting Emission stop = Register setting
				Emission start = Vertical sync signal Emission stop = Vertical sync signal
		Manual mode	Emission pin is controlled by modifying the register	Emission start = Modifying the register
				Emission stop = Clearing the register

Classification	Item	Function	Description	Note
Filter function	No scaling or scale-down	Scale-down of captured display	Desired scaling factor from 1/16 to 1 (scaled-down display must not exceed VGA)	
	Low-pass filter		Removal of high-frequency components	Only in the horizontal direction
Display information acquisition	Complexity level	Acquisition of complexity level of captured display	Variation of pixel values is indicated	Used for MPEG-4 16-line units, 8-line units, or 1-display units can be selected

Table 25.2 Main Functions of CEU and Their Details

Main Function	Detailed Description
Image data fetch	Captures an image output from an external module and writes YCbCr data to the memory with it separated into Y data and CbCr data.
	 Fetches image data other than YCbCr data, e.g. JPEG data, from an externally connected module, such as a camera, and sequentially writes the image data to the memory.
	 Fetches an interlace source image in both-field units or one-field units and writes it to the memory. In both-field capture, an image can be stored in the memory as a frame image.
Filter processing	Performs scale-down and removal of high-frequency components (only in the horizontal direction) for an image using internal filters.
	Note that the scaled-down image must not exceed VGA. The filter processing can be applied to only YCbCr input data.
Display information acquisition	Acquires the complexity level of the captured display and writes it to the memory. This information output at MPEG-4 encoding is useful for determining the scene change.
Format conversion	Converts image data input in the YCbCr 4:2:2 format into the YCbCr 4:2:0 format and writes it to the memory.
	Note that the conversion algorithm is simple skipping in which the chrominance component (CbCr) of the even-numbered lines is skipped.
Strobe control	Controls the emission signal by a register or an external signal.

Figure 25.2 shows a block diagram of the CEU.

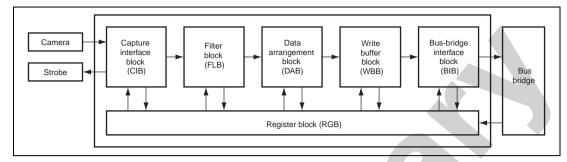


Figure 25.2 Block Diagram of CEU

25.3 Pin Configuration of CEU

The pin configuration of the CEU is shown in table 25.3.

Table 25.3 Pin Configuration of CEU

Pin Name	Function	1/0	Description
VIO_D15 to VIO_D8/ VIO_D7 to VIO_D0	VIO data bus	Input	Camera image data input to the VIO
VIO_CLK/VIO_CLK2	VIO clock	Input	Camera clock input to the VIO
VIO_VD/VIO_VD2	VIO vertical sync	Input	Camera vertical sync signal input to the VIO
VIO_HD/VIO_HD2	VIO horizontal sync	Input	Camera horizontal sync signal input to the VIO
VIO_STEM	Strobe emission	Output	Strobe emission signal
VIO_STEX	Strobe exposed	Input	Strobe exposed signal
VIO_FLD	Field signal	Input	Field identification signal
VIO_CKO	Camera clock output	Output	Clock output to the camera

Section 26 JPEG Processing Unit (JPU)

The JPEG processing unit (JPU) incorporates the JPEG codec with an encoding and decoding function conforming to the JPEG baseline process, so that the JPU can encode image data and decode JPEG data quickly.

For the encoding and decoding processes, frame buffers or line buffers for raster block conversion are necessary in an external buffer (such as an SDRAM) which is externally connected to the LSI.

26.1 Features

The JPU has the following features.

- Conforming specification: JPEG baseline
- Operating precision: Conforming to JPEG Part 2, ISO-IEC10918-2
- Color format: YCbCr 4:2:2 (H = 2:1:1, V = 1:1:1), YCbCr 4:2:0 (H = 2:1:1, V = 2:1:1)
- Quantization tables: Four tables
- Huffman tables: Four tables (two AC tables, two DC tables)
- Target markers: Start of image (SOI), start of frame type 0 (SOF0), start of scan (SOS), define quantization tables (DQT), define Huffman tables (DHT), define restart interval (DRI), restart (RSTm), end of image (EOI)
- Image data rate: Maximum 133 Mbytes/s (66.7 MHz operation)
- The frame buffer can be reduced from the RAM area such as the SDRAM by using line buffer mode.
 - This mode cannot be used with some pixel clock frequencies of the camera sensor or RAM bandwidth.
- Image rotation (by 90°, 180°, or 270°) can be performed in the encoding process (only in frame buffer mode).
- In reload mode, address toggling at every transfer of a specified amount of data during stream reading and writing is supported so that the buffer capacity can be reduced.
- Processing unit: 8-byte address boundary, 4-byte data length
 Note that the output data size during encoding is determined by the 16-byte boundary at the end of the address.
- Processable image size:
 Minimum 16 (horizontal) × 16 (vertical) pixels
 Image is processed in 4-pixel units.

Note: Do not perform unsupported color formatting or encoding or decoding of an image with an unsupported size.

Figure 26.1 shows the connection between the JPU and peripheral modules.

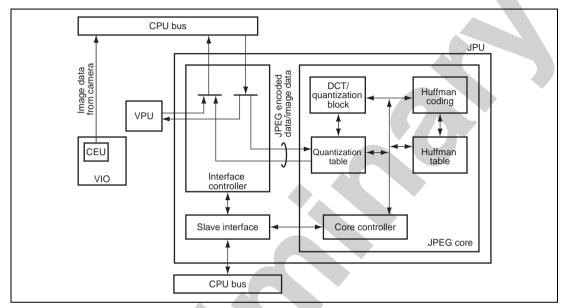


Figure 26.1 Connection between JPU and Peripheral Modules

Section 27 LCD Controller (LCDC)

The LCD controller (LCDC) reads display data from an external memory or receives display data from the blend engine unit (BEU). The LCDC uses the palette memory to determine the colors according to the settings and then sends the data to the LCD module. This LCDC allows connection of TFT LCD modules that support the RGB interface or the 80-Series CPU's bus interface (SYS interface). (However, LCD modules with the NTSC/PAL type or LVDS interface cannot be connected.)

27.1 Features

The LCDC has the following features.

- Supports TFT LCD modules
- LCD module interface
 - RGB interface (8/9/12/16/18/24-bit bus width)
 - 80-Series CPU's bus interface (SYS interface, 8/9/12/16/18/24-bit bus width)
- SYS interface supports the following input/output mode for the main and sub LCD module
 Main LCD module: VSYNC input and output modes
 Sub LCD module: VSYNC input and output modes
- Supports 8/12/16/18/24-bpp display image data formats
- Display image data is read in continuous or one-shot mode: continuous mode where display
 image data is continuously read according to the refresh rate of the LCD module and one-shot
 mode where display image data is read at intervals of the frame rate.
- Display image data is read in full or partial screen mode: full screen mode where the size of the
 display image data to be read depends on the panel size of the LCD module and partial screen
 mode where the size of the display image data to be read depends on the size of the screen to
 be updated.
- Display image data can be written back to the external memory
- Each of the RGB colors can be corrected by the 256-entry, 24-bit-input/output internal color palette memory
- Supports inversion of output signals to agree with the LCD module's signal polarity
- Interrupts can be generated every frame or user-specified line
- YCbCr signals are read and converted into RGB signals for output to the LCD module

Table 27.1 shows the LCDC functions.

Table 27.1 LCDC Functions

		Function	Remakes
Input data	8 bpp	RGB 332	
format	12 bpp	RGB 444	
	16 bpp	RGB 565	
	18 bpp	RGB 666	
		BGR 666	
	24 bpp	RGB 888	
		BGR 888	
	YCbCr	YCbCr 4:2:0, 4:2:2, 4:4:4	
Output data	RGB interface	RGB8	3 cycle/pixel
format		RGB9	2 cycle/pixel
		RGB12a	2 cycle/pixel
		RGB12b	1 cycle/pixel
		RGB16	1 cycle/pixel
		RGB18	1 cycle/pixel
		RGB24	1 cycle/pixel
	SYS interface	SYS8a	3 cycle/pixel
		SYS8b	3 cycle/pixel
		SYS8c	2 cycle/pixel
		SYS8d	2 cycle/pixel
		SYS9	2 cycle/pixel
		SYS12	2 cycle/pixel
		SYS16a	1 cycle/pixel
		SYS16b	2 cycle/pixel
		SYS16c	2 cycle/pixel
		SYS18	1 cycle/pixel
		SYS24	1 cycle/pixel
	Display data	WB8a	 Packed format available
	write-back	WB8d	Write-back operation in
		WB9	units of 32 bits
		WB16	Byte or word swap
		WB18	
		WB24	

		Function	Remakes		
LCD driver	RGB interface	Interface with HSYNC and VSYNC			
interface		Polarity inversion			
		Output pulse width and position setting			
	SYS interface	80-Series bus interface			
		 Support of VSYNC input/output 			
		Sub LCD connectable			
Dot clock	Source clock	Bus clock, peripheral clock, external clock			
	Division ratio	n/m			
		m = 60, 54, 48, 42			
		$1 \le n \le m/3, \ m/2$			
Interrupt	User setting	Interrupt generated when reading of specif lines of data is completed	ied		
	Frame	Interrupt generated when the first pixel data of a frame starts to be output			
		Interrupt generated when output of the last pixel data of a frame is completed			
	VRAM read	Interrupt generated when access to a frame of data in VRAM is completed			
		Interrupt generated when access to a line of data in VRAM is completed	of		
	VSYNC	SYNC Interrupt generated when VSYNC is asserted			
		Interrupt generated when VSYNC is negate	ed		
Display image	Image data read	Image data read depending on the refresh rate of LCD module			
		Image data read depending on the frame re of display image	ate		
	Display image size	Full screen			
		Only the specified area is updated.			
	Image data processing	Each color of R, G, and B is converted using the color palette	ng		
		256 entries			
		24-bit input/output			
Format conversion	YCbCr to RGB	YCbCr data is converted into RGB for outp	out.		

Figure 27.1 is a block diagram of the LCDC.

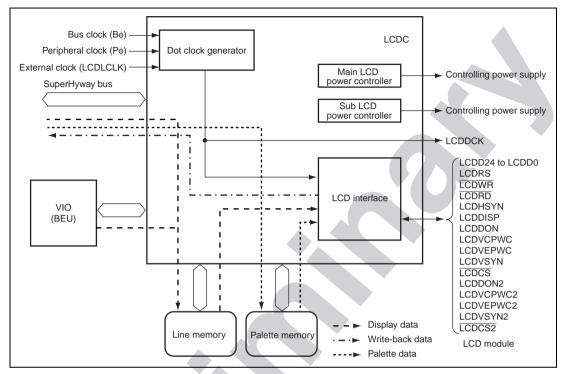


Figure 27.1 **Block Diagram of LCDC**

27.2 Input/Output Pins

Table 27.2 shows the pin configuration of the LCDC.

Table 27.2 Pin Configuration

Name	Function	I/O	Description
LCDDON/ LCDDON2	Display on signal	Output	Display start signal (DON) for main LCD/display start signal (DON) for sub LCDs
LCDVCPWC/ LCDVCPWC2	Power control	Output	Main LCD module power control (V_{cc})/sub LCD module power control (V_{cc})
LCDVEPWC/ LCDVEPWC2	Power control	Output	Main LCD module power control $(V_{\rm EE})/{\rm sub}$ LCD module power control $(V_{\rm EE})$
LCDDCK/ LCDWR	Dot clock/ write strobe	Output	Dot clock signal (RGB interface)/write strobe signal (SYS interface)
LCDVSYN	Vertical sync signal	Output/	Vertical sync signal (VSYNC) for main LCD
		I/O	Output for RGB interface or I/O for SYS interface
LCDVSYN2	Vertical sync signal 2		Vertical sync signal (VSYNC) for sub LCD
		1/0	Output for RGB interface or I/O for SYS interface
LCDHSYN/ LCDCS	Horizontal sync signal/chip select	Output	Horizontal sync signal (RGB interface)/chip select signal for main LCD (SYS interface)
LCDCS2	Chip select	Output	Chip select signal for sub LCD(SYS interface)
LCDDISP/ LCDRS	Display enable/ Register select	Output	Display enable signal (RGB interface)/register select signal (SYS interface)
LCDRD	Read strobe	Output	Read strobe signal (SYS interface)
LCDD24 to LCDD0	LCD data bus	Output/ I/O	LCD panel data (output for RGB interface or I/O for SYS interface)
LCDLCLK	Input clock	Input	LCD source clock (external input)

Section 28 Video Output Unit (VOU)

The video output unit (VOU) converts image data that is obtained from the blend engine unit (BEU) or memory and outputs it as ITU-R BT.601 or ITU-R BT.656 digital data.

The VOU also scales up images.

28.1 Features

The VOU has the following features.

- Supported video system: NTSC
- Output digital level: Conforms to ITU-R BT.601, ITU-R BT.656
- Output interface: 16-bit Y/C interface, 8-bit multiplexed YC interface
- Output timing: 13.5 MHz in 16-bit Y/C interface, 27 MHz in 8-bit multiplexed YC interface
- Output pixel frequency: 13.5 MHz, 27 MHz
- Supported source image: sub-OCIF, OVGA, WOVGA, VGA
- Maximum destination image size: 720×240 per field
- Source image format: YCbCr 4:2:2, YCbCr 4:2:0, YCbCr 4:4:4, RGB
- Scaling up of images

Horizontal factor: 1, 1.125, 2, 2.25, or 4

Vertical factor: 1, 2, or 4

- RGB → YCbCr conversion function: Outputs YCbCr after converting obtained RGB data
- Double-buffered register: Efficient register access through a double-buffered mechanism

Note: The image is enlarged by 4 pixels in the horizontal and vertical directions.

Figure 28.1 shows a block diagram of the VOU.

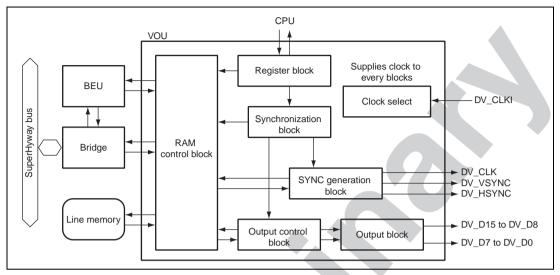
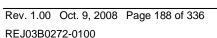



Figure 28.1 VOU Block Diagram

28.2 Pin Configuration

The VOU pin configuration is shown in table 28.1.

Table 28.1 Pin Configuration

Name	Function	I/O	Description
DV_CLK	Pixel clock output	Output	Pixel clock output (13.5 MHz, 27 MHz)
DV_VSYNC	Vertical sync signal	Output	VOU vertical sync signal output
DV_HSYNC	Horizontal sync signal output	Output	VOU horizontal sync signal output
DV_D15 to DV_D8	Data output	Output	Upper pixel data
			(Y: 16-bit interface)
			(YC: 8-bit multiplexed YC interface)
			(Rec. 656 output)
DV_D7 to DV_D0	Data output	Output	Lower pixel data
			(C: 16-bit interface)
			(H'80: 8-bit multiplexed YC interface)
			(H'80: Rec. 656 output)
DV_CLKI	Video clock input	Input	Video clock input pin (27 MHz)

Section 29 TS Interface (TSIF)

The transport stream interface (TSIF) is a module for receiving the MPEG2 transport stream (TS) used in one-segment broadcasting implemented as part of the digital terrestrial broadcasting services. The TSIF extracts packet data and controls PCR, which are required to decode the system layer of the MPEG2 standard.

29.1 Features

The TSIF has the following features.

- Serial data input
- Support for TS data transfer by DMA auto request
- Acquisition of TS packets
 - Filters 38 kinds of PIDs (Packet ID) in total (The PID values of PAT and CAT packets are fixed. For PCR, video, and audio packets, the PID values are predefined.)
 - Supports all valid packet receive mode (Null packet is deleted).
 - Supports all packet receive mode including Null packet.
 - Supports duplicate packet delete mode.
 - The endian type at the TS packet data reading can be set.
 - Supports the time stamp function at the TS packet data acquisition.
- TS data analysis
 - Detects random access indicator.
 - Detects discontinuity indicator.
 - Detects video start code and short header.
- Extraction of PCR information
- Support for system clock generation

[Legend]

MPEG: Moving picture expert group

TS: Transport stream

PID: Packet ID

PAT: Program association table CAT: Conditional access table PCR: Program clock reference

ES: Elementary stream

Figure 29.1 shows a block diagram of the TSIF.

The signals to transfer or control TS data are input as an input signal, and the TS packet data filtered by this module will be output as an output signal.

The serially input TS data is converted into 8-bit parallel data and the header of the TS packet is detected by the TS synchronous detection circuit. The TS filter circuit then determines and filters the PID of the TS packet according to the predefined PID table and stores the TS packet in the buffer for TS packets. Following these processes, only predefined TS packets are stored in the buffer and transferred to memories via a bus interface.

The analysis circuit of a TS header is a block that analyses the header of a TS packet, acquires the header information, and generates a trigger signal sent to other blocks. The ES data search circuit searches the start code and short header of an elementary stream (ES) contained in a TS packet. This result can be used as supplementary data to control the start timing of image decoding through the upper-level software that controls image decoding.

Based on the PCR information extracted from the TS packet, the PCR control unit outputs information needed for system clock control.

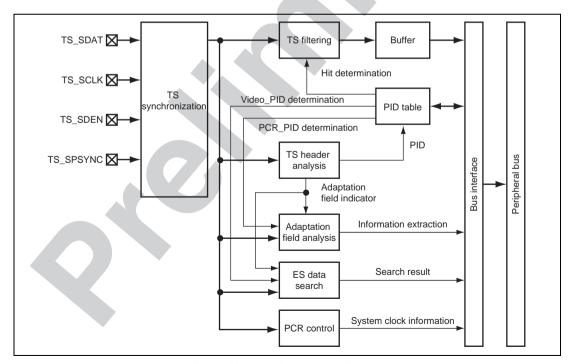


Figure 29.1 TSIF Block Diagram

29.2 Input/Output Pins

Table 29.1 shows the pin configuration.

Table 29.1 Pin Configuration

Pin Name	Function	I/O	Description
TS_SDAT	TS serial data	Input	Serial input pin of TS packet data
			Polarity inversion is enabled by register setting.
TS_SCK	TS serial clock	Input	Serial input clock pin
			Polarity inversion is enabled by register setting. The initial value is synchronized with the rising edge.
TS_SDEN	TS data enable	Input	Serial input enable signal pin
			Polarity inversion and On/Off setting are enabled by register setting. The initial value is On and enabled after the TS_SDEN signal is driven high.
TS_SPSYNC	TS data synchronization	Input	Byte boundary signal pin
			Polarity inversion is enabled by register setting. The initial value is set on a byte boundary at the rising edge. If an LSI that does not have the TS_SPSYNC signal is connected, connect the TS_SDEN signal to this pin.

Section 30 Sound Interface Unit (SIU)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

The sound interface unit (SIU) is a serial interface unit with FIFO which has an interface for sound input and output to be connected with the D/A and A/D converters, and it inputs/outputs PCM data and inputs digital data conforming to the IEC60958 (SPDIF: version of December, 1999). The SIU has a DSP dedicated for filter processing, and signal processing operation of the filter application can be performed by a DSP program.

30.1 Features

The features of the SIU are listed in table 30.1.

Table 30.1 SIU Functions

Item	Contents	Details		
DSP functions	Memory	 PRAM: 24 bits × 2048 words 		
		 XRAM: 32 bits × 512 words 		
		• YRAM: 32 bits × 512 words		
	Operators	24-bit × 24-bit multiplier		
		16-bit divider		
		42-bit ALU		
		 General operator for pointers 		
	Special instructions	Branch instruction with reference of flag at desired bit location		
		 Instruction to set desired bit location 		
		 Instruction to reset desired bit location 		
		 Maximum value search instruction 		
		 Clipping instruction 		
	Special control	Instruction loop		
		 Modulo addressing 		
		Subroutine		
	FIFO control	On-chip FIFO control circuit		
	Applications	FIR filter		
		IIR filter		
		Equalizer		
		 SRC (sampling rate conversion) 		

Item	Contents	Details		
Output interface	3-line serial output (× 2: ports A and B)	 Master mode, clock = 64, 128, 256, or 512 × fs (sampling frequency) Supports slave mode 32 or 64 bit/fs 16-bit front filling or end filling at 64 bit/fs Supports I2S (Inter IC Sound) format 		
	SPDIF output (port A)	 Master mode, clock = 512 × fs Supports channel status and user data Supports only 16-bit stereo 		
Input interface	3-line serial input (× 2: ports A and B)	 Master mode, clock = 64, 128, 256, or 512 × fs Supports slave mode 32 or 64 bit/fs 16-bit front filling or end filling at 64 bit/fs Supports I2S format 		
	SPDIF input (port A)	 Master mode, clock = 512 × fs Supports channel status and user data Supports only 16-bit stereo 		
Others	Volume	Supports digital volume		
	Mixing	L/R mixing		

Figure 30.1 shows a block diagram of the SIU.

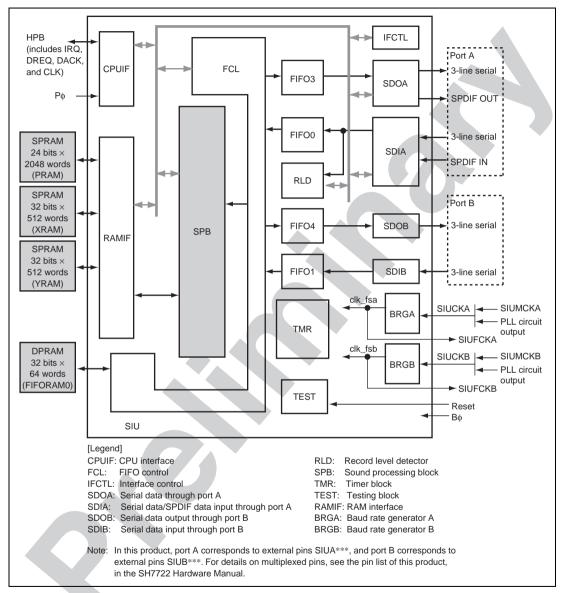


Figure 30.1 Block Diagram of SIU

The SIU operates in the following 18 blocks and four SRAMs.

(1) CPUIF

The CPU interface (CPUIF) is an interface that controls access to the registers and data transfer between the CPU that functions as the host and SRAM (PRAM, XRAM, YRAM, and FIFORAM0) controlled by the SIU. It is connected to the SH peripheral bus (HPB). The SIU operates according to the program written in PRAM via the CPUIF.

(2) FCL

The FIFO control (FCL) is a block that controls FIFOs for input/output data of ports A and B. The FCL automatically controls the FIFORAM addresses to write each FIFO data at the predetermined location and read data from the predetermined location.

(3) FIFO0, FIFO1, FIFO3, and FIFO4

The FIFOs store SPDIF input/output data, 3-line serial input/output data, and sound source input data.

Each FIFO has its own use as shown below.

- FIFO0: Data input from port A is temporarily stored.
- FIFO1: Data input from port B is temporarily stored.
- FIFO3: Data to be output to port A is temporarily stored.
- FIFO4: Data to be output to port B is temporarily stored.

(4) IFCTL

The interface control (IFCTL) controls SPDIF input/output and 3-line serial input/output, according to the settings of the host.

(5) SDOA

The SDOA is an interface for serial data output through port A. 3-line serial data and SPDIF data can be output. The SDOA should be mainly used to output audio stereo data.

(6) SDIA

The SDIA is an interface for serial data input and SPDIF data input of port A. 3-line serial data and SPDIF data can be input. The SDIA should be mainly used to input audio stereo data.

(7) **SDOB**

The SDOB is an interface for serial data output through port B. 3-line serial data can be output. The SDOB should be mainly used to output audio monaural data.

(8) **SDIB**

The SDIB is an interface for serial data input through port B. 3-line serial data can be input. The SDIB should be mainly used to input audio monaural data.

(9) **RLD**

The record level detector (RLD) monitors the input level of port A, and is capable of fetching the peak level as an absolute value. The RLD incorporates a circuit for detecting the silent period, and can set a flag if a sound equal to or lower than the specified mute level continues for the specified sampling period.

(10) SPB

The sound processing block (SPB) is a block that plays the center role in SIU signal processing. It accesses PRAM for programs and XRAM and YRAM for saving data to implement signal processing. The SPB incorporates a DSP that operates by the program written in PRAM, and implements signal processing such as FIR filter, IIR filter, equalizer, or SRC.

(11) TMR

The timer block (TMR) generates the signal to activate the SPB hardware and the timer interrupt signal issued to the TSIF module. When the SPB hardware has been activated, the TMR is normally not used, and the FIFO event activation is used instead.

(12) TEST

The TEST is a module that generates a reset signal for the registers in each block.

(13) RAMIF

The RAM interface (RAMIF) is a module that controls input/output of RAM by switching between the host and internal control. Though the sound processing block (SPB) in the SIU has the privilege to access RAM during operation, the host control signal can be used to pass the privilege to access RAM to the host (CPUIF).

(14) **BRGA**

Baud rate generator A (BRGA) supplies SIUCKA directly or after dividing it as a basic operating clock to sound input/output port A. The SIUCKA dividing ratio can be specified by a register.

(15) **BRGB**

Baud rate generator B (BRGB) supplies SIUCKB directly or after dividing it as a basic operating clock to sound input/output port B. The SIUCKB dividing ratio can be specified by a register.

30.1.1 RAM Overview

(1) PRAM

PRAM is a single-port SRAM of 24 bits \times 2048 words. It is used to store SIU programs consisting of 24-bit instructions, and the stored programs command the DSP in the SIU to carry out necessary signal processing.

(2) XRAM and YRAM

XRAM and YRAM are single-port SRAMs of 32 bits \times 512 words. They store data such as audio samples or filter coefficients during processing such as filtering by the DSP in the SIU.

(3) FIFORAM0

FIFORAM0 is a dual-port SRAM of 32 bits × 64 words. Unlike audio data FIFOs (FIFO0, FIFO1, FIFO3, and FIFO4) for input/output outside the LSI, they are RAM FIFOs for audio data input/output from or to the CPU.

FIFORAMO is divided into four 16-stage FIFOs; RAM port A input FIFO (FIFO5), RAM port B input FIFO (FIFO6), RAM port A output FIFO (FIFO7), and RAM port B output FIFO (FIFO8).

For details, refer to section 34.4, Memory Descriptions, and section 34.8.8, FIFO Specifications, in the SH7722 Hardware Manual.

30.2 Input/Output Pins

Table 30.2 shows the SIU pin configuration.

Table 30.2 Pin Configuration

SIU Block	Pin Name	Function	I/O	Description
SIUA	SIUAOLR	Port A sound output L/R clock	I/O*	Sound output L/R clock pin (master or slave)
	SIUAOBT	Port A sound output bit clock	I/O*	Sound output bit clock pin (master or slave)
	SIUAOSLD	Port A sound output serial data	Output	Sound output serial data pin
	SIUAOSPD	SPDIF output A serial data	Output	SPDIF serial data pin
	SIUAILR	Port A sound input L/R clock	I/O*	Sound input L/R clock pin (master or slave)
	SIUAIBT	Port A sound input bit clock	1/0*	Sound input bit clock pin (master or slave)
	SIUAISLD	Port A sound input serial data	Input	Sound input serial data pin
	SIUAISPD	Port A SPDIF input serial data	Input	SPDIF input serial data pin
	SIUMCKA	Port A master clock input	Input	Master clock input pin for port A
	SIUFCKA	Port A sampling clock output	Output	Sampling clock (clk_fsa) output pin for port A
SIUB	SIUBOLR	Port B sound output L/R clock	I/O*	Sound output L/R clock pin (master or slave)
	SIUBOBT	Port B sound output bit clock	I/O*	Sound output bit clock pin (master or slave)
	SIUBOSLD	Port B sound output serial data	Output	Sound output serial data pin
	SIUBILR	Port B sound input L/R clock	I/O*	Sound input L/R clock pin (master or slave)
	SIUBIBT	Port B sound input bit clock	I/O*	Sound input bit clock pin (master or slave)
	SIUBISLD	Port B sound input serial data	Input	Sound input serial data pin

SIU Block	Pin Name	Function	I/O	Description
SIUB	SIUMCKB	Port B master clock input	Input	Master clock input pin for port B
	SIUFCKB	Port B sampling clock output	Output	Sampling clock (clk_fsb) output pin for port B

Note: * Set to output when the master is specified or set to input when the slave is specified.

Section 31 USB Function Module (USBF)

This LSI has a USB function module (USBF) to support high-speed transfer and full-speed transfer of the USB 2.0 standard, and supports all transfer types of the USB standard.

This module has a 4-kbyte buffer memory for data transfer, providing a maximum of eight pipes.

31.1 Features

(1) Supports USB Rev. 2.0 High-Speed

- Conforms to the Universal Serial Bus Specification Revision 2.0
- Supports high-speed transfer (480 Mbps) and full-speed transfer (12 Mbps)

(2) Supports All USB Transfer Types

- Control transfers
- Bulk transfers
- Interrupt transfers (high bandwidth transfers not supported)
- Isochronous transfers (high bandwidth transfers not supported)

(3) Internal Bus Interfaces

• On-chip DMA interfaces of one channel

(4) Pipe Configuration

- On-chip 4-kbyte buffer memory for USB communications
- Up to eight selectable pipes (including the default control pipe)
- Programmable pipe configuration
- Endpoint numbers arbitrarily allocated to PIPE1 to PIPE7

• Transfer conditions that can be set for each pipe:

PIPE0: Control transfers, continuous transfer mode, 256-byte fixed single buffer

PIPE1 and PIPE2: Bulk transfers/isochronous transfers, continuous transfer mode.

programmable buffer size (can be specified as up to a 1.8-kbyte double

buffer)

PIPE3 to PIPE5: Bulk transfers, continuous transfer mode, programmable buffer size

(can be specified as up to a 1.8-kbyte double buffer)

PIPE6 and PIPE7: Interrupt transfer, 64-byte fixed single buffer

(5) Other Features

Thirty-five interrupts of eight kinds
 Selectable interrupt notice according to the kind and the source depending on the software setting

- Automatic recognition of high-speed mode or full-speed mode through the reset handshake automatic response
- Transaction counting in DMA transfer
- Completes DMA transfer with interrupts
- Controls control transfer stage
- Device state control
- Automatic response to SET_ADDRESS request
- SOF interpolation
- Adds a zero-length packet at the end of a DMA transfer (DEZPM)
- Changes the BRDY interrupt event notice timing (BFRE)
- Automatically clears the buffer memory after reading the data of the pipe specified by the D0FIFO port (DCLRM)
- NAK setting for the response PID at the end of transfer (this module automatically recognizes the end of transfer by short packet reception or a transaction counter) (SHTNAK)
- NAK response interrupts (NRDY)

Figure 31.1 shows a block diagram of the USBF.

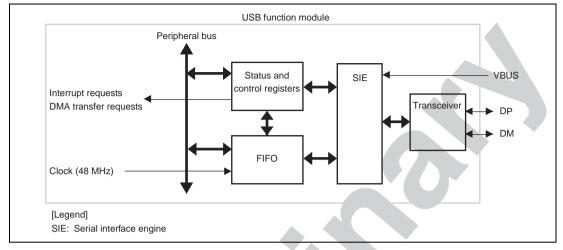


Figure 31.1 Block Diagram of the USBF

31.2 Input / Output Pins

Table 31.1 shows the pin configuration of the USBF.

Table 31.1 USBF Pin Configuration

Pin Name	Function	1/0	Description
DP	D+ I/O	1/0	D+ I/O of the USB on-chip transceiver
DM	D- I/O	1/0	D- I/O of the USB on-chip transceiver
VBUS	USB power supply detection	Input	USB cable connection monitor pin
REFRIN	Reference input	_	Reference resistor connection pin for constant current circuit.
EXTALUSB	48-MHz clock pin for USB	Input	48-MHz clock pin for USB
XTALUSB	48-MHz clock pin for USB	Output	Crystal resonator should be connected between EXTALUSB and XTALUSB. When using an external clock input, an external clock signal should be connected to EXTALSUB: and XTALUSB should be open.

Section 32 Key Scan Interface (KEYSC)

This LSI has a key scan interface (KEYSC) that can set the input or output bit numbers to be programmable.

32.1 Features

- On-chip chattering elimination circuit
- Chattering elimination time can be set to be programmable
- Measures to deal with multiple key presses
- Level/edge-selectable internal interrupts
- Canceling software standby and U-standby modes by the key input (level) interrupt.
- Input or output bit numbers can be set to be programmable

Figure 32.1 shows a block diagram of the key scan interface.

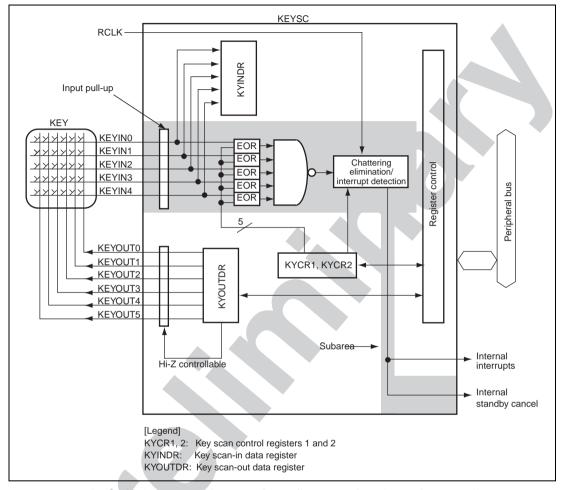


Figure 32.1 Block Diagram of Key Scan Interface (Key Pin Mode 1)

32.2 Input/Output Pins

The pin configuration of the key scan interface is listed in table 32.1.

Table 32.1 Pin Configuration

Name	Abbreviation	I/O	Function
Input key scan interface 6 to 0	KEYIN6 to KEYIN0	Input	Key scan interface for input
Output key scan interface 5 to 0	KEYOUT5 to KEYOUT0	Output	Key scan interface for output

The KEYOUT5 and KEYOUT4 pins are multiplexed with the KEYIN5 and KEYIN6 pins respectively. Setting the KYMD1 and KYMD0 bits in the key scan control register 1 (KYCR1) selects either those functions. Table 32.2 shows the possible combinations between the KEYIN and KEYOUT pins.

Table 32.2 Multiplex Pin Setting

Name	KYMD1	KYMD0	KEYOUT5/KEYIN5 Pin	KEYOUT4/KEYIN6 Pin
Key pin mode 1	0	0	Selects KEYOUT5 pin	Selects KEYOUT4 pin
Key pin mode 2	0	1	Selects KEYIN5 pin	Selects KEYOUT4 pin
Key pin mode 3	1	0	Selects KEYIN5 pin	Selects KEYIN6 pin

Section 33 2D Graphics Accelerator (2DG)

The 2D graphics accelerator (2DG) supports the drawing of quadrangles and associated drawing modes. A unified memory architecture has been adopted for the 2DG; that is, a region of the external memory is used for the frame buffers.

33.1 Features

The 2DG provides the following features.

(1) Figure Drawing Functions

Rectangles and quadrangles

Filling with a single color or gradations between colors

Texture mapping

- Methods of mapping: Magnification, minification, and repetition
- Filtering: Nearest neighbor interpolation, bilinear interpolation, and average pixel methods
 Coordinate transformation

Flipping graphics (only texture-mapped rectangles)

• Drawing horizontal straight lines

Drawing with a single color or gradations between colors

Texture mapping

- Methods of mapping: Magnification, minification, and repetition
- Filtering: Nearest neighbor interpolation, bilinear interpolation, and average pixel methods

(2) Pixel Processing

- Scissor testing
- Alpha blending
- Shadowing
- Raster operation (ROP)
- Color conversion
- Color key
- Writing-mask control

(3) Others

• Maximum resolution: 4096 × 4096

Section 34 Pin Function Controller (PFC)

34.1 Overview

The pin function controller (PFC) consists of registers to select the functions and I/O directions of multiplexed pins. Pin functions and I/O directions can be individually selected for every pin regardless of the LSI operating mode.

Table 34.1 lists the multiplexed pins of this LSI. Functions are selectable from a general port, functions 1, 2, and 3 for each pin. Functions 1, 2, and 3 can be selected by setting the corresponding bit in the port control register to B'00. Use the pin select register to select which function to use among functions 1, 2, and 3.

The functions in the shaded area in the table are available immediately after a reset. The settings of the I/O buffer Hi-Z control registers A, B, and C have priorities over the setting of the port control register.

Table 34.1 Multiplexed Pins

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTA7 input/output	VIO_D7 input (VIO)	SCIF1_SCK input/output (SCIF)	_
PTA6 input	VIO_D6 input (VIO)	SCIF1_RXD input (SCIF)	_
PTA5 input/output	VIO_D5 input (VIO)	SCIF1_TXD output (SCIF)	_
PTA4 input	VIO_D4 input (VIO)	_	_
PTA3 input	VIO_D3 input (VIO)	_	_
PTA2 input	VIO_D2 input (VIO)	_	_
PTA1 input	VIO_D1 input (VIO)	_	_
PTA0 input	VIO_D0 input (VIO)	LCDLCLK input (LCDC)	_
PTB7 input/output	HPD55 input/output (SBSC)	_	_
PTB6 input/output	HPD54 input/output (SBSC)		_
PTB5 input/output	HPD53 input/output (SBSC)		_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTB4 input/output	HPD52 input/output (SBSC)	_	_
PTB3 input/output	HPD51 input/output (SBSC)	_	-
PTB2 input/output	HPD50 input/output (SBSC)	_	-
PTB1 input/output	HPD49 input/output (SBSC)	_	-
PTB0 input/output	HPD48 input/output (SBSC)		7
PTC7 input	_	-	
PTC5 input	IOIS16 input (BSC)		
PTC4 input/output	HPDQM7 output (SBSC)	7	-
PTC3 input/output	HPDQM6 output (SBSC)		_
PTC2 input/output	HPDQM5 output (SBSC)		_
PTC0 input/output	HPDQM4 output (SBSC)	_	_
PTD7 input	SDHICD input (SDHI)	-	_
PTD6 input/output	SDHIWP input (SDHI)	_	_
PTD5 input/output	SDHID3 input/output (SDHI)	_	_
PTD4 input/output	IRQ2 input (CPU)	SDHID2 input/output (SDHI)	_
PTD3 input/output	SDHID1 input/output (SDHI)	_	_
PTD2 input/output	SDHID0 input/output (SDHI)	_	_
PTD1 input/output	SDHICMD input/output (SDHI)	_	_
PTD0 output	SDHICLK output (SDHI)	_	_
PTE7 input/output	A25 output (BSC)	_	_
PTE6 input/output	A24 output (BSC)	_	_
PTE5 input/output	A23 output (BSC)	_	_
PTE4 input/output	A22 output (BSC)	_	_
PTE1 input/output	IRQ5 input (CPU)	_	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTE0 input/output	IRQ4 input (CPU)	BS output (BSC)	_
PTF6 input/output	SIOMCK input (SIO)	SIUMCKB input (SIU)	SIUFCKB output (SIU)
PTF5 input/output	SIOSCK input/output (SIO)	SIUBOBT input/output (SIU)	-
PTF4 input/output	SIOSTRB1 output (SIO)	SIUBOLR input/output (SIU)	
PTF3 input/output	SIOSTRB0 output (SIO)	SIUBIBT input/output (SIU)	_
PTF2 input/output	SIOD input/output (SIO)	SIUBILR input/output (SIU)	7
PTF1 input	SIORXD input (SIO)	SIUBISLD input (SIU)	-/
PTF0 output	SIOTXD output (SIO)	SIUBOSLD output (SIU)	_
PTG4 output	AUDSYNC output (AUD)		_
PTG3 output	AUDATA3 output (AUD)	-	_
PTG2 output	AUDATA2 output (AUD)	_	_
PTG1 output	AUDATA1 output (AUD)	-	_
PTG0 output	AUDATA0 output (AUD)	-	_
PTH7 output	LCDVCPWC output (LCDC)	LCDVCPWC2 output (LCDC)	_
PTH6 input/output	LCDVSYN2 input/output (LCDC)	DACK output (DMAC)	_
PTH5 input/output	LCDVSYN input/output (LCDC)	_	_
PTH4 output	LCDDISP output (LCDC)	LCDRS output (LCDC)	_
PTH3 output	LCDHSYN output (LCDC)	LCDCS output (LCDC)	_
PTH2 output	LCDDON output (LCDC)	LCDDON2 output (LCDC)	_
PTH1 input/output	LCDD17 input/output (LCDC)	DV_HSYNC output (VOU)	_
PTH0 input/output	LCDD16 input/output (LCDC)	DV_VSYNC output (VOU)	_
PTJ7 output	STATUS0 output (CPG)		
PTJ6 output	_	_	_
PTJ5 output	PDSTATUS output (CPG)	<u> </u>	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTJ1 input/output	IRQ1 input (CPU)	_	_
PTJ0 input/output	IRQ0 input (CPU)	_	-
PTK6 input/output	SIUAILR input/output (SIU)	SIOF1_SS2 output (SIOF)	-
PTK5 input/output	SIUAIBT input/output (SIU)	SIOF1_SS1 output (SIOF)	-
PTK4 input/output	SIUAOLR input/output (SIU)	SIOF1_SYNC input/output (SIOF)	-
PTK3 input/output	SIUAOBT input/output (SIU)	SIOF1_SCK input/output (SIOF)	7
PTK2 input	SIUAISLD input (SIU)	SIOF1_RXD input (SIOF)	
PTK1 output	SIUAOSLD output (SIU)	SIOF1_TXD output (SIOF)	_
PTK0 input/output	SIUMCKA input (SIU)	SIOF1_MCK input (SIOF)	SIUFCKA output (SIU)
PTL7 input/output	LCDD15 input/output (LCDC)	DV_D15 output (VOU)	_
PTL6 input/output	LCDD14 input/output (LCDC)	DV_D14 output (VOU)	_
PTL5 input/output	LCDD13 input/output (LCDC)	DV_D13 output (VOU)	_
PTL4 input/output	LCDD12 input/output (LCDC)	DV_D12 output (VOU)	_
PTL3 input/output	LCDD11 input/output (LCDC)	DV_D11 output (VOU)	_
PTL2 input/output	LCDD10 input/output (LCDC)	DV_D10 output (VOU)	_
PTL1 input/output	LCDD9 input/output (LCDC)	DV_D9 output (VOU)	_
PTL0 input/output	LCDD8 input/output (LCDC)	DV_D8 output (VOU)	_
PTM7 input/output	LCDD7 input/output (LCDC)	DV_D7 output (VOU)	_
PTM6 input/output	LCDD6 input/output (LCDC)	DV_D6 output (VOU)	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTM5 input/output	LCDD5 input/output (LCDC)	DV_D5 output (VOU)	_
PTM4 input/output	LCDD4 input/output (LCDC)	DV_D4 output (VOU)	-
PTM3 input/output	LCDD3 input/output (LCDC)	DV_D3 output (VOU)	-
PTM2 input/output	LCDD2 input/output (LCDC)	DV_D2 output (VOU)	-
PTM1 input/output	LCDD1 input/output (LCDC)	DV_D1 output (VOU)	
PTM0 input/output	LCDD0 input/output (LCDC)	DV_D0 output (VOU)	9
PTN7 input/output	HPD63 input/output (SBSC)	5. ()	_
PTN6 input/output	HPD62 input/output (SBSC)	-	_
PTN5 input/output	HPD61 input/output (SBSC)	-	_
PTN4 input/output	HPD60 input/output (SBSC)		_
PTN3 input/output	HPD59 input/output (SBSC)	_	_
PTN2 input/output	HPD58 input/output (SBSC)	_	_
PTN1 input/output	HPD57 input/output (SBSC)	_	_
PTN0 input/output	HPD56 input/output (SBSC)	_	_
PTQ6 output	SIOF0_SS2 output (SIOF)	SIM_RST output (SIM)	_
PTQ5 input/output	SIOF0_SS1 output (SIOF)	TS_SPSYNC input (TSIF)	_
PTQ4 input/output	SIOF0_SYNC input/output (SIOF)	TS_SDEN input (TSIF)	_
PTQ3 input/output	SIOF0_SCK input/output (SIOF)	TS_SCK input (TSIF)	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTQ2 input	SIOF0_RXD input (SIOF)	IrDA_IN input (IrDA)	TS_SDAT input (TSIF)
PTQ1 output	SIOF0_TXD output (SIOF)	IrDA_OUT output (IrDA)	SIM_CLK output (SIM)
PTQ0 input/output	SIOF0_MCK input (SIOF)	IRQ3 input (CPU)	SIM_D input/output (SIM)
PTR4 output	LCDRD output (LCDC)	_	-
PTR3 output	CS6B/CE1B output (BSC)	LCDCS2 output (LCDC)	
PTR2 input	WAIT input (BSC)	_	-
PTR1 output	LCDDCK output (LCDC)	LCDWR output (LCDC)	-
PTR0 output	LCDVEPWC output (LCDC)	LCDVEPWC2 output (LCDC)	7
PTS4 input	SCIF0_CTS input (SCIF)	SIUAISPD input (SIU)	
PTS3 output	SCIF0_RTS output (SCIF)	SIUAOSPD output (SIU)	_
PTS2 input/output	SCIF0_SCK input/output (SCIF)	TPUTO output (TPU)	
PTS1 input	SCIF0_RXD input (SCIF)	_	_
PTS0 output	SCIF0_TXD output (SCIF)	-	_
PTT4 input/output	FOE output (FLCTL)	VIO_VD2 input (VIO)	_
PTT3 input/output	FWE output (FLCTL)	_	_
PTT2 input/output	FSC output (FLCTL)	_	_
PTT1 input	DREQ0 input (DMAC)		_
PTT0 output	FCDE output (FLCTL)	_	_
PTU4 input/output	NAF2 input/output (FLCTL)	VIO_D10 input (VIO)	_
PTU3 input/output	NAF1 input/output (FLCTL)	VIO_D9 input (VIO)	_
PTU2 input/output	NAF0 input/output (FLCTL)	VIO_D8 input (VIO)	_
PTU1 input	FRB input (FLCTL)	VIO_CLK2 input (VIO)	_
PTU0 input/output	FCE output (FLCTL)	VIO_HD2 input (VIO)	_
PTV4 input/output	NAF7 input/output (FLCTL)	VIO_D15 input (VIO)	_
PTV3 input/output	NAF6 input/output (FLCTL)	VIO_D14 input (VIO)	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTV2 input/output	NAF5 input/output (FLCTL)	VIO_D13 input (VIO)	_
PTV1 input/output	NAF4 input/output (FLCTL)	VIO_D12 input (VIO)	-
PTV0 input/output	NAF3 input/output (FLCTL)	VIO_D11 input (VIO)	-
PTW6 input	VIO_FLD input (VIO)	SCIF2_CTS input (SCIF)	-
PTW5 output	VIO_CKO output (VIO)	SCIF2_RTS output (SCIF)	
PTW4 input/output	VIO_STEX input (VIO)	SCIF2_SCK input/output (SCIF)	7
PTW3 input/output	VIO_STEM output (VIO)	SCIF2_TXD output (SCIF)	
PTW2 input/output	VIO_HD input (VIO)	SCIF2_RXD input (SCIF)	_
PTW1 input/output	VIO_VD input (VIO)	SCIF1_CTS input (SCIF)	_
PTW0 input/output	VIO_CLK input (VIO)	SCIF1_RTS output (SCIF)	_
PTX6 input/output	CS6A/CE2B output (BSC)	_	_
PTX5 input/output	LCDD23 output (LCDC)	_	_
PTX4 input/output	LCDD22 output (LCDC)	_	_
PTX3 input/output	LCDD21 output (LCDC)	_	_
PTX2 input/output	LCDD20 output (LCDC)		_
PTX1 input/output	LCDD19 output (LCDC)	DV_CLKI input (VOU)	_
PTX0 input/output	LCDD18 output (LCDC)	DV_CLK output (VOU)	_
PTY5 input/output	KEYOUT5/KEYIN5 input/output (KEY)	_	_
PTY4 input/output	KEYOUT4/KEYIN6 input/output (KEY)	_	_
PTY3 input/output	KEYOUT3 output (KEY)	_	_
PTY2 input/output	KEYOUT2 output (KEY)	_	_
PTY1 output	KEYOUT1 output (KEY)	_	_
PTY0 input/output	KEYOUT0 output (KEY)	_	_
PTZ5 input	KEYIN4 input (KEY)	IRQ7 input (CPU)	_
PTZ4 input	KEYIN3 input (KEY)	_	_
PTZ3 input	KEYIN2 input (KEY)	_	_

General Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)
PTZ2 input	KEYIN1 input (KEY)	_	_
PTZ1 input	KEYIN0 input (KEY)	IRQ6 input (CPU)	_
_	D31 to D16 input/output (BSC)*	HPD47 to HPD32 input/output (SBSC)*	_

Note: * When the MD3 pin is low, HPD47 to HPD32 are selected. When the MD3 pin is high, D31 to D16 are selected.

Section 35 I/O Ports

This LSI has twenty-three general ports (ports A to Z). All port pins are multiplexed with other pin functions, and the pin function controller (PFC) handles the selection of pin functions and pull-up MOS control. Each port has a data register which stores data for the pins.

35.1 Port A

Port A is an input/output port with the pin configuration shown in table 35.1. The port A control register (PACR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.1 Port A Configuration

Port Name	Selectab	le General Port Function		Corresponding Data Register Bit
PTA7	Output	Input (Pull-down on)	Input (Pull-down off)	PA7DT
PTA6	_	Input (Pull-down on)	Input (Pull-down off)	PA6DT
PTA5	Output	Input (Pull-down on)	Input (Pull-down off)	PA5DT
PTA4	_	Input (Pull-down on)	Input (Pull-down off)	PA4DT
PTA3	_	Input (Pull-down on)	Input (Pull-down off)	PA3DT
PTA2	_	Input (Pull-down on)	Input (Pull-down off)	PA2DT
PTA1	_	Input (Pull-down on)	Input (Pull-down off)	PA1DT
PTA0	_	Input (Pull-down on)	Input (Pull-down off)	PA0DT

35.2 Port B

Port B is an input/output port with the pin configuration shown in table 35.2. The port B control register (PBCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.2 Port B Configuration

Port Name	Selectab	ole General Port Functi	on	Corresponding Data Register Bit
PTB7	Output	_	Input (Pull-up off)	PB7DT
PTB6	Output	_	Input (Pull-up off)	PB6DT
PTB5	Output	_	Input (Pull-up off)	PB5DT
PTB4	Output	_	Input (Pull-up off)	PB4DT
PTB3	Output	_	Input (Pull-up off)	PB3DT
PTB2	Output	_	Input (Pull-up off)	PB2DT
PTB1	Output	_	Input (Pull-up off)	PB1DT
PTB0	Output	_	Input (Pull-up off)	PB0DT

35.3 Port C

Port C is an input/output port with the pin configuration shown in table 35.3. The port C control register (PCCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.3 Port C Configuration

)T
PTC7 — Input (Pull-up on) Input (Pull-up off) PC7D	
PTC5 — Input (Pull-up on) Input (Pull-up off) PC5D	Τ
PTC4 Output — Input (Pull-up off) PC4D	Τ
PTC3 Output — Input (Pull-up off) PC3D)T
PTC2 Output — Input (Pull-up off) PC2D	PΤ
PTC0 Output — Input (Pull-up off) PC0D)T

35.4 Port D

Port D is an input/output port with the pin configuration shown in table 35.4. The port D control register (PDCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.4 Port D Configuration

Port Name	Selectabl	e General Port Function		Corresponding Data Register Bit
PTD7	_	Input (Pull-up on)	Input (Pull-up off)	PD7DT
PTD6	Output	Input (Pull-up on)	Input (Pull-up off)	PD6DT
PTD5	Output	Input (Pull-up on)	Input (Pull-up off)	PD5DT
PTD4	Output	Input (Pull-up on)	Input (Pull-up off)	PD4DT
PTD3	Output	Input (Pull-up on)	Input (Pull-up off)	PD3DT
PTD2	Output	Input (Pull-up on)	Input (Pull-up off)	PD2DT
PTD1	Output	Input (Pull-up on)	Input (Pull-up off)	PD1DT
PTD0	Output	_	-	PD0DT

35.5 Port E

Port E is an input/output port with the pin configuration shown in table 35.5. The port E control register (PECR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.5 Port E Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTE7	Output	Input (Pull-down on)	Input (Pull-down off)	PE7DT
PTE6	Output	Input (Pull-down on)	Input (Pull-down off)	PE6DT
PTE5	Output	Input (Pull-down on)	Input (Pull-down off)	PE5DT
PTE4	Output	Input (Pull-down on)	Input (Pull-down off)	PE4DT
PTE1	Output	Input (Pull-up on)	Input (Pull-up off)	PE1DT
PTE0	Output	Input (Pull-up on)	Input (Pull-up off)	PE0DT

35.6 Port F

Port F is an input/output port with the pin configuration shown in table 35.6. The port F control register (PFCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.6 Port F Configuration

Port Name	Selectable	e General Port F	unction	Corresponding Data Register Bit
PTF6	Output	Input (Pull- down on)	Input (Pull- down off)	PF6DT
PTF5	Output	Input (Pull- down on)	Input (Pull- down off)	PF5DT
PTF4	Output	Input (Pull- down on)	Input (Pull- down off)	PF4DT
PTF3	Output	Input (Pull- down on)	Input (Pull- down off)	PF3DT
PTF2	Output	Input (Pull- down on)	Input (Pull- down off)	PF2DT
PTF1	_	Input (Pull- down on)	Input (Pull- down off)	PF1DT
PTF0	Output	_	74 /	PF0DT

35.7 Port G

Port G is an input/output port with the pin configuration shown in table 35.7. The port G control register (PGCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.7 Port G Configuration

Port Name	Selectable	General Po	rt Function	Corresponding Data Register Bit
PTG4	Output	_		PG4DT
PTG3	Output	_	_	PG3DT
PTG2	Output	_	-	PG2DT
PTG1	Output	_	- \	PG1DT
PTG0	Output	_	<u> </u>	PG0DT

35.8 Port H

Port H is an input/output port with the pin configuration shown in table 35.8. The port H control register (PHCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.8 Port H Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTH7	Output	7	_	PH7DT
PTH6	Output	Input (Pull-down on)	Input (Pull-down off)	PH6DT
PTH5	Output	Input (Pull-down on)	Input (Pull-down off)	PH5DT
PTH4	Output	_	_	PH4DT
PTH3	Output	_	_	PH3DT
PTH2	Output	_	_	PH2DT
PTH1	Output	Input (Pull-down on)	Input (Pull-down off)	PH1DT
PTH0	Output	Input (Pull-down on)	Input (Pull-down off)	PH0DT

35.9 Port J

Port J is an input/output port with the pin configuration shown in table 35.9. The port J control register (PJCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.9 Port J Configuration

Port Name	Selectable (General Port Function	1	Corresponding Data Register Bit
PTJ7	Output	_	_	PJ7DT
PTJ6	Output	_	_	PJ6DT
PTJ5	Output	_	-	PJ5DT
PTJ1	Output	Input (Pull-up on)	Input (Pull-up off)	PJ1DT
PTJ0	Output	Input (Pull-up on)	Input (Pull-up off)	PJ0DT

35.10 Port K

Port K is an input/output port with the pin configuration shown in table 35.10. The port K control register (PKCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.10 Port K Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTK6	Output	Input (Pull-down on)	Input (Pull-down off)	PK6DT
PTK5	Output	Input (Pull-down on)	Input (Pull-down off)	PK5DT
PTK4	Output	Input (Pull-down on)	Input (Pull-down off)	PK4DT
PTK3	Output	Input (Pull-down on)	Input (Pull-down off)	PK3DT
PTK2	+ _	Input (Pull-down on)	Input (Pull-down off)	PK2DT
PTK1	Output	_	_	PK1DT
PTK0	Output	Input (Pull-down on)	Input (Pull-down off)	PK0DT

35.11 Port L

Port L is an input/output port with the pin configuration shown in table 35.11. The port L control register (PLCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.11 Port L Configuration

Port Name	Selectable	e General Port Function		Corresponding Data Register Bit
PTL7	Output	Input (Pull-down on)	Input (Pull-down off)	PL7DT
PTL6	Output	Input (Pull-down on)	Input (Pull-down off)	PL6DT
PTL5	Output	Input (Pull-down on)	Input (Pull-down off)	PL5DT
PTL4	Output	Input (Pull-down on)	Input (Pull-down off)	PL4DT
PTL3	Output	Input (Pull-down on)	Input (Pull-down off)	PL3DT
PTL2	Output	Input (Pull-down on)	Input (Pull-down off)	PL2DT
PTL1	Output	Input (Pull-down on)	Input (Pull-down off)	PL1DT
PTL0	Output	Input (Pull-down on)	Input (Pull-down off)	PLODT

35.12 Port M

Port M is an input/output port with the pin configuration shown in table 35.12. The port M control register (PMCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.12 Port M Configuration

Port Name	Selectable G	eneral Port Function		Corresponding Data Register Bit
PTM7	Output	Input (Pull-down on)	Input (Pull-down off)	PM7DT
PTM6	Output	Input (Pull-down on)	Input (Pull-down off)	PM6DT
PTM5	Output	Input (Pull-down on)	Input (Pull-down off)	PM5DT
PTM4	Output	Input (Pull-down on)	Input (Pull-down off)	PM4DT
PTM3	Output	Input (Pull-down on)	Input (Pull-down off)	PM3DT
PTM2	Output	Input (Pull-down on)	Input (Pull-down off)	PM2DT
PTM1	Output	Input (Pull-down on)	Input (Pull-down off)	PM1DT
PTM0	Output	Input (Pull-down on)	Input (Pull-down off)	PM0DT

35.13 Port N

Port N is an input/output port with the pin configuration shown in table 35.13. The port N control register (PNCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.13 Port N Configuration

Port Name	Selectab	le General Port Functi	ion	Corresponding Data Register Bit
PTN7	Output	_	Input (Pull-up off)	PN7DT
PTN6	Output	_	Input (Pull-up off)	PN6DT
PTN5	Output	_	Input (Pull-up off)	PN5DT
PTN4	Output	_	Input (Pull-up off)	PN4DT
PTN3	Output	_	Input (Pull-up off)	PN3DT
PTN2	Output	_	Input (Pull-up off)	PN2DT
PTN1	Output	_	Input (Pull-up off)	PN1DT
PTN0	Output	_	Input (Pull-up off)	PN0DT

35.14 Port Q

Port Q is an input/output port with the pin configuration shown in table 35.14. The port Q control register (PQCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.14 Port Q Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTQ6	Output		_	PQ6DT
PTQ5	Output	Input (Pull-down on)	Input (Pull-down off)	PQ5DT
PTQ4	Output	Input (Pull-down on)	Input (Pull-down off)	PQ4DT
PTQ3	Output	Input (Pull-down on)	Input (Pull-down off)	PQ3DT
PTQ2	_	Input (Pull-down on)	Input (Pull-down off)	PQ2DT
PTQ1	Output	_	_	PQ1DT
PTQ0	Output	Input (Pull-up on)	Input (Pull-up off)	PQ0DT

35.15 Port R

Port R is an input/output port with the pin configuration shown in table 35.15. The port R control register (PRCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.15 Port R Configuration

Port Name	Selectable G	eneral Port Functio	n	Corresponding Data Register Bit
PTR4	Output	_	_	PR4DT
PTR3	Output	_	_	PR3DT
PTR2	_	Input (Pull-up on)	Input (Pull-up off)	PR2DT
PTR1	Output	_	-	PR1DT
PTR0	Output	_	A- ()	PR0DT

35.16 Port S

Port S is an input/output port with the pin configuration shown in table 35.16. The port S control register (PSCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.16 Port S Configuration

Port Name	Selectab	ele General Port Function		Corresponding Data Register Bit
PTS4		Input (Pull-down on)	Input (Pull-down off)	PS4DT
PTS3	Output		_	PS3DT
PTS2	Output	Input (Pull-down on)	Input (Pull-down off)	PS2DT
PTS1	7	Input (Pull-down on)	Input (Pull-down off)	PS1DT
PTS0	Output	_	_	PS0DT

35.17 Port T

Port T is an input/output port with the pin configuration shown in table 35.17. The port T control register (PTCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.17 Port T Configuration

Port Name	Selectable Go	eneral Port Function		Corresponding Data Register Bit
PTT4	Output	Input (Pull-down on)	Input (Pull-down off)	PT4DT
PTT3	Output	Input (Pull-down on)	Input (Pull-down off)	PT3DT
PTT2	Output	Input (Pull-down on)	Input (Pull-down off)	PT2DT
PTT1	_	Input (Pull-down on)	Input (Pull-down off)	PT1DT
PTT0	Output	_	-	PT0DT

35.18 Port U

Port U is an input/output port with the pin configuration shown in table 35.18. The port U control register (PUCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.18 Port U Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTU4	Output	Input (Pull-down on)	Input (Pull-down off)	PU4DT
PTU3	Output	Input (Pull-down on)	Input (Pull-down off)	PU3DT
PTU2	Output	Input (Pull-down on)	Input (Pull-down off)	PU2DT
PTU1	-	Input (Pull-up on)	Input (Pull-up off)	PU1DT
PTU0	Output	Input (Pull-up on)	Input (Pull-up off)	PU0DT

35.19 Port V

Port V is an input/output port with the pin configuration shown in table 35.19. The port V control register (PVCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.19 Port V Configuration

Port Name	Selectable G	eneral Port Function		Corresponding Data Register Bit
PTV4	Output	Input (Pull-down on)	Input (Pull-down off)	PV4DT
PTV3	Output	Input (Pull-down on)	Input (Pull-down off)	PV3DT
PTV2	Output	Input (Pull-down on)	Input (Pull-down off)	PV2DT
PTV1	Output	Input (Pull-down on)	Input (Pull-down off)	PV1DT
PTV0	Output	Input (Pull-down on)	Input (Pull-down off)	PV0DT

35.20 Port W

Port W is an input/output port with the pin configuration shown in table 35.20. The port W control register (PWCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.20 Port W Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTW6	- (Input (Pull-down on)	Input (Pull-down off)	PW6DT
PTW5	Output	4	_	PW5DT
PTW4	Output	Input (Pull-down on)	Input (Pull-down off)	PW4DT
PTW3	Output	Input (Pull-down on)	Input (Pull-down off)	PW3DT
PTW2	Output	Input (Pull-down on)	Input (Pull-down off)	PW2DT
PTW1	Output	Input (Pull-down on)	Input (Pull-down off)	PW1DT
PTW0	Output	Input (Pull-down on)	Input (Pull-down off)	PW0DT

35.21 Port X

Port X is an input/output port with the pin configuration shown in table 35.21. The port X control register (PXCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.21 Port X Configuration

Port Name	Selectable (General Port Function		Corresponding Data Register Bit
PTX6	Output	Input (Pull-up on)	Input (Pull-up off)	PX6DT
PTX5	Output	Input (Pull-down on)	Input (Pull-down off)	PX5DT
PTX4	Output	Input (Pull-down on)	Input (Pull-down off)	PX4DT
PTX3	Output	Input (Pull-down on)	Input (Pull-down off)	PX3DT
PTX2	Output	Input (Pull-down on)	Input (Pull-down off)	PX2DT
PTX1	Output	Input (Pull-down on)	Input (Pull-down off)	PX1DT
PTX0	Output	Input (Pull-down on)	Input (Pull-down off)	PX0DT

35.22 Port Y

Port Y is an input/output port with the pin configuration shown in table 35.22. The port Y control register (PYCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.22 Port Y Configuration

Port Name	Selectable Ge	eneral Port Function		Corresponding Data Register Bit
PTY5	Output	Input (Pull-up on)	Input (Pull-up off)	PY5DT
PTY4	Output	Input (Pull-up on)	Input (Pull-up off)	PY4DT
PTY3	Output	Input (Pull-up on)	Input (Pull-up off)	PY3DT
PTY2	Output	Input (Pull-up on)	Input (Pull-up off)	PY2DT
PTY1	Output	_	_	PY1DT
PTY0	Output	Input (Pull-up on)	Input (Pull-up off)	PY0DT

35.23 Port Z

Port Z is an input/output port with the pin configuration shown in table 35.23. The port Z control register (PZCR) of the PFC handles the selection of multiplexed functions and pull-up/pull-down MOS control.

Table 35.23 Port Z Configuration

Port Name	Selectable G	General Port Function		Corresponding Data Register Bit
PTZ5	_	Input (Pull-up on)	Input (Pull-up off)	PZ5DT
PTZ4	_	Input (Pull-up on)	Input (Pull-up off)	PZ4DT
PTZ3	_	Input (Pull-up on)	Input (Pull-up off)	PZ3DT
PTZ2	_	Input (Pull-up on)	Input (Pull-up off)	PZ2DT
PTZ1	_	Input (Pull-up on)	Input (Pull-up off)	PZ1DT

Section 36 User Break Controller (UBC)

The user break controller (UBC) provides versatile functions to facilitate program debugging. These functions help to ease creation of a self-monitor/debugger, which allows easy program debugging using this LSI alone, without using the in-circuit emulator. Various break conditions can be set in the UBC: instruction fetch or read/write access of an operand, operand size, data contents, address value, and program stop timing for instruction fetch.

36.1 Features

1. The following break conditions can be set.

Break channels: Two (channels 0 and 1)

User break conditions can be set independently for channels 0 and 1, and can also be set as a single sequential condition for the two channels, that is, a sequential break. (Sequential break involves two cases such that the channel 0 break condition is satisfied in a certain bus cycle and then the channel 1 break condition is satisfied in a different bus cycle, and vice versa.)

Address

When 40 bits containing ASID and 32-bit address are compared with the specified value, all the ASID bits can be compared or masked.

32-bit address can be masked bit by bit, allowing the user to mask the address in desired page sizes such as lower 12 bits (4-Kbyte page) and lower 10 bits (1-Kbyte page).

One address bus can be selected among three operand buses: operand address bus (SAB), X memory address bus (XAB), and Y memory address bus (YAB)

Data

32 bits can be masked only for channel 1.

One data bus can be selected among three data buses: operand data bus (SDB), X memory data bus (XDB), and Y memory data bus (YDB)

Bus cycle

The program can break either for instruction fetch (PC break) or operand access.

- · Read or write access
- Operand sizes

Byte, word, and longword are supported.

- 2. The user-designated exception handling routine for the user break condition can be executed.
- 3. Pre-instruction-execution or post-instruction-execution can be selected as the PC break timing.
- 4. A maximum of $2^{12} 1$ repetition counts can be specified as the break condition (available only for channel 1).

Figure 36.1 shows the UBC block diagram.

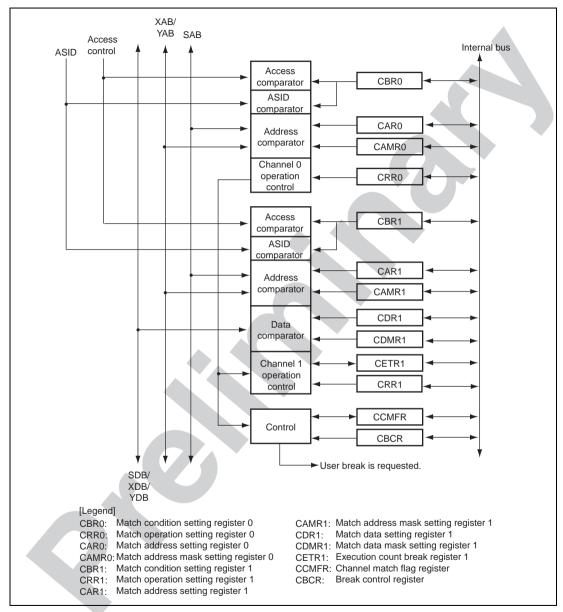


Figure 36.1 Block Diagram of UBC

Section 37 User Debugging Interface (H-UDI)

Note: This section contains references to the SH7722 Hardware Manual. The contents of the SH7722 Hardware Manual will be disclosed upon acceptance of a confidentiality agreement. For details, please contact a Renesas Technology sales representative.

The H-UDI is a serial interface which conforms to the JTAG (IEEE 1149.4: IEEE Standard Test Access Port and Boundary-Scan Architecture) standard. The H-UDI is also used for emulator connection.

37.1 Features

The H-UDI is a serial interface which conforms to the JTAG standard. The H-UDI is also used for emulator connection. When using an emulator, H-UDI functions should not be used. Refer to the appropriate emulator users manual for the method of connecting the emulator.

The H-UDI has six pins: TCK, TMS, TDI, TDO, TRST, and ASEBRK/BRKACK. The pin functions except ASEBRK/BRKACK and serial communications protocol conform to the JTAG standard. This LSI has additional six pins for emulator connection: (AUDSYNC, AUDCK, and AUDATA3 to AUDATA0).

Figure 37.1 shows a block diagram of the H-UDI.

The TAP (Test Access Port) controller and five registers (SDBPR, SDIR, SDDRH, SDDRL, and SDINT). SDBPR supports the JTAG bypass mode, SDIR is used for commands, SDDR is used for data, and SDINT is used for H-UDI interrupts. SDIR is directly accessed from the TDI and TDO pins.

The TAP controller and control registers are initialized by driving the TRST pin low or by applying the TCK signal for five or more clock cycles with the TMS pin set to 1. This initialization sequence is independent of the reset pin for this LSI. Other circuits are initialized by a normal reset.

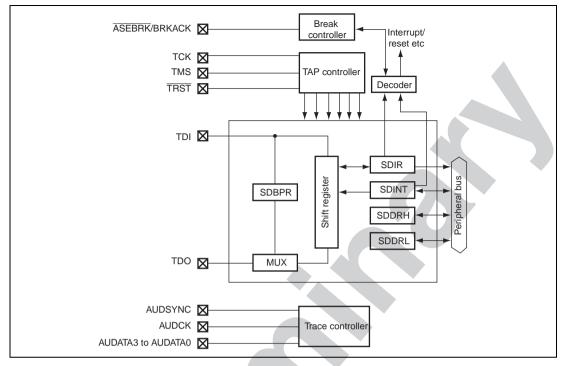


Figure 37.1 H-UDI Block Diagram

37.2 Input/Output Pins

Table 37.1 shows the pin configuration for the H-UDI.

Table 37.1 Pin Configuration

Pin Name	Abbreviation	1/0	Function	When Not in Use
Clock	TCK	Input	Functions as the serial clock input pin stipulated in the JTAG standard. Data input to the H-UDI via the TDI pin or data output via the TDO pin is performed in synchronization with this signal.	Open* ¹
Mode	TMS	Input	Mode Select Input	Open*1
			Changing this signal in synchronization with the TCK signal determines the significance of data input via the TDI pin. Its protocol conforms to the JTAG standard (IEEE standard 1149.1).	

Pin Name	Abbreviation	I/O	Function	When Not in Use
Reset	TRST*2	Input	H-UDI Reset Input	Fixed to
			This signal is received asynchronously with a TCK signal. Asserting this signal resets the JTAG interface circuit. When a power is supplied, the TRST pin should be asserted for a given period regardless of whether or not the JTAG function is used, which differs from the JTAG standard.	ground or connected to the RESET pin.*3
Data input	TDI	Input	Data Input	Open*1
			Data is sent to the H-UDI by changing this signal in synchronization with the TCK signal.	
Data	TDO	Output	Data Output	Open
output			Data is read from the H-UDI in synchronization with the TCK signal.	
Emulator	ASEBRK/ BRKACK	I/O	Pins for an emulator	Open* ¹
Emulator	AUDSYNC, AUDCK, AUDATA3 to AUDATA0	Output	Pins for an emulator	Open

Notes: 1. This pin is pulled up in this LSI. When using interrupts or resets via the H-UDI or emulator, the use of external pull-up resistors will not cause any problem.

- 2. When using interrupts or resets via the H-UDI or emulator, the TRST pin should be designed so that it can be controlled independently and can be controlled to retain low level while the RESET pin is asserted at a power-on reset.
- 3. This pin should be connected to ground, the RESET, or another pin which operates in the same manner as the RESET pin. However, when connected to a ground pin, the following problem occurs. Since the TRST pin is pulled up within this LSI, a weak current flows when the pin is externally connected to a ground pin. The value of the current is determined by a resistance of the pull-up MOS for the port pin. Although this current does not affect the operation of this LSI, it consumes unnecessary power. Pulling up the TRST pin can be disabled by the pull-down control register (PULCR) of the pin function controller (PFC). For details, see section 38, Pin Function Controller (PFC), in the SH7722 Hardware Manual.

The TCK clock or the CPG of this LSI should be set to ensure that the frequency of the TCK clock is less than the peripheral-clock frequency of this LSI.

Section 38 Electrical Characteristics

38.1 Absolute Maximum Ratings

Table 38.1 shows the absolute maximum ratings.

Table 38.1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power supply voltage (I/O)	V _{cc} Q, DV33, AV33	-0.3 to 4.6	V
Power supply voltage (Internal)	V _{DD} , V _{DD} _PLL, V _{DD} _DLL, DV12, AV12, UV12	-0.3 to 1.8	V
Input voltage	V _{in}	-0.3 to $V_{cc}Q + 0.3$	V
Storage temperature	T _{stg}	-55 to 125	°C

Caution: Operating the chip in excess of the absolute maximum ratings may result in permanent damage.

38.2 **Recommended Operating Conditions**

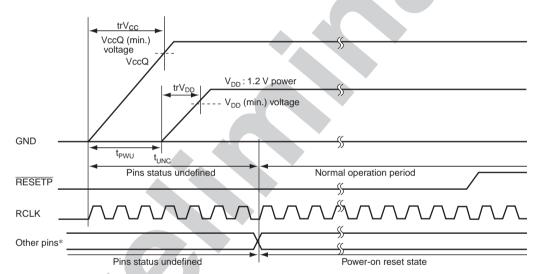

Table 38.2 lists the recommended operating conditions. The specification in this section assumes the use under the conditions of table 38.2 unless otherwise noted.

Table 38.2 Recommended Operating Conditions

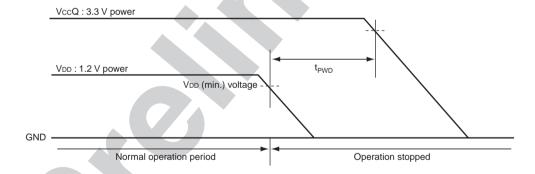
Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Operating	temperature	T _{opr}	-20	_	70	°C	Ambient temperature T _a
Power supply	I/O power supply	V _{cc} Q	3.0	3.3	3.6	V	7
voltage	Core power supply	V _{DD}	1.15	1.2/1.3	1.35	V	
	Power supply for PLL	V _{DD} _PLL	1.15	1.2/1.3	1.35	V	
	Power supply for DLL	V _{DD} _DLL	1.15	1.2/1.3	1.35	V	
	USB digital 3.3- V power supply	DV33	3.0	3.3	3.6	V	
	USB digital 1.2- V power supply	DV12	1.15	1.2/1.3	1.35	V	_
	USB analog 3.3- V power supply	AV33	3.0	3.3	3.6	V	
	USB analog 1.2- V power supply	AV12	1.15	1.2/1.3	1.35	V	_
	USB digital 1.2- V power supply	UV12	1.15	1.2/1.3	1.35	V	_

38.3 Power-On and Power-Off Order

- 1. Order of turning on 1.2 V power (V_{DD}, V_{DD}PLL, V_{DD}DLL) and 3.3 V power (V_{CQ})
 - First turn on the 3.3 V power, and then turn on the 1.2 V power. This interval is as shown in table 38.3. The system design must ensure that the states of pins or undefined period of an internal state do not cause erroneous system operation. The power settling time (trV_{cc}Q) of the power supply voltage for $V_{cc}Q$ must be shorter than those of any other 3.3 V power.
 - First turn on the 3.3 V power, and input RCLK before turning on the 1.2 V.
 - Until voltage is applied to all power supplies and a low level is input to the RESETP pin, internal circuits remain unsettled, and so pin states are also undefined. The system design must ensure that these undefined states do not cause erroneous system operation.
 Waveforms at power-on are shown in the following figure.

Note: * Except power/GND, clock-related, and analog pins

Table 38.3 Recommended Timing in Power-On


Item	Symbol	Time	Unit
V _{cc} Q power settling time	$trV_{cc}Q$	300	μS
Time difference between 3.3 V VCC and 1.2 V VDD at power-on	t _{PWU}	0 to 10	ms
V _{DD} power settling time	$trV_{\scriptscriptstyle DD}$	≤1	ms
Time over which the state is undefined	t _{unc}	$t_{PWU} + trV_{DD} + 3tRCLK$	ms

Note: The 3.3 V power should be turned on at the same time as much as possible.

The state-undefined time represents the time in which rising of each power is in transition. This ensures that the pins are in the reset state after t_{LING} has elapsed.

2. Power-off order

- In the reverse order of power-on, first turn off the 1.2 V V_{DD} power, then turn off the 3.3 V $V_{CC}Q$ power within 10 ms. This interval should be as short as possible. The system design must ensure that the states of pins or undefined period of an internal state do not cause erroneous system operation.
- Pin states are undefined while only the 1.2 V V_{DD} power is off. The system design must ensure that these undefined states do not cause erroneous system operation.

Table 38.4 Recommended Timing in Power-Off

Item	Symbol	Maximum Value	Unit
Time difference between the power-off of 1.2 V $\rm V_{DD}$ and 3.3 V $\rm V_{cc}Q$ levels	t _{PWD}	0 to 10	ms

Note: The values in the table above are recommended values, so they represent guidelines rather than strict requirements.

38.4 DC Characteristics

Tables 38.5, 38.6, and 38.7 list the DC characteristics.

Table 38.5 DC Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	MD0, MD1, MD2, MD3, MD5, MD8, TSTMD, TST, TRST, MPMD, ASEBRK/ BRKAK RESETP, NMI, RESETA, PTU0, PTX6, PTE1, PTE0, PTQ0		$V_{cc}Q \times 0.8$	_	V _{cc} Q + 0.3	V	
	VBUS pin	V _{IH}	4.35	9	5.25	V	
	Other input pins	V_{IH}	2.0	-	V _{cc} Q + 0.3	V	
Input low voltage	MD0, MD1, MD2, MD3, MD5, MD8, TSTMD, TST, TRST, MPMD, ASEBRK/ BRKAK RESETP, NMI, RESETA, PTU0, PTX6, PTE1, PTE0, PTQ0		-0.3		$V_{cc}Q \times 0.2$	V	
	Other input pins	V _{IL}	-0.3	_	0.8	V	
Output high	All output pins	V _{OH}	2.4	_	_	V	$I_{OH} = -2 \text{ mA}$
voltage			$V_{cc}Q \times 0.9$	_	_	V	$I_{OH} = -200 \mu A$
Output low voltage	Output pins other than I ² C	V _{oL}	_	_	0.5	V	I _{oL} = 2 mA
	SCL and SDA pins	V _{oL}	_	_	0.4	V	

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Squelch detection threshold input voltage (differential voltage)	DP and DM pins	V _{HSSQ}	100		150	mV	Input characteristics during high-speed operation
Common mode input voltage range	DP and DM pins	V _{HSCM}	-50		500	mV	Input characteristics during high-speed operation
Idle state	DP and DM pins	V _{HSOI}	-10		10	mV	Output characteristics during high-speed operation
High output voltage	DP and DM pins	$V_{\scriptscriptstyle HSOH}$	360		440	mV	
Low output voltage	DP and DM pins	$V_{\scriptscriptstyle HSOL}$	-10	\	10	mV	-
Chirp J output voltage (differential)	DP and DM pins	V _{CHIRPJ}	700		1100	mV	-
Chirp K output voltage (differential)	DP and DM pins	V _{CHIRPK}	-900		-500	mV	-

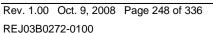


Table 38.6 DC Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Current consumption	Normal operation	I _{DD}	_	160	320	mA	$V_{DD} = 1.2 \text{ V}$ $I\phi = 266 \text{ MHz}$ $B\phi = 66 \text{ MHz}$ $B3\phi = 133 \text{ MHz}$
			_	220	435	mA	$V_{DD} = 1.3 \text{ V}$ $I\phi = 333 \text{ MHz}$ $B\phi = 66 \text{ MHz}$ $B3\phi = 133 \text{ MHz}$
		I _{cc}	_	120	150	mA	$V_{cc}Q3 = 3.3 \text{ V}$ $B\phi = 66 \text{ MHz}$ $B3\phi = 133 \text{ MHz}$ $BSC \text{ data bus width: } 16 \text{ bits}$ $SBSC \text{ data bus width: } 64 \text{ bits}$
		•		150	180	mA	$V_{cc}Q3 = 3.3 \text{ V}$ $B\phi = 66 \text{ MHz}$ $B3\phi = 133 \text{ MHz}$ $BSC \text{ data bus width: } 16 \text{ bits}$ $SBSC \text{ data bus width: } 32 \text{ bits}$
	Sleep mode*	I _{DD}	-	25	70	mA	*: When external bus cycles other than the
		l _{cc}		55	80		refresh cycle are not specified. All module stop: ON $V_{\text{DD}} = 1.2 \text{ V}$ $V_{\text{CC}}Q = 3.3 \text{ V}$ $B\phi = 66 \text{ MHz}$ $B3\phi = 133 \text{ MHz}$
	Software standby mode	stby	_	2.0	12	mA	Ta = 25°C $V_{cc}Q = 3.3 \text{ V}$ $V_{DD} = 1.2 \text{ V}$
	U-standby mode	lustby	_	_	60	μΑ	$Ta = 25^{\circ}C$ $V_{CC}Q = 3.3 \text{ V}$ $V_{DD} = 1.2 \text{ V}$ Input clock off

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leak current	All input pins (except SBSC pins)	I _{in}	_	_	1	μА	V _{in} = 0.5 to V _{cc} Q - 0.5 V
	SBSC pins	I _{inSB}	_	_	3		
Three-state leak current	I/O, all output pins (off condition) (except SBSC pins)	I _{STI}	_	_	1	μΑ	$V_n = 0.5 \text{ to } V_{cc}Q - 0.5 \text{ V}$
	SBSC pins	I _{inSB}	_	_	3		
Pull-up/ pull-down resistance	Port pins	P _{pull}	20	_	150	kΩ	
Pin	SBSC pins	C _{SB}	_	_	10	pF	
capacitance	All pins	С	_		10	pF	

Notes: 1. Make sure to connect the V_{cc}Q pin to the system power and the V_{ss} pin to the system ground (0 V).

- 2. Current consumption values in the table are for $V_{IH}min = V_{CC}Q 0.5 \text{ V}$ and $V_{IL}max = 0.5 \text{ V}$ with all output pins unloaded.
- 3. I_{DD} is the total of current flowing through the V_{DD} , V_{DD} -PLL, V_{DD} -DLL, DV12, AV12, and UV12 pins. I_{CC} is the total of current flowing through the $V_{CC}Q$, DV33, and AV33 pins. I_{STBY} is the total of I_{DD} and I_{CC} in standby mode. I_{USTBY} is the total of I_{DD} and I_{CC} in U-standby mode.

Table 38.7 Permissible Output Current Values

Item	Symbol	Min.	Тур.	Max.	Unit
Permissible output low current (per pin)	I _{oL}	_	_	2.0	mA
Permissible output low current (total)	$\Sigma I_{\scriptscriptstyle{OL}}$		_	40	mA
Permissible output high current (per pir	i) -I _{OH}	_	_	2.0	mA
Permissible output high current (total)	Σ ($-I_{OH}$)		_	40	mA
Permissible I ² C output low current (SCL SDA)	-, I _{OL}	_	_	10	mA

Note: To ensure chip reliability, do not exceed the output current values given in table 38.7.

38.5 AC Characteristics

The inputs of this LSI are synchronous as a rule. The setup and hold time of each input signal must be satisfied unless otherwise noted.

Table 38.8 Operating Frequency Range

Item		Symbol	Min.	Тур.	Max.	Unit	Remarks
Operating frequency	CPU, DSP, cache (Ιφ)	f	10	_	266.7	MHz	$V_{DD} = 1.15 \text{ V}$ to 1.30 V
, ,			10	_	333.4		$V_{DD} = 1.25 \text{ V}$ to 1.35 V
	U-memory (Uφ)		10	_	133.4		
	SuperHyway bus (SH _φ)	_	10	_	133.4		
	BSC bus (Βφ)		10	-/ [66.7		
	SBSC bus (B3¢)	_	10	4	133.4		
	Peripheral module (P)		2.5	-	33.4		
	SIU clock A (SIUCKA)		74	-	33.4		
	SIU clock B (SIUCKB)		=		33.4		
	IrDA clock (IrDACK)	_			33.4		
	Video clock (VIO_CKO)	_		_	66.7		

38.5.1 Clock Timing

Table 38.9 Clock Timing

Item	Symbol	Min.	Max.	Unit	Figure
EXTAL clock input frequency	$f_{\rm EX}$	10	66	MHz	38.1
EXTAL clock input cycle time	t _{EXcyc}	15	100	ns	
EXTAL clock input low pulse width	t _{EXL}	4.5	_	ns	
EXTAL clock input high pulse width	t _{exh}	4.5	_	ns	_
EXTAL clock input rise time	t _{EXr}	_	3	ns	
EXTAL clock input fall time	t _{EXf}	_	3	ns	
RCLK clock input frequency	f _{RCLK}	32	33	kHz	7
RCLK clock input cycle time	t _{RCLKcyc}	30.3	31.3	μS	_
RCLK clock input low pulse width	t _{RCLKL}	10		μS	_
RCLK clock input high pulse width	t _{rclkh}	10	-	μS	_
RCLK clock input rise time	t _{RCLKr}	_	200	ns	_
RCLK clock input fall time	t _{RCLKf}		200	ns	_
CKO clock output frequency	f _{cko}	5	66	MHz	38.2
CKO clock output cycle time	t _{CKOcyc}	15	200	ns	_
CKO clock output low pulse width	t _{ckol}	3	_	ns	_
CKO clock output high pulse width	t _{cкон}	3	_	ns	_
CKO clock output rise time	t _{CKOr}	_	3	ns	_
CKO clock output fall time	t _{ckof}	_	3	ns	_
HPCLK clock output frequency	f _{HPC}	5* ¹	133	MHz	_
HPCLK clock output cycle time	t _{HPCcyc}	7.5	200*1	ns	_
HPCLK clock output low pulse width	t _{HPCL}	1	_	ns	_
HPCLK clock output high pulse width	t _{hPCH}	1	_	ns	_
HPCLK clock output rise time	t _{HPCr}	_	3	ns	_
HPCLK clock output fall time	t _{HPCf}	_	3	ns	_
RESETP assert time	t _{RESPW}	4	_	t _{RCLKcyc}	38.3 to 38.5
RESETOUT assert time (clock mode 0)	t _{RESOUTMO}		300	μS	_
RESETOUT assert time (clock mode 1)	t _{RESOUTM1}		100	μS	_
RESETOUT assert time (clock mode 3)	t _{RESOUTM3}	_	2.3	ms	_

Item	Symbol	Min.	Max.	Unit	Figure
Software standby return time (clock mode 0)	t _{sosmo}	_	300	μS	38.6 to 38.8
Software standby return time (clock mode 1)	t _{sosm1}	_	40	t _{PCYC} *2	_
Software standby return time (clock mode 3)	t _{sosma}		2.3	ms	

Notes: 1. This is the value when the PLL is turned off. When the PLL is turned on, f_{op} (min.) is 25 MHz and t_{ov} (max.) is 40 ns.

2. Pφ cycle time in operation.

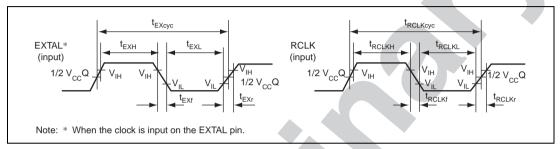


Figure 38.1 Clock Input Timing of EXTAL and RCLK

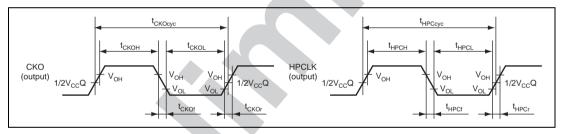


Figure 38.2 Clock Output Timing of CKO and HPCLK

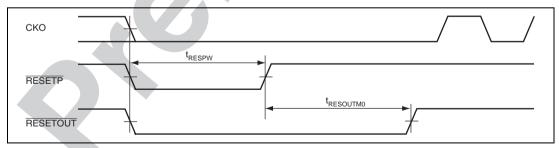


Figure 38.3 Power-On Oscillation Settling Time (Clock Mode 0)

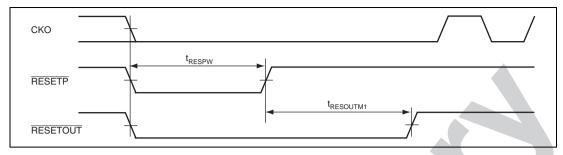


Figure 38.4 Power-On Oscillation Settling Time (Clock Mode 1)

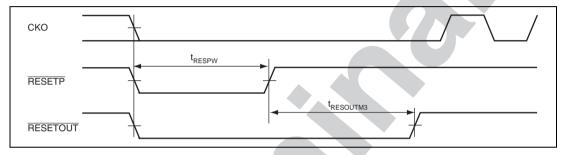


Figure 38.5 Power-On Oscillation Settling Time (Clock Mode 3)

Figure 38.6 Oscillation Settling Time on Return from Software Standby by NMI or IRQ (Clock Mode 0)

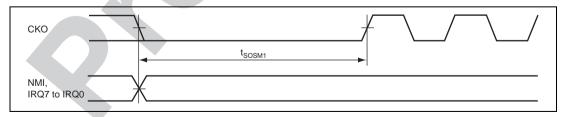


Figure 38.7 Oscillation Settling Time on Return from Software Standby by NMI or IRQ (Clock Mode 1)

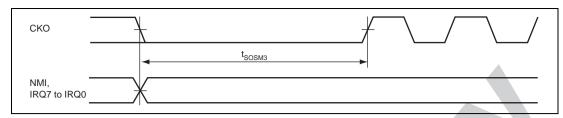


Figure 38.8 Oscillation Settling Time on Return from Software Standby by NMI or IRQ (Clock Mode 3)

38.5.2 Interrupt Signal Timing

Table 38.10 Interrupt Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
NMI setup time*	t _{NMIS}	12	_	ns	38.9
NMI hold time	t _{nmih}	6		ns	_
IRQ7 to IRQ0 setup time*	t _{IRQS}	12		ns	_
IRQ7 to IRQ0 hold time	t _{IRQH}	6	<u> </u>	ns	_

Note: * NMI and IRQ7 to IRQ0 are asynchronous signals. When the setup time in the table is satisfied, a change is detected at the rising edge of the clock. When the setup time is not satisfied, a change may not be detected until the next rising edge of the clock.

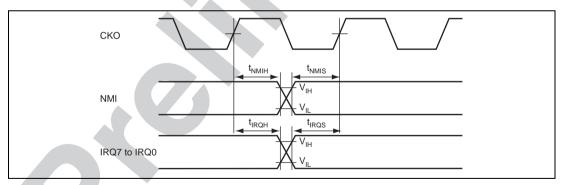


Figure 38.9 Interrupt Signal Input Timing

38.5.3 BSC Bus Timing

Table 38.11 BSC Bus Timing

Condition: $Ta = -20 \text{ to } 70^{\circ}\text{C}$

Item	Symbol	Min.	Max.	Unit	Figure
Address delay time 1	t _{AD1}	1	15	ns	38.10 to 38.23
Address delay time 2	t _{AD2}	1/2t _{cyc}	1/2t _{cyc} + 15	ns	38.19
Address setup time	t _{AS}	0	- 4	ns	38.10 to 38.19
Address hold time	t _{AH}	0	_ (ns	38.11
CS delay time 1	t _{CSD1}	1	15	ns	38.10 to 38.23
Read/write delay time 1	t _{RWD1}	1	15	ns	38.10 to 38.23
Read strobe delay time	t _{RSD}	1/2t _{cyc}	1/2t _{cyc} + 15	ns	38.10 to 38.21
Read data setup time 1	t _{RDS1}	1/2t _{cyc} + 10		ns	38.10 to 38.16, 38.20 to 38.23
Read data setup time 3	t _{RDS3}	1/2t _{cyc} + 10	_	ns	38.17 to 38.19
Read data hold time 1	t _{RDH1}	0		ns	38.10 to 38.16, 38.20 to 38.23
Read data hold time 3	t _{RDH3}	0	_	ns	38.17 to 38.19
Write enable delay time 1	t _{WED1}	1/2t _{cyc}	1/2t _{cyc} + 15	ns	38.10 to 38.18, 38.20, 38.21
Write enable delay time 2	t _{WED2}	0	15	ns	38.16, 38.17
Write data delay time 1	t _{wdd1}	_	15	ns	38.10 to 38.18, 38.20 to 38.23
Write data hold time 1	t _{wDH1}	1	_	ns	38.10 to 38.16, 38.20 to 38.23
WAIT setup time 1	t _{wrs1}	1/2t _{cyc} + 7	_	ns	38.10 to 38.19
WAIT hold time 1	t _{wth1}	1/2t _{cyc} + 6	_	ns	38.10 to 38.19

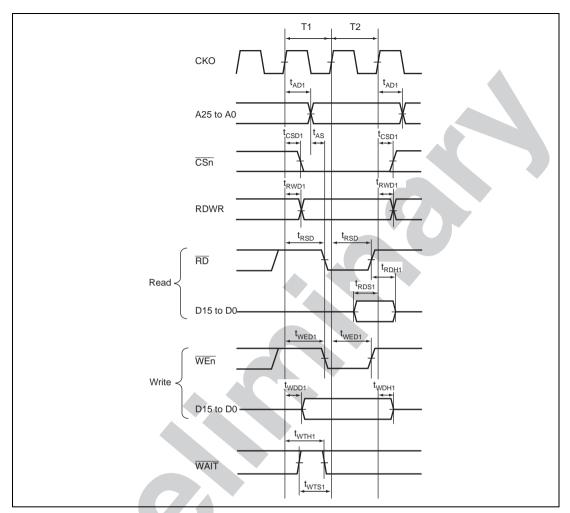
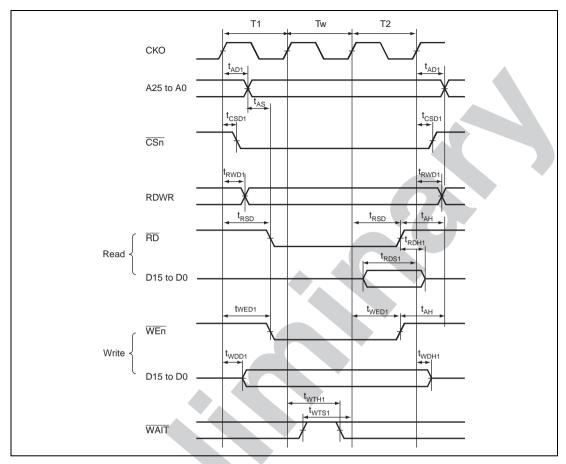



Figure 38.10 Basic Bus Cycle in Normal Space (No Wait)

Figure 38.11 Basic Bus Cycle in Normal Space (Software Wait 1)

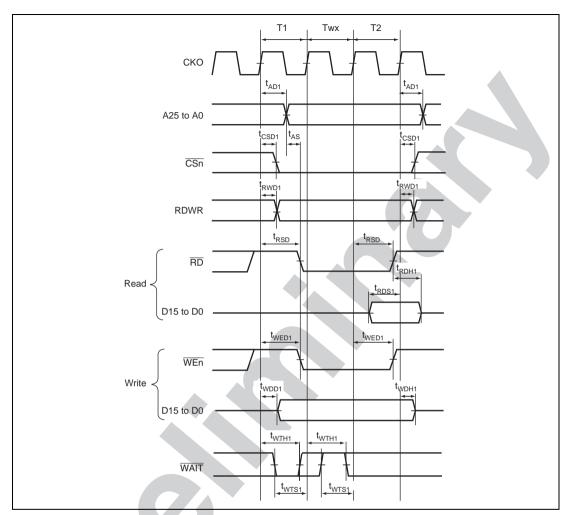
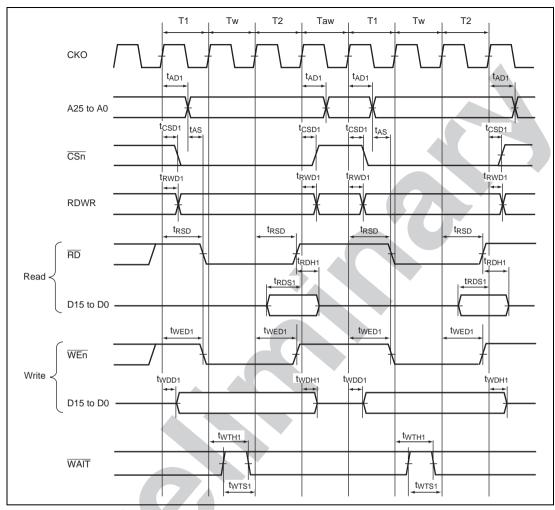



Figure 38.12 Basic Bus Cycle in Normal Space (Asynchronous External Wait 1)

Figure 38.13 Basic Bus Cycle in Normal Space (Software Wait 1, Asynchronous External Wait Valid (WM Bit = 0), No Idle Cycle)

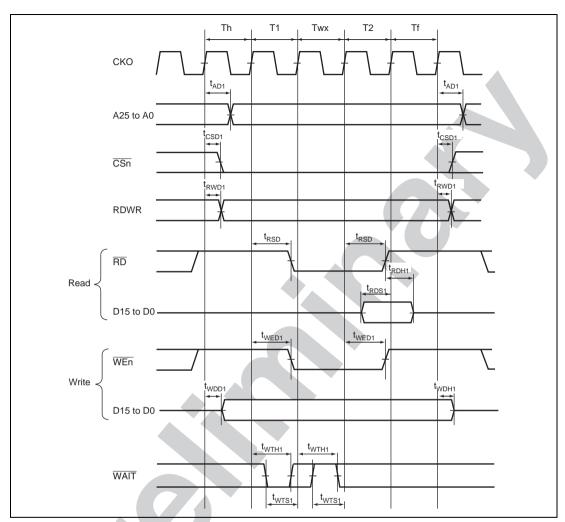
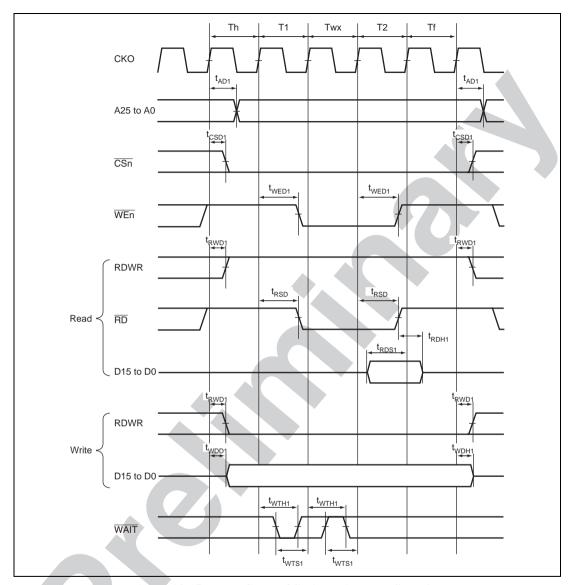



Figure 38.14 CS Extended Bus Cycle in Normal Space (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1)

Figure 38.15 Bus Cycle of SRAM with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1, **BAS** = 0 (UB and LB in Write Cycle Controlled))

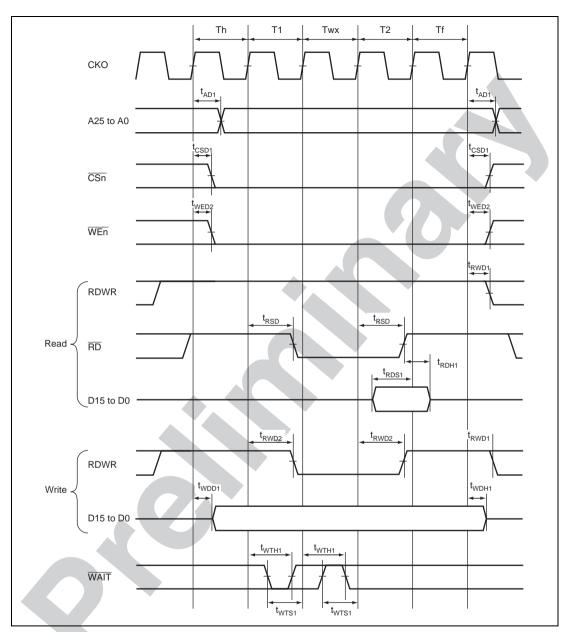


Figure 38.16 SRAM Bus Cycle with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1, BAS = 1 (Write Cycle WE Control))

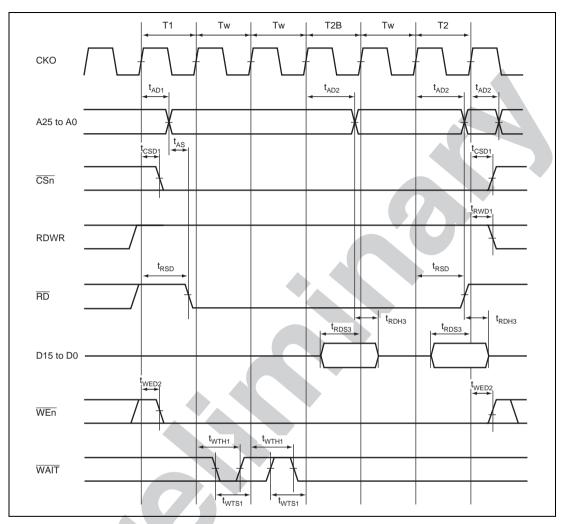


Figure 38.17 SRAM Page Mode Read Bus Cycle with Byte Selection PMD = 1, BAS = 1 (Software Wait 1, Asynchronous External Wait 1, Burst Wait 1, 2 Bursts)

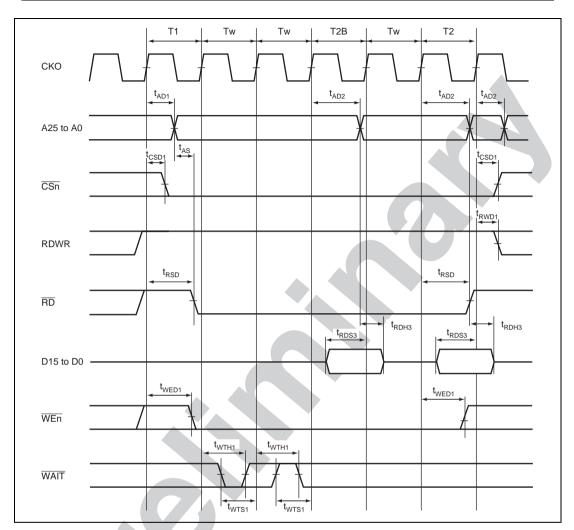


Figure 38.18 SRAM Page Mode Read Bus Cycle with Byte Selection PMD = 1, BAS = 0 (Software Wait 1, Asynchronous External Wait 1, Burst Wait 1, 2 Bursts)

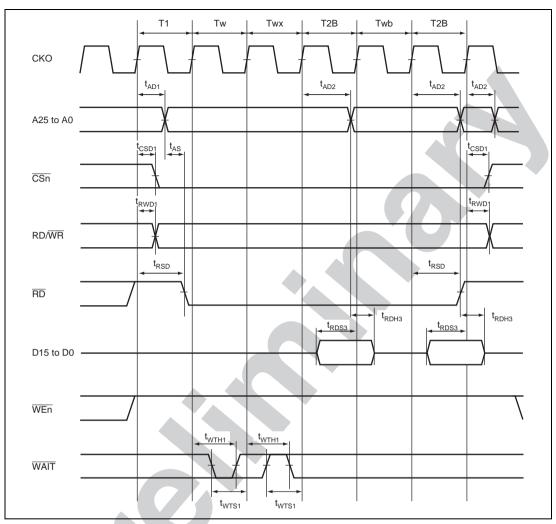


Figure 38.19 Read Bus Cycle of Burst ROM (Software Wait 1, Asynchronous External Wait 1, Burst Wait 1, 2 Bursts)

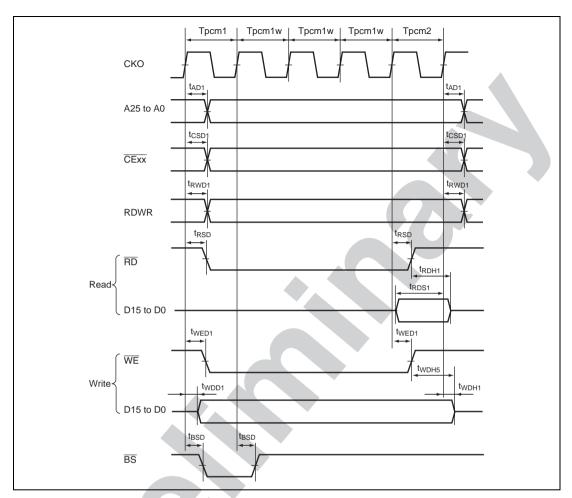


Figure 38.20 PCMCIA Memory Card Interface Bus Timing

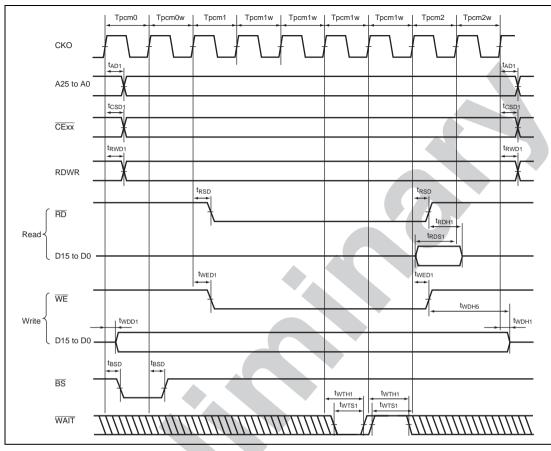


Figure 38.21 PCMCIA Memory Card Interface Bus Timing (TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Wait 1, Hardware Wait 1)

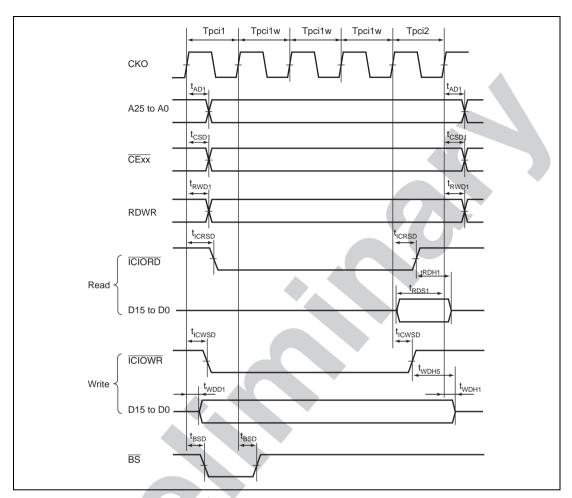


Figure 38.22 PCMCIA I/O Card Interface Bus Timing

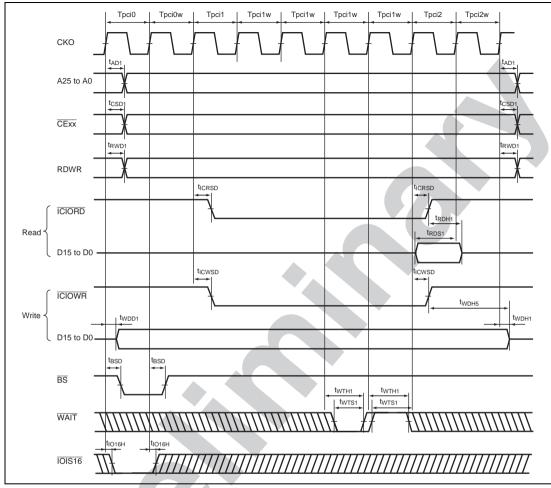


Figure 38.23 PCMCIA I/O Card Interface Bus Timing (TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Wait 1, Hardware Wait 1)

38.5.4 SDRAM Timing (SDRAM Bus Timing)

Table 38.12 SDRAM Bus Timing (when SBSCR = H'0044, HPCLK frequency: 133.4 MHz)

Item	Symbol	Min.	Max.	Unit	Figure
Address delay time	t _{HPAD}	1.0	6.0	ns	38.24 to 38.42
CS delay time	t _{HPCSD}	1.0	6.0	ns	38.24 to 38.42
Read/write delay time	t _{HPRWD}	1.0	6.0	ns	38.24 to 38.42
Read data setup time	t _{HPRDS}	2.0	_	ns	38.24 to 38.27, 38.32 to 38.34, 38.41, 38.42
Read data hold time	t _{HPRDH}	2.0		ns	38.24 to 38.27, 38.32 to 38.34, 38.41, 38.42
Write data delay time	t _{HPWDD}	*	6.0	ns	38.28 to 38.31, 38.35 to 38.37, 38.41, 38.42
Write data hold time	t _{HPWHD}	1.0		ns	38.28 to 38.31, 38.35 to 38.37, 38.41, 38.42
RAS delay time	t _{HPRASD}	1.0	6.0	ns	38.24 to 38.42
CAS delay time	t _{HPCASD}	1.0	6.0	ns	38.24 to 38.42
DQM delay time	t _{HPDQMD}	1.0	6.0	ns	38.24 to 38.42
CKE delay time	t _{HPCKED}	1.0	6.0	ns	38.24 to 38.42

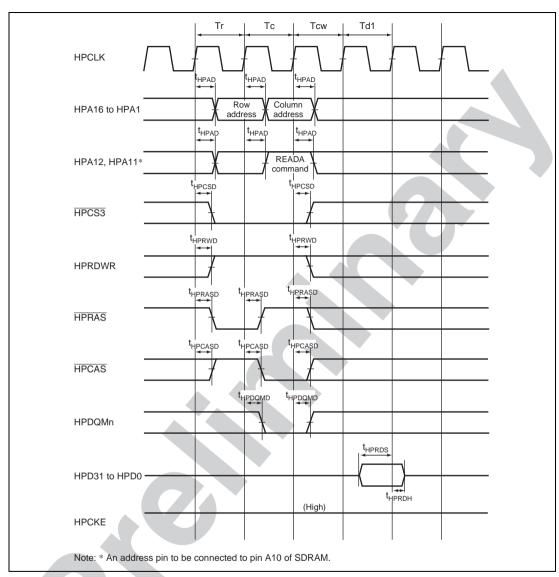


Figure 38.24 Single Read Bus Cycle of SDRAM (Auto Precharge Mode, CAS Latency 2, TRCD = 1 Cycle)

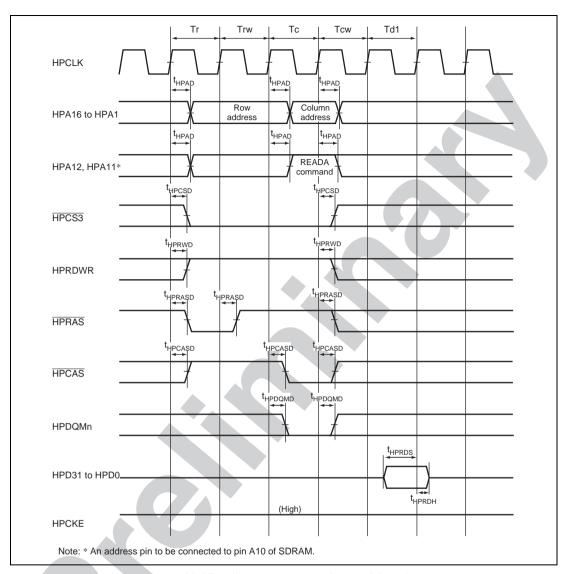
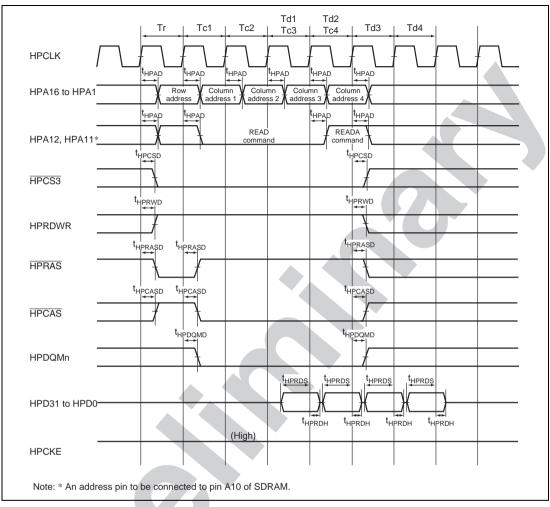



Figure 38.25 Single Read Bus Cycle of SDRAM (Auto Precharge Mode, CAS Latency 2, TRCD = 2 Cycles)

Figure 38.26 Burst Read Bus Cycle of SDRAM (Auto Precharge Mode, CAS Latency 2, TRCD = 1 Cycle)

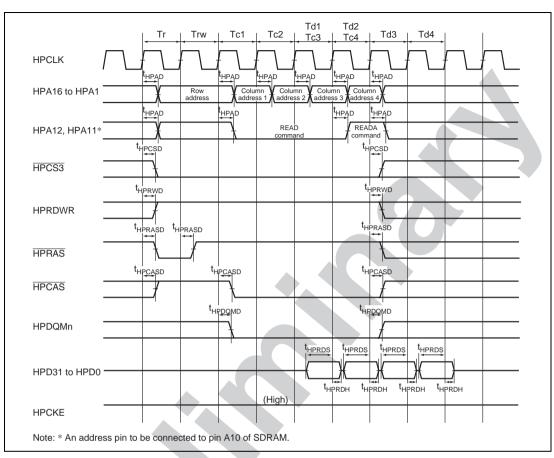
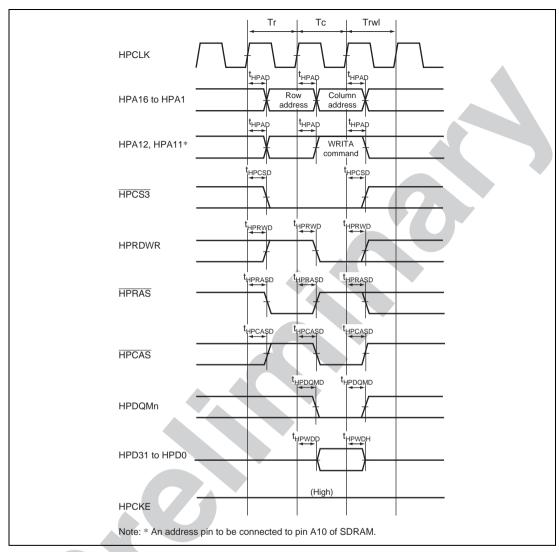



Figure 38.27 Burst Read Bus Cycle of SDRAM (Auto Precharge Mode, CAS Latency 2, TRCD = 2 Cycles)

Figure 38.28 Single Write Bus Cycle of SDRAM (Auto Precharge Mode, TRWL = 2 Cycles)

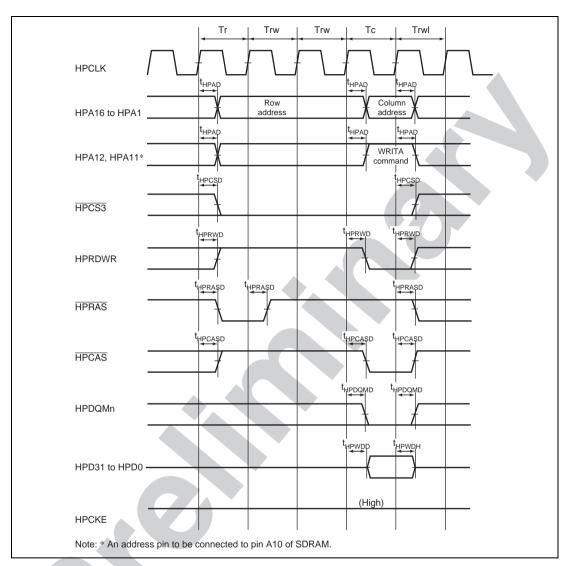
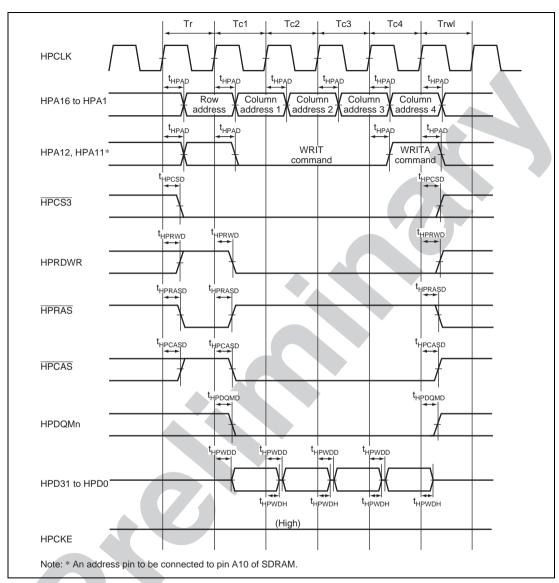



Figure 38.29 Single Write Bus Cycle of SDRAM (Auto Precharge Mode, TRCD = 3 Cycles, TRWL = 2 Cycles)

Figure 38.30 Burst Write Bus Cycle of SDRAM (Auto Precharge Mode, TRCD = 1 Cycle, TRWL = 2 Cycles)

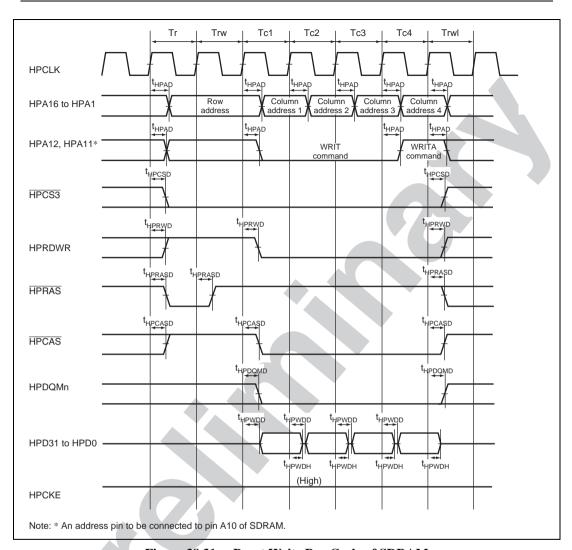
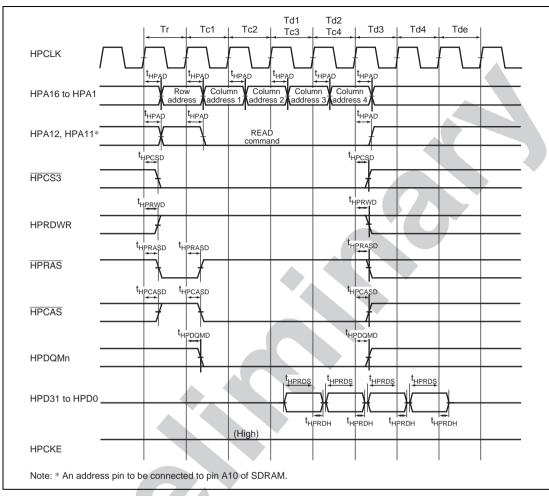



Figure 38.31 Burst Write Bus Cycle of SDRAM (Auto Precharge Mode, TRCD = 2 Cycles, TRWL = 2 Cycles)

Figure 38.32 Burst Read Bus Cycle of SDRAM (Bank Active Mode: ACTV + READ Commands, CAS Latency 2, TRCD = 1 Cycle)

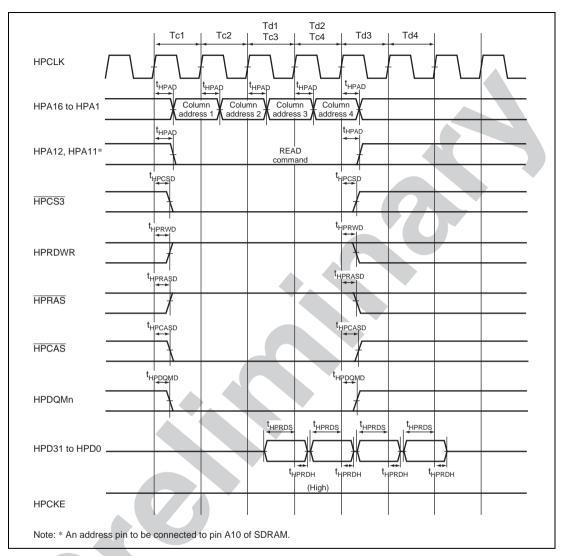


Figure 38.33 Burst Read Bus Cycle of SDRAM (Bank Active Mode: READ Command, Same Row Address, CAS Latency 2)

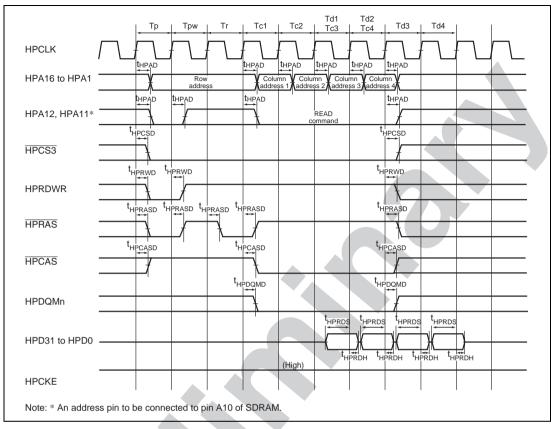


Figure 38.34 Burst Read Bus Cycle of SDRAM (Bank Active Mode: PRE + ACTV + READ Commands, Different Row Address, CAS Latency 2, TRCD = 1 Cycle)

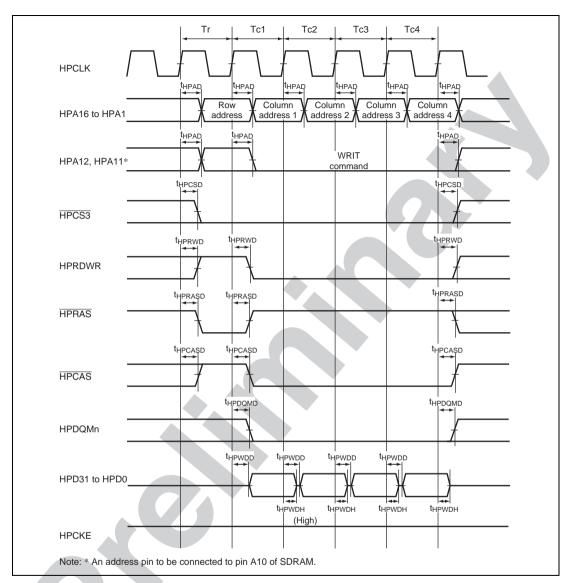


Figure 38.35 Burst Write Bus Cycle of SDRAM (Bank Active Mode: ACTV + WRIT Commands, TRCD = 1 Cycle)

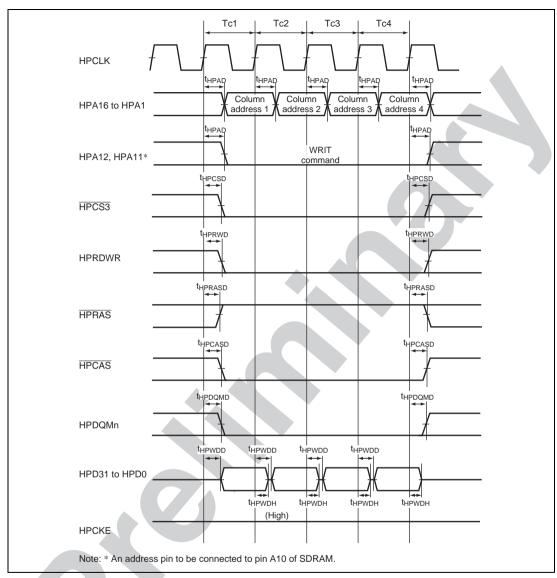


Figure 38.36 Burst Write Bus Cycle of SDRAM (Single Write × 4)
(Bank Active Mode: WRIT Command)

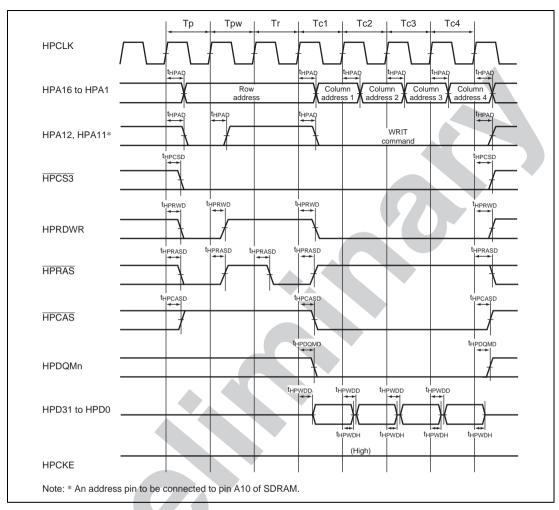


Figure 38.37 Burst Write Bus Cycle of SDRAM (Bank Active Mode: PRE + ACTV + WRIT Commands, TRCD = 1 Cycle)

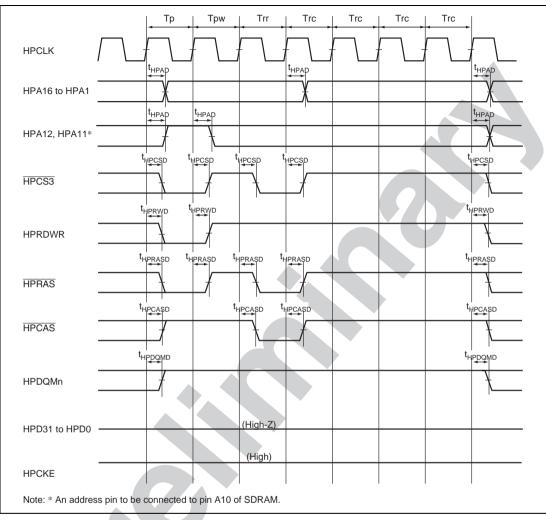


Figure 38.38 Auto Refresh Timing of SDRAM (TRP = 2 Cycles)

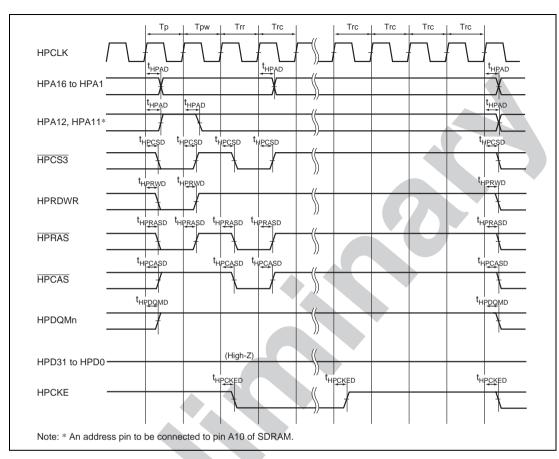


Figure 38.39 Self Refresh Timing of SDRAM (TRP = 2 Cycles)

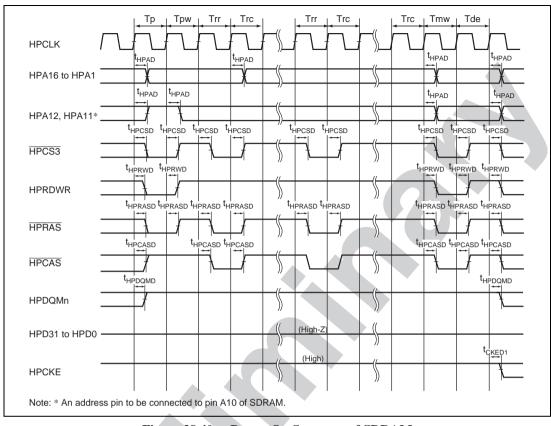
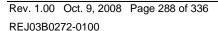



Figure 38.40 Power-On Sequence of SDRAM (Mode Write Timing, TRP = 2 Cycles)

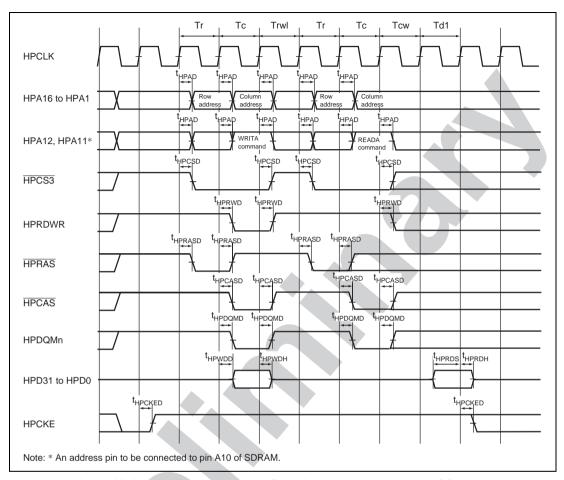


Figure 38.41 Write to Read Bus Cycle in Power-Down Mode of SDRAM (Auto Precharge Mode, TRCD = 1 Cycle, TRP = 1 Cycle, TRWL = 1 Cycle)

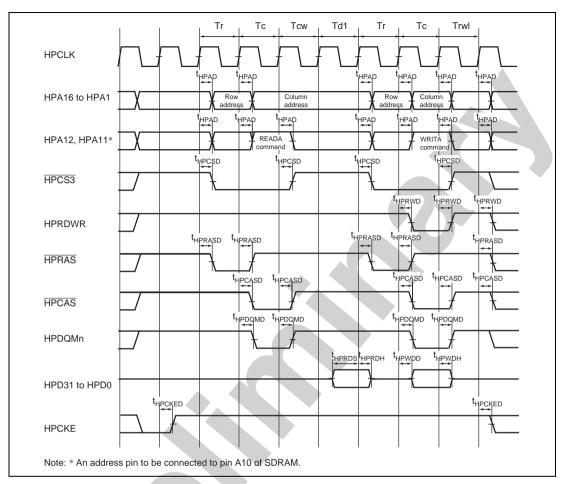
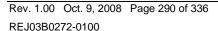



Figure 38.42 Read to Write Bus Cycle in Power-Down Mode of SDRAM (Auto Precharge Mode, TRCD = 1 Cycle, TRP = 1 Cycle, TRWL = 1 Cycle)

38.5.5 I/O Port Signal Timing

Table 38.13 I/O Port Signal Timing

Item	Symbol	Min.	Max.	Unit Figure
Output data delay time	t _{PORTD}	_	17	ns 38.43
Input data setup time	t _{PORTS}	17	_	
Input data hold time	t _{PORTH}	10	_	

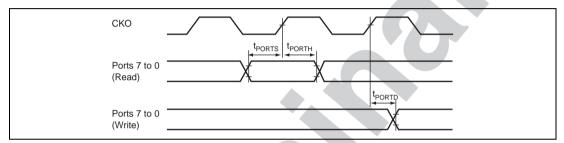


Figure 38.43 I/O Port Timing

38.5.6 DMAC Module Signal Timing

Table 38.14 DMAC Module Signal Timing

Item	Symbol	Min.	Max.	Unit Figure
DREQ setup time	t _{DREQS}	8	_	ns 38.44
DREQ hold time	t _{DREQH}	8	_	
DACK delay time	t _{DACD}	_	15	38.45

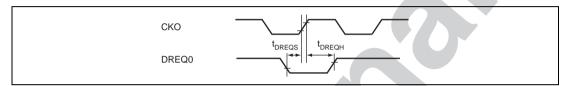


Figure 38.44 DREQ Input Timing (DREQ Low Level Detected)

Figure 38.45 DACK Output Timing

38.5.7 SIM Module Signal Timing

Table 38.15 SIM Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
SIM_CLK clock cycle	t _{smcyc}	2/t _{pcyc}	16/t _{pcyc}	ns	38.46
SIM_CLK clock high level width	t _{smcwh}	$0.4 \times t_{\text{SMCYC}}$	_	ns	
SIM_CLK clock low level width	t _{smcwl}	$0.4 \times t_{\text{SMCYC}}$		ns	
SIM_RST reset output delay time	t _{smrd}	_	20	ns	

Note: t_{perc} is a cycle time of a peripheral clock $(P\phi)$.

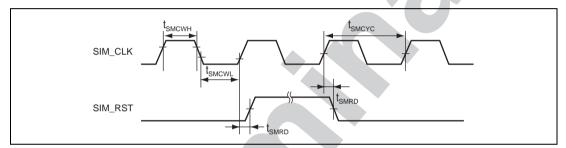


Figure 38.46 SIM Module Signal Timing

38.5.8 TPU Module Signal Timing

Table 38.16 TPU Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
Output data delay time	t _{TOD}	_	15	ns	38.47

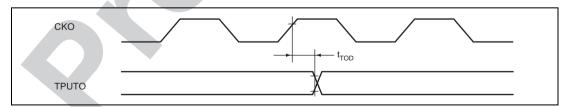


Figure 38.47 TPU Output Timing

38.5.9 SIO Module Signal Timing

Table 38.17 SIO Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
SIOMCK clock cycle	t _{somcyc}	$2 \times t_{\text{pcyc}}$	_	ns	38.48
SIOMCK clock high level width	t _{somwh}	$0.4 imes t_{ ext{SOMCYC}}$	_	ns	38.48
SIOMCK clock low level width	t _{somwl}	$0.4 imes t_{ ext{SOMCYC}}$	_	ns	38.48
SIOSCK clock cycle	t _{socyc}	$2 \times t_{\text{pcyc}}$	_	ns	38.49
SIOSCK clock high level width	t _{sowh}	$0.4 \times t_{\text{SOCYC}}$		ns	38.49
SIOSCK clock low level width	t _{sowL}	$0.4 \times t_{\text{SOCYC}}$	_ [ns	38.49
SIOSTRB output delay time	t _{sosd}	_	20	ns	38.49 to 38.52
SIOTXD output data delay time	t _{sotdd}	_	20	ns	38.49 to 38.52
SIORXD input data setup time	t _{SORDS}	20		ns	38.49 to 38.52
SIORXD input data hold time	t _{sordh}	20	-	ns	38.49 to 38.52

Note: t_{pcyc} is a cycle time of a peripheral clock (P ϕ).

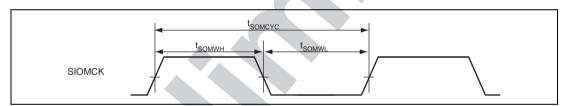


Figure 38.48 SIOMCK Input Timing

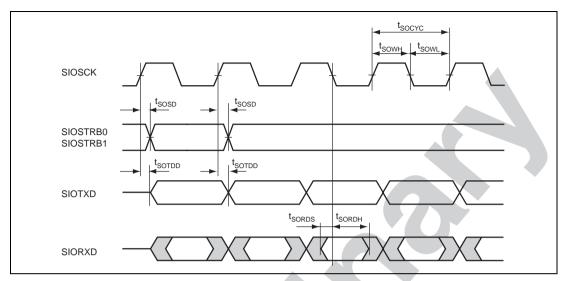


Figure 38.49 SIO Transmission/Reception Timing (Fall Sampling of Strobe Pulse)

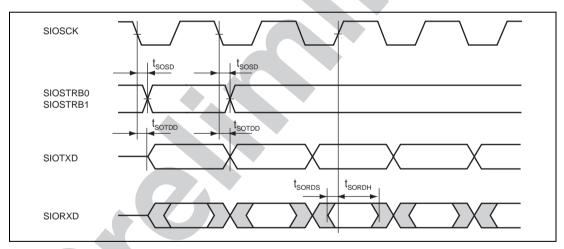


Figure 38.50 SIO Transmission/Reception Timing (Rise Sampling of Strobe Pulse)

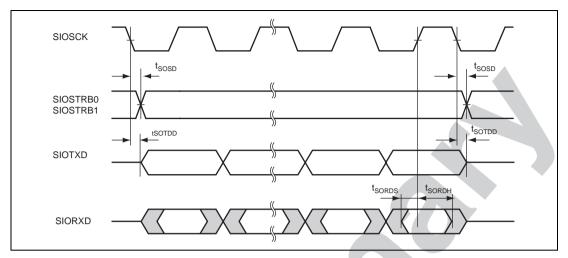


Figure 38.51 SIO Transmission/Reception Timing (Rise Sampling of Strobe Level)

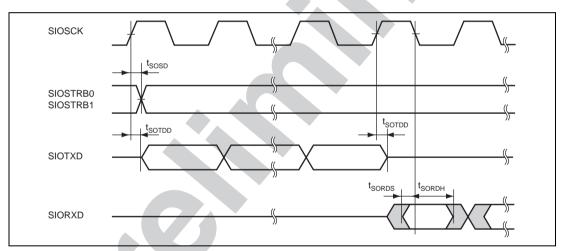


Figure 38.52 SIO Transmission/Reception Timing (Fall Sampling from Transmission to Reception)

38.5.10 SIOF Module Signal Timing

Table 38.18 SIOF Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
SIOFMCK clock input cycle time	t _{MCYC}	t _{pcyc} *1	_	ns	38.53
SIOFMCK input high level width	t _{mwh}	$0.4 \times t_{\text{MCYC}}$	_	ns	38.53
SIOFMCK input low level width	t _{MWL}	$0.4 \times t_{\text{\tiny MCYC}}$	_	ns	38.53
SIOFSCK clock cycle time	t _{SICYC}	t _{pcyc} *1	_	ns	38.54 to 38.58
SIOFSCK output high level width	t _{swho}	$0.4 \times t_{_{SICYC}}$	-//	ns	38.54 to 38.57
SIOFSCK output low level width	t _{swlo}	$0.4 \times t_{\text{SICYC}}$		ns	38.54 to 38.57
SIOFSYNC output delay time	t _{FSD}	_	20	ns	38.54 to 38.57
SIOFSCK input high level width	t _{swнi}	$0.4 \times t_{\text{SICYC}}$	-	ns	38.58
SIOFSCK input low level width	t _{swli}	$0.4 \times t_{\text{SICYC}}$	_	ns	38.58
SIOFSYNC input setup time	t _{FSS}	20	_	ns	38.58
SIOFSYNC input hold time	t _{FSH}	20		ns	38.58
SIOFTXD output delay time	t _{STDD}		20	ns	38.54 to 38.58
SIOFRXD input setup time	t _{SRDS}	20	_	ns	38.54 to 38.58
SIOFRXD input hold time	t _{SRDH}	20	_	ns	38.54 to 38.58
Slave select setup time	t _{sss}	$t_{\text{SICYC}}/2 \times n^{*^2}$ –20	_	ns	38.59, 38.60
Slave select hold time	t _{ssh}	$t_{\text{SICYC}}/2 \times n^{*^2}$	_	ns	38.59, 38.60

Notes: 1. t_{poyc} is a cycle time of a peripheral clock (P ϕ).

2. $t_{\text{\tiny SICYC}}/2 \times n$ is defined according to bits SSAST[1:0] in SPICR.

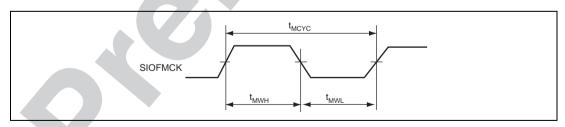


Figure 38.53 SIOFMCLK Input Timing

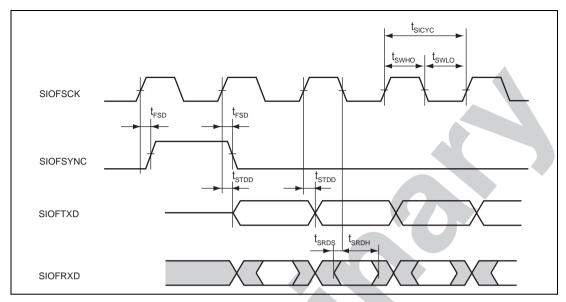


Figure 38.54 SIOF Transmission/Reception Timing (Master Mode 1, Fall Sampling)

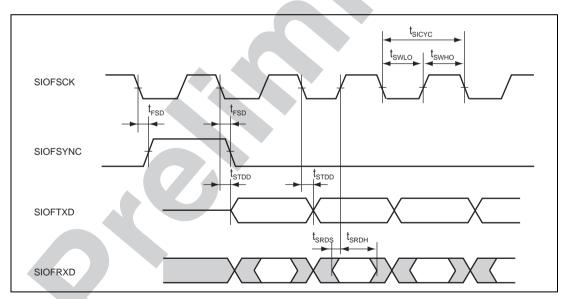


Figure 38.55 SIOF Transmission/Reception Timing (Master Mode 1, Rise Sampling)

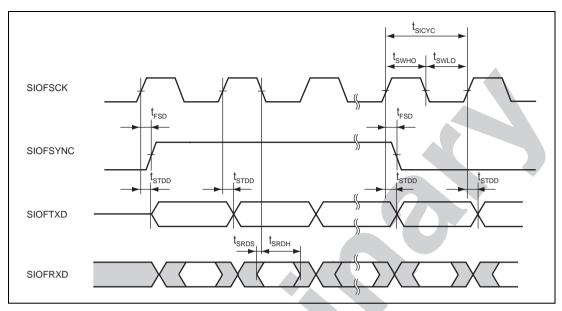


Figure 38.56 SIOF Transmission/Reception Timing (Master Mode 2, Fall Sampling)

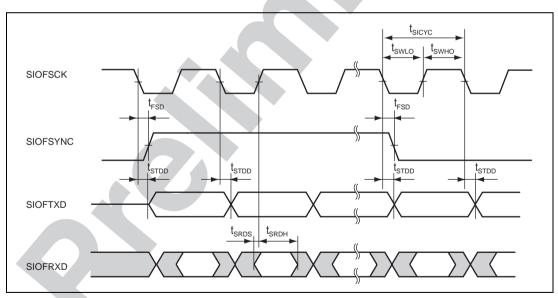


Figure 38.57 SIOF Transmission/Reception Timing (Master Mode 2, Rise Sampling)

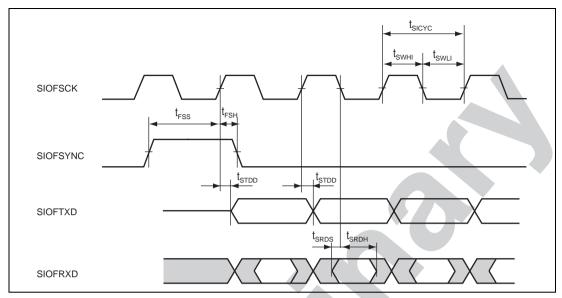


Figure 38.58 SIOF Transmission/Reception Timing (Slave Mode 1, Slave Mode 2)

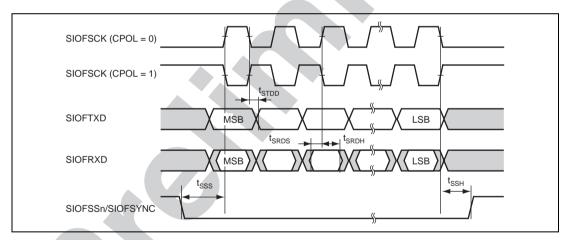


Figure 38.59 SIOF Transmission/Reception Timing (SPI Mode, CPHA = B'0, SSAST[1:0] = B'01)

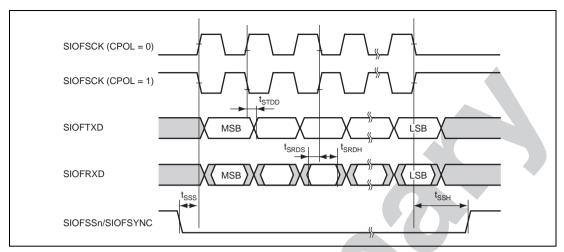


Figure 38.60 SIOF Transmission/Reception Timing (SPI Mode, CPHA = B'1, SSAST[1:0] = B'01)

38.5.11 SCIF Module Signal Timing

Table 38.19 SCIF Module Signal Timing (Asynchronous Mode)

Item	Symbol	Min.	Max.	Unit	Figure
SCIF input clock cycle	t _{scyc}	$4 \times t_{pcyc}$	_	ns	38.61
SCIF input clock high level width	t _{scwh}	$0.4 \times t_{\text{SCYC}}$	_	_	
SCIF input clock low level width	t _{scwL}	$0.4 \times t_{\text{SCYC}}$	_	_	

Note: t_{poyc} is a cycle time of a peripheral clock $(P\phi)$.

Table 38.20 SCIF Module Signal Timing (Clock Synchronous Mode)

Item	Symbol	Min.	Max.	Unit	Figure
SCIF_SCK input clock cycle	t _{scyc}	$4 \times t_{pcyc}$	_	ns	38.61
SCIF_SCK input clock high level width	t _{scwh}	$0.4 \times t_{\text{SCYC}}$	_	_	
SCIF_SCK input clock low level width	t _{scwL}	$0.4 \times t_{\text{SCYC}}$	_		
SCIF_TXD output data delay time (at SCK input)		_	$3 \times t_{pcyc} + 50$	ns	38.62
SCIF_TXD output data delay time (at SCK output)	t _{TXD}	_	50		
SCIF_RXD input data setup time (SCK input/output common)	t _{RXS}	$4 \times t_{pcyc}$	- 9		
SCIF_RXD input data hold time (SCK input/output common)	t _{RXH}	$4 \times t_{pcyc}$			

Note: t_{power} is a cycle time of a peripheral clock (P ϕ).

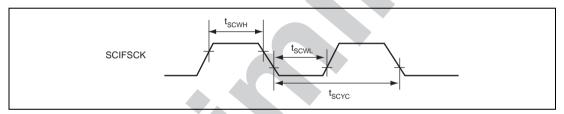


Figure 38.61 SCIF Module Signal Timing

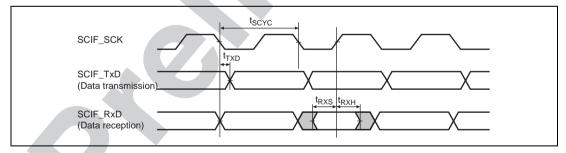
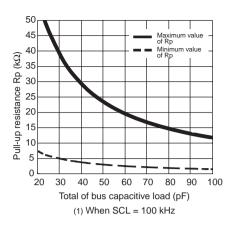
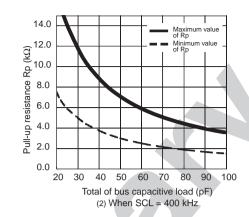


Figure 38.62 SCIF Input/Output Timing at Clock Synchronous Mode

38.5.12 I²C Module Signal Timing


Table 38.21 SDA and SCL Bus Line Characteristics for I²C Bus Device


		Normal Mode		High-Speed Mode			
Item	Symbol	Min.	Max.	Min.	Max.	Unit	Figure
SCL clock frequency	$f_{\scriptscriptstyleSCL}$	0	100	0	400	kHz	38.63
Hold time (after repeat START condition, first clock pulse is generated)	t _{hd;sta}	4.0	_	0.6		μs	
Low period in SCL clock	t _{LOW}	4.7	_	1.3		μs	_
High period in SCL clock	t _{HIGH}	4.0	-//	0.6	-/	μS	_
Setup time for repeat START condition	t _{su;sta}	4.7	4	0.6		μS	_
Data hold time: for I ² C bus device	t _{HD;DAT}	-/_	3.45	_	0.9	μS	_
Data setup time	t _{SU;DAT}	250	-	100	_	ns	_
SDA and SCL signal rise time	t _r		1000	_	300	ns	_
SDA and SCL signal fall time	t,	$\overline{}$	300	_	300	ns	_
Setup time for STOP condition	t _{su;sto}	4.0	_	0.6	_	μS	_
Bus free time between STOP and START conditions	t _{BUF}	4.7	_	1.3	_	μS	_
Noise margin at low level of each connected device (including hysteresis)	V _{nL}	$0.1 \times V_{cc}Q$	_	$0.1 \times V_{cc}Q$	_	V	_
Noise margin at high level of each connected device (including hysteresis)	V _{nH}	0.2 × V _{cc} Q	_	$0.2 \times V_{cc}Q$	_	V	_

Notes: 1. All values are referenced at $V_{cc}Q \times 0.3$ and $V_{cc}Q \times 0.7$ levels.

3. Relationship between pull-up resistance and total capacitive load of the I²C bus.

^{2.} To satisfy the I²C-bus specification, pull-up resistors (Rp) with the appropriate resistance must be included depending on the total of bus capacitive load of each line.

* A hold time of at least 300 ns is internally assured for the SDA signal (relative to V_{IH}min of the SCL signal). The state of the SDA signal is stabilized on falling edges of the SCL signal.

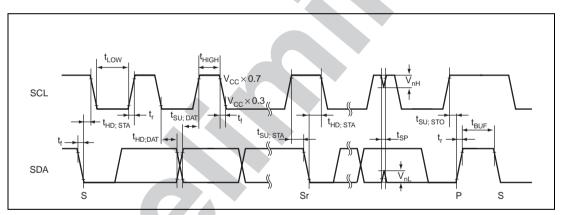


Figure 38.63 Device Timing Definition on I²C Bus

38.5.13 FLCTL Module Signal Timing

Table 38.22 AND-Type Flash Memory Interface Timing

Item	Symbol	Min.	Max.	Unit	Figure
Command issue setup time	t _{ACDS}	$2 \times t_{\text{fcyc}} - 10$	_	ns	38.64, 38.68
Command issue hold time	t _{ACDH}	$2 \times t_{\text{fcyc}} - 10$	_	ns	
Data output setup time	t _{ADOS}	$t_{\text{fcyc}} - 10$	_	ns	38.64, 38.65,
Data output hold time	t _{ADOH}	$t_{\text{fcyc}} - 10$	_	ns	- 38.68
Data output setup time 2	t _{ADOS2}	$0.5 imes t_{ ext{fcyc}} - 10$) —	ns	38.67
Data output hold time 2	t _{ADOH2}	$0.5 imes t_{ ext{fcyc}} - 10$	0 —	ns	_
FWE cycle time	t _{ACWC}	$2 \times t_{\text{fcyc}} - 5$		ns	38.65
FWE low pulse width	t _{AWP}	t _{fcyc} – 5		ns	38.64, 38.65, 38.68
FWE high pulse width	t _{AWPH}	$t_{\text{fcyc}} - 5$		ns	38.65
Command to address transition time	t _{ACAS}	$4 \times t_{fcyc}$		ns	_
Address to data read transition time	t _{AADDR}	$32 \times t_{pcyc}$	_	ns	38.66
Address to ready/busy transition time	t		$35 imes t_{ exttt{pcyc}}$	ns	_
Ready/busy to data read transition time	t _{ARBDR}	t _{fcyc}	_	ns	_
Data read setup time	t _{ADRS}	$t_{\text{fcyc}} - 10$	_	ns	_
FSC cycle time	t _{ASCC}	$t_{\text{fcyc}} - 5$	_	ns	38.66, 38.67
FSC high pulse width	t	$0.5 \times t_{_{fcyc}} - 5$	_	ns	_
FSC low pulse width	t _{ASPL}	$0.5 \times t_{\scriptscriptstyle fcyc} - 5$	_	ns	_
Read data setup time	t _{ARDS}	24	_	ns	38.67, 38.68
Read data hold time	t _{ARDH}	5	_	ns	_
Address to data write transition time	t _{AADDW}	$32 \times t_{\text{PCYC}}$	_	ns	38.67
Data write setup time	t _{ADWS}	$\begin{array}{c} 4.5 \times t_{\text{fcyc}} + \\ t_{\text{pcyc}} - 10 \end{array}$	_	ns	_
FSC to FOE hold time	t _{ASOH}	$2 \times t_{\text{fcyc}} - 10$	_	ns	38.66

Note: t_{tcyc} indicates the period of one cycle of the FCLK.

 $t_{\mbox{\tiny period}}$ indicates the period of one cycle of the peripheral clock (P $\!\varphi).$

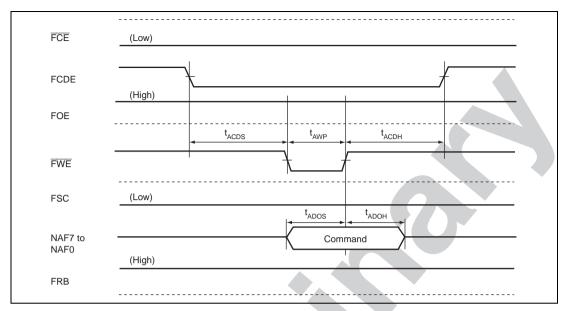


Figure 38.64 Command Issue Timing of AND-Type Flash Memory

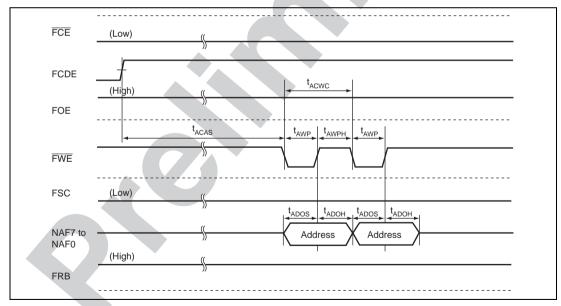


Figure 38.65 Address Issue Timing of AND-Type Flash Memory

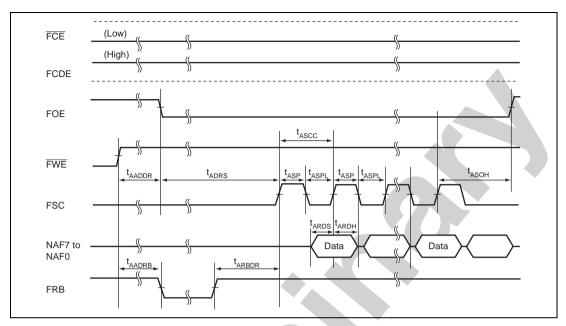


Figure 38.66 Data Read Timing of AND-Type Flash Memory

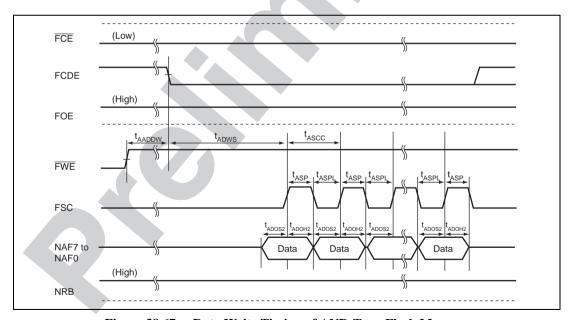


Figure 38.67 Data Write Timing of AND-Type Flash Memory

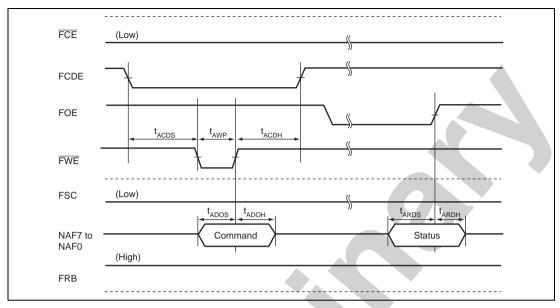


Figure 38.68 Status Read Timing of AND-Type Flash Memory

Table 38.23 NAND-Type Flash Memory Interface Timing

Item	Symbol	Min.	Max.	Unit	Figure
Command output setup time	t _{NCDS}	$2 \times t_{\scriptscriptstyle fcyc} - 10$	_	ns	38.69, 38.73
Command output hold time	t _{NCDH}	$1.5 \times t_{_{fcyc}} - 5$	_	ns	
Data output setup time	t _{NDOS}	$0.5 imes t_{ ext{fcyc}} - 5$	_	ns	38.69, 38.70,
Data output hold time	t _{NDOH}	$0.5 imes t_{ ext{fcyc}} - 10$	_	ns	38.72, 38.73
Command to address transition time 1	t _{NCDAD1}	$1.5 imes t_{\text{fcyc}} - 10$	_	ns	38.69, 38.70
Command to address transition time 2	t _{NCDAD2}	$2 \times t_{\scriptscriptstyle fcyc} - 10$	_	ns	38.70
FWE cycle time	t _{NWC}	$t_{\text{fcyc}} - 5$	- /	ns	38.70, 38.72
FWE low pulse width	t _{NWP}	$0.5 imes t_{ ext{fcyc}} - 5$	- 57	ns	38.69, 38.70,
			Y		38.72, 38.73
FWE high pulse width	$t_{_{\mathrm{NWH}}}$	$0.5 \times t_{_{\text{fcyc}}} - 5$	-	ns	38.70, 38.72
Address to ready/busy transition time	t _{NADRB}	_ (1	$32 \times t_{pcyc}$	ns	38.70, 38.71
Ready/busy to data read transition time 1	t _{NRBDR1}	$1.5 \times t_{fcyc}$		ns	38.71
Ready/busy to data read transition time 2	t _{NRBDR2}	$32 \times t_{pcyc}$	_	ns	-
FSC cycle time	t _{NSCC}	$t_{fcyc} - 5$	_	ns	-
FSC low pulse width	t _{NSP}	$0.5 imes t_{ ext{fcyc}} - 5$	_	ns	38.71, 38.73
FSC high pulse width	t _{NSPH}	$0.5 \times t_{\text{\tiny fcyc}} - 5$	_	ns	38.71
Read data setup time	t _{NRDS}	24	_	ns	38.71, 38.73
Read data hold time	t _{NRDH}	5	_	ns	-
Data write setup time	t _{NDWS}	$32 imes t_{ ext{pcyc}}$	_	ns	38.72
Command to status read transition time	t _{NCDSR}	$4 \times t_{_{fcyc}}$	_	ns	38.73
Command output off to status read transition time	t _{NCDFSR}	$3.5 imes t_{ ext{fcyc}}$	_	ns	-
Status read setup time	t _{NSTS}	$2.5 imes t_{ ext{fcyc}}$	_	ns	-
			-		

Note: t_{fove} indicates the period of one cycle of the FCLK.

 $t_{\mbox{\tiny pcyc}}$ indicates the period of one cycle of the peripheral clock (P\$\phi\$).

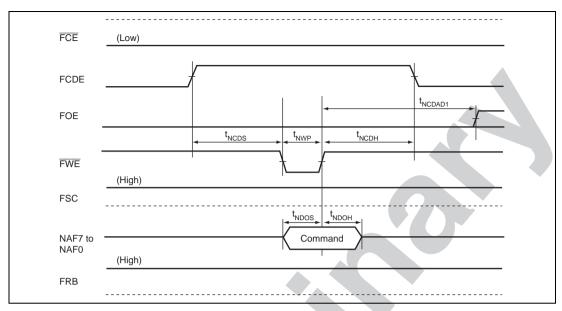


Figure 38.69 Command Issue Timing of NAND-Type Flash Memory

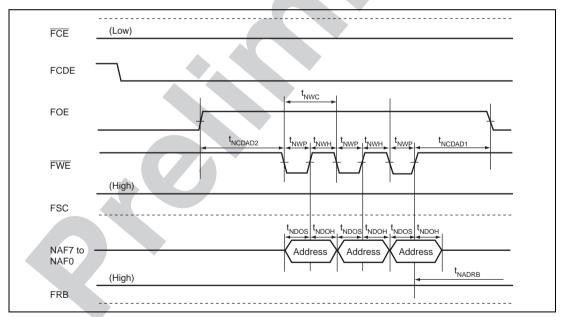


Figure 38.70 Address Issue Timing of NAND-Type Flash Memory

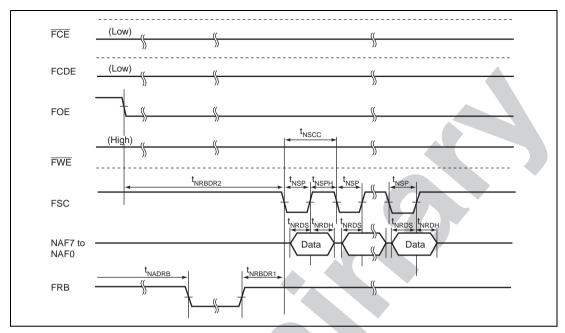


Figure 38.71 Data Read Timing of NAND-Type Flash Memory

Figure 38.72 Data Write Timing of NAND-Type Flash Memory

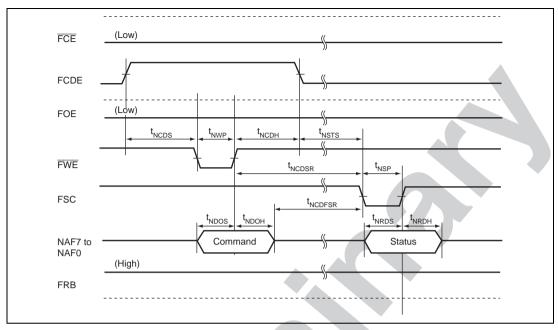


Figure 38.73 Status Read Timing of NAND-Type Flash Memory

38.5.14 VIO Module Signal Timing

Table 38.24 VIO Module Signal Timing

Symbol	Min.	Max.	Unit	Figure	
t _{vvds}	10	_	ns	38.74	
$t_{_{ m VVDH}}$	10	_	ns		
t _{vhds}	10	_	ns	_	
$t_{_{VHDH}}$	10		ns		
t _{vdts}	10	40	ns		
$t_{_{VDTH}}$	10	7/	ns	7	
t _{vcyc}	t _{bcyc} *	-(ns	_	
$t_{_{ m VHW}}$	$0.4 \times t_{\text{\tiny Vcyc}}$		ns	_	
t _{vLW}	$0.4 \times t_{\text{\tiny Vcyc}}$		ns	_	
e t _{vfDS}	10	<u> </u>	ns	_	
t _{vFDH}	10	_	ns		
	t _{VVDS} t _{VVDH} t _{VHDS} t _{VHDH} t _{VDTS} t _{VDTH} t _{VCYC} t _{VHW} t _{VLW}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{VVDS} 10 — t _{VVDH} 10 — t _{VVDH} 10 — t _{VHDS} 10 — t _{VHDH} 10 — t _{VDTS} 10 — t _{VDTH} 10 — t _{VCYC} t _{boyc} * — t _{VHW} 0.4 × t _{Voyc} — t _{VLW} 0.4 × t _{Voyc} —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note: * t_{boye} is a cycle time of an internal bus clock (B ϕ).

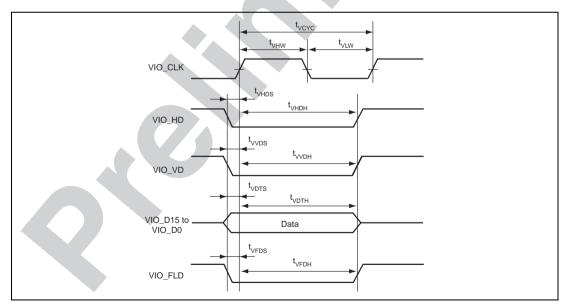


Figure 38.74 VIO Module Signal Timing

38.5.15 LCDC Module Signal Timing

Table 38.25 LCDC Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
Clock (LCDDCK) cycle time	t _{LCC}	30	_	ns	38.75
Clock (LCDLCLK) cycle time	t _{LCLC}	1/fΒφ	_ (ns	
Clock (LCDDCK) high pulse time	t _{LCHW}	9	- (ns	
Clock (LCDDCK) low pulse time	t _{LCLW}	9		ns	
Data (LCDD) delay time	t _{LDD}	-12	12	ns	-
Display enable (LCDDISP) delay time	t _{LID}	-12	12	ns	='
Horizontal sync signal (LCDHSYN) delay time	t _{LHD}	-12	12	ns	-"
Vertical sync signal (LCDVSYN) delay time	t _{LVD}	-12	12	ns	-"
Chip select signal (LCDCS, LCDCS2) SYS interface command delay time	t _{LSYSCSD}	-	22	ns	38.76
Write strobe signal (LCDDCK) SYS interface command delay time	t _{LSYSWRD}	-	22	ns	
Register select signal (LCDDISP) SYS interface command delay time	t _{LSYSRSD}	7	22	ns	-
Data (LCDD) SYS interface command write data delay time	t _{LSYSDD}	_	22	ns	-
Read strobe signal (LCDRD) SYS interface command delay time	t _{LSYSRDD}	_	22	ns	38.77
Data (LCDD) SYS interface read data setup time	t	10	_	ns	='
Data (LCDD) SYS interface read data hold time	t	5	_	ns	_
Read write signal (LCDVCPWC) SYS interface command delay time	t	-12	12	ns	-
Write strobe signal (LCDWR) SYS interface data cycle time	t	30	_	ns	38.78
Write strobe signal (LCDWR) SYS interface data high pulse time	t	9		ns	

Item	Symbol	Min.	Max.	Unit Figure
Write strobe signal (LCDWR) SYS interface data low pulse time	t	9	_	ns 38.78
Write strobe signal (LCDWR) SYS interface data address setup time	t	1 t _{LSYSDWRC} - 12	1 t _{LSYSDWRC} + 12	ns
Write strobe signal (LCDWR) SYS interface data address hold time*	t	1 t _{LSYSDWRHW} - 12	1 t _{LSYSDWRHW} + 12	ns
Data (LCDD) SYS interface data delay time	t	-12	12	ns
Input vertical sync signal (LCDVSYN, LCDVSYN2) setup time	t _{LVIS}	10	-	ns 38.79
Input vertical sync signal (LCDVSYN, LCDVSYN2) hold time	t _{LVIH}	5	7	ns
	-	_		

Note: * The minimum value of $t_{LSYSDAH}$ is one unit of $t_{LSYSDWRHW}$. $t_{LSYSDWRHW}$ can be arbitrarily set by LCDDCKPATxR (x = 1 to 4).

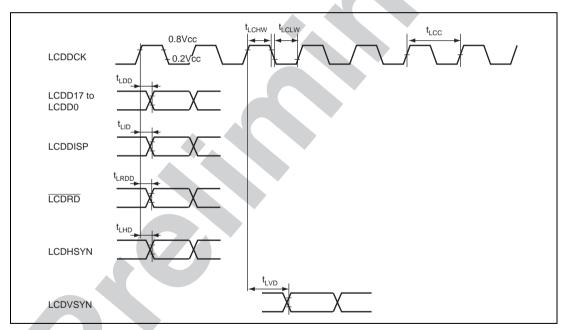


Figure 38.75 LCDC AC Characteristics

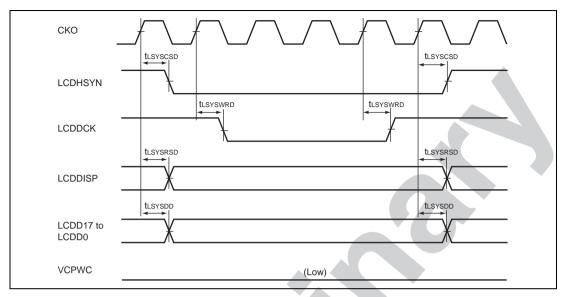


Figure 38.76 LCDC AC Characteristics SYS Interface, Command Write Bus Cycle (MLDMT2R.WCEC = 4, MLDMT2R.WCLW = 3, SLDMT2R.WCEC = 4, SLDMT2R.WCLW = 3)

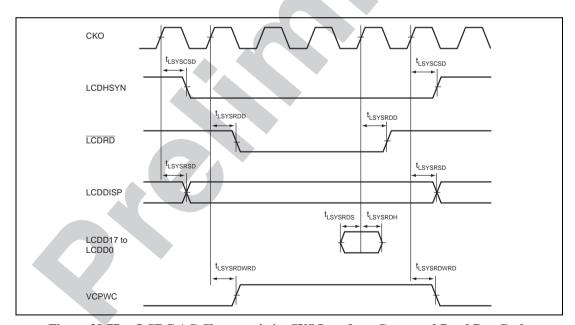


Figure 38.77 LCDC AC Characteristics SYS Interface, Command Read Bus Cycle (MLDMT3R.RDLC = 4, MLDMT3R.RCEC = 4, MLDMT3R.RCLW = 3, SLDMT3R.RDLC = 4, SLDMT3R.RDLC = 4, SLDMT3R.RCLW = 3)

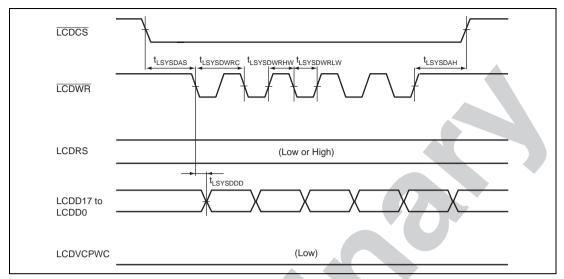


Figure 38.78 LCDC AC Characteristics (SYS Interface, Data Write Bus Cycle)

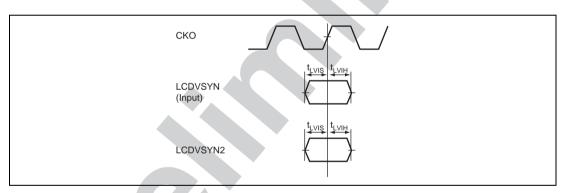


Figure 38.79 LCDC AC Characteristics (VSYNC Input Mode)

38.5.16 VOU Module Signal Timing

Table 38.26 VOU Module Signal Timing

Item	Symbol	Min.	Тур.	Max.	Unit	Figure
Output clock frequency	f _{px1}	13.5	_	27	MHz	38.80
Output clock cycle	t pxcyc1	37	_	74.1	ns	
Output clock high width	t _{pxwH1}	14	_	_	ns	_
Output clock low width	t _{pxwL1}	14	_	_	ns	
Output data delay time	t _{pxd1}	-4	_	4	ns	
Output clock frequency 2	f _{px2}	13.5	_	27	MHz	38.81
Output clock cycle 2	t pxcyc2	37		74.1	ns	
Output clock high width 2	t pxwH2	14		-	ns	_
Output clock low width 2	t _{pxwL2}	14	-	_	ns	
Output data delay time 2	t pxd2	-4		4	ns	

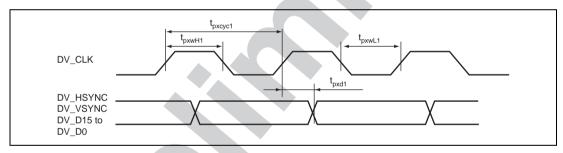


Figure 38.80 VOU AC Characteristics (VOUCR.CKPL = 0)

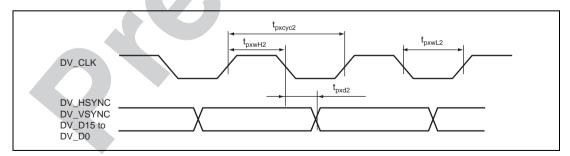


Figure 38.81 VOU AC Characteristics (VOUCR.CKPL = 1)

38.5.17 TSIF Module Signal Timing

Table 38.27 TSIF Module Signal Timing

Item		Symbol	Min.	Max.	Unit	Figure
TSIF input clock cycle	Bφ ≥ 40 MHz	t _{TSCYC}	25	_	ns	38.82
	Bφ < 40 MHz	t _{TSCYC}	t _{bcyc} *	_	ns	
TSIF input clock high wid	dth	\mathbf{t}_{TSHW}	$0.4 \times t_{\text{TSCYC}}$	_	ns	
TSIF input clock low widt	th	t _{TSLW}	$0.4 \times t_{\scriptscriptstyle TSCYC}$	_	ns	
TSIF input data setup tin	ne	t _{TSDTS}	5	-/	ns	
TSIF input data hold time	е	t _{TSDTH}	5	-(ns	
TSIF input data enable s	ignal setup time	t _{TSDES}	5		ns	_
TSIF input data enable s	ignal hold time	t _{TSDEH}	5	-	ns	
TSIF input data sync sign	nal setup time	t _{TSSYS}	5	-	ns	
TSIF input data sync sign	nal hold time	t _{TSSYH}	5	-	ns	

Note: * t_{box} is a cycle time of an internal bus clock (B ϕ).

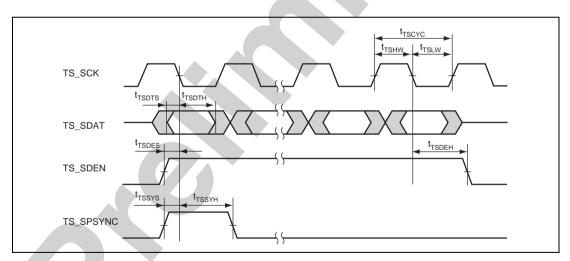


Figure 38.82 TSIF Module Signal Timing (TSCTLR.TSDATP = 0, TSCTLR.TSCLKP = 1, TSCTLR.TSVLDP = 0, TSCTLR.PSYCP = 0)

38.5.18 SIU Module Signal Timing

Table 38.28 SIU Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
SIUMCK clock input cycle time	t _{siumcyc}	40	_	ns	38.84
SIUMCK input high width	t _{siumwh}	$0.4 \times t_{\text{SIUMCYC}}$	_	ns	
SIUMCK input low width	t _{SIUMWL}	$0.4 \times t_{\text{SIUMCYC}}$	_	ns	
SIU_BT clock cycle time	t _{siusicyc}	300	_	ns	38.83
SIU_BT output high width	t _{siuswho}	$0.4 \times t_{\text{SIUSICYC}}$	-	ns	
SIU_BT output low width	t _{siuswlo}	$0.4 \times t_{\text{SIUSICYC}}$	- 5/	ns	_
SIU_LR output delay time	t _{SIUFSD}	_	20	ns	_
SIU_BT input high width	t _{siuswhi}	$0.4 \times t_{\text{SIUSICYC}}$	_	ns	_
SIU_BT input low width	t _{siuswli}	$0.4 \times t_{\text{SIUSICYC}}$	-	ns	_
SIU_SLD output delay time	t _{SIUSTDD}	-	20	ns	_
SIU_SLD input setup time	t _{SIUSRDS}	20	_	ns	_
SIU_SLD input hold time	t _{SIUSRDH}	20	7	ns	
·					·

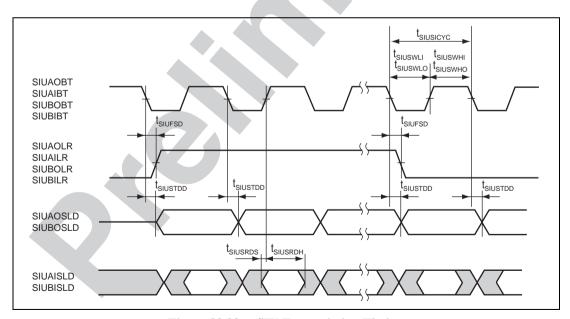


Figure 38.83 SIU Transmission Timing

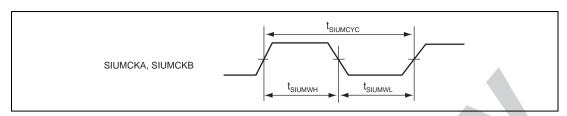


Figure 38.84 SIUMCK Input Timing

38.5.19 USB Transceiver Timing (Full-Speed)

Table 38.29 USB Transceiver Timing (Full-Speed)

Item	Symbol	Min.	Max.	Unit	Test Condition
Rising time	t,	4	20	ns	Data signal: 10% of amplitude → 90%
					CL = 50 pF
Falling time	t,	4	20	ns	Data signal: 90% of amplitude → 10%
					CL = 50 pF
Ratio of rising time to falling time	t _/ /t _f	90	111.1	%	
Output signal crossover voltage		1.3	2.0	V	CL = 50 pF
Output driver resistance*	Z _{DRU}	28	44	Ω	

Note: This transceiver timing is a timing at full-speed.

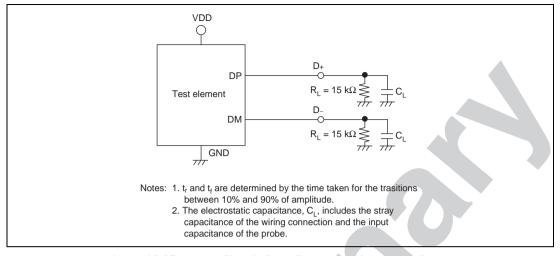


Figure 38.85 Test Circuit for USB Transceiver (Full-Speed)

38.5.20 KEYSC Module Signal Timing

Table 38.30 KEYSC Module Signal Timing

Item	Symbol	Min.	Max.	Unit	Figure
KEYIN input setup time	t _{KEYINS}	15	_	ns	38.85
KEYIN input hold time	t _{KEYINH}	15	_	ns	
KEYOUT delay time	t _{KEYOUTD}	7	15	ns	38.86

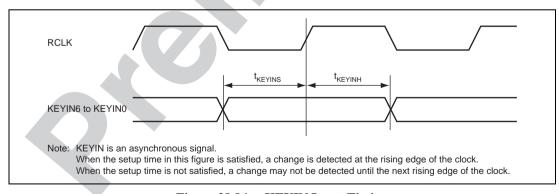


Figure 38.86 KEYIN Input Timing

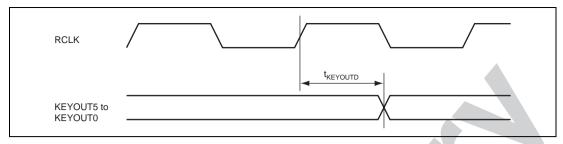


Figure 38.87 KEYOUT Output Timing

38.5.21 AC Characteristic Test Conditions

• I/O signal reference level: $\frac{V_{cc}Q}{2}$

 \bullet Input pulse level: Vss to $V_{\text{CC}}Q$

• Input rise and fall times: 1 ns

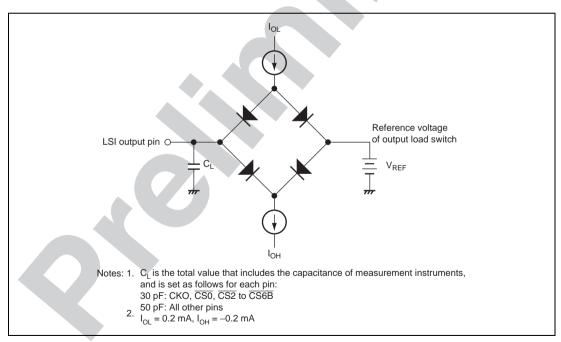
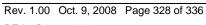


Figure 38.88 Output Load Circuit

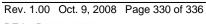
Appendix

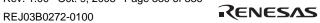
A. Pin States in Reset and Power-Down States


Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby* ⁹
Clock	EXTAL	I	I	1	I	1
	RCLK	I	I	I	ı	1
	XTAL	0	0	0	0	0
Operating	MD2 to MD0	1	1	1	1	ı
mode control	MD3	1	1	I	1	I
	MD5	I	I	I		l
	MD8	1	1	I	1	1
	TST	1	1	1	I	1
	TSTMD	1	I	1	1	1
System	RESETA	I	I A	I	I	1
control	RESETOUT	L	Н	0	0	0
	RESETP	1	1	I	1	1
	PDSTATUS	L	0	L	L	Н
	STATUS0	L	0	L.	Н	Н
Interrupt	IRQ1, IRQ0	_ ()	_	1	1	1
	IRQ2	-//	-	1	1	1
	IRQ5 to IRQ3	-	_	1	1	1
	IRQ6	-	-	1	1	1
	IRQ7	-	_	1	1	1
	NMI	1	1	1	1	1
BSC	A25 to A0	L	0	0	O/Z*3	O/Z*3
	D31 to D0	Z	Z	Z/I/O	Z	Z
	BS	_	_	0	H/Z*3	H/Z*3
	ско	0	0	0	O/Z*3	O/Z*3
	CS0	Н	0	0	H/Z*3	H/Z*3
	CS4	Н	0	0	H/Z* ³	H/Z*3
	CS5A	Н	0	0	H/Z*3	H/Z*3
						· · · · · · · · · · · · · · · · · · ·

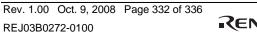
REJ03B0272-0100

Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby*9
BSC	CS5B	Н	0	0	H/Z*3	H/Z*3
	CS6A	_	_	0	H/Z*3	H/Z*3
	CS6B	Н	0	0	H/Z*3	H/Z* ³
	RD	Н	0	0	H/Z*3	H/Z* ³
	RDWR	Н	0	0	H/Z*3	H/Z*3
	WE3 to WE0	Н	0	0	H/Z*3	H/Z*3
	WAIT	IU	IU	IU	10	IU
	IOIS16	I	Ţ	I	Z	Z
SBSC	HPA16 to HPA1	L	0	0	O/Z* ⁴	O/Z* ⁴
(SDRAM bus)	HPD63 to HPD0	Z	Z	Z/I/O	Z	Z
	HPCS2	Н	0	0	O/Z*4	O/Z*4
	HPCS3	Н	0	0	O/Z*4	O/Z*4
	HPCAS	Н	0	0	O/Z*4	O/Z*4
	HPRAS	Н	0	0	O/Z*4	O/Z* ⁴
	HPCKE	0	0	0	O/Z*4	O/Z*4
	HPCLK	0	0	0	O/Z*4	O/Z* ⁴
	HPCLKR	0	0	0	O/Z*4	O/Z*4
	HPCLKD	0	0	0	O/Z*4	O/Z*4
	HPDQM7 to HPDQM0	Н	0	0	O/Z*4	O/Z*4
	HPRDWR	Н	0	0	O/Z*4	O/Z* ⁴
DMAC	DACK0	_	_	0	0	0
	DREQ0	7	_	I	Z	Z
TPU	ТРИТО	7	_	0	0	0
SIO	SIOD	_	_	Z/I/O*5	Z/I/O*5	Z/I/O*5
	SIOMCK	_	_	I	Z	Z
	SIORXD	_	_	I	Z	Z
	SIOSCK	_	_	0	0	0
	SIOSTRB0, SIOSTRB1	_	_	0	0	0
	SIOTXD	_	_	0	Z/O* ⁵	Z/O* ⁵


Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby* ⁹
SIOF	SIOF0_MCK, SIOF1_MCK	_	_	I	Z	Z
	SIOF0_RXD, SIOF1_RXD	_	_	1	Z	Z
	SIOF0_SCK, SIOF1_SCK	_	_	O/I* ⁵	O/Z* ⁵	O/Z* ⁵
	SIOF0_SS1, SIOF1_SS1	_	_	0	0	0
	SIOF0_SS2, SIOF1_SS2	_	_	0	0	0
	SIOF0_SYNC, SIOF1_SYNC	_	_	O/I* ⁵	O/Z* ⁵	O/Z* ⁵
	SIOF0_TXD, SIOF1_TXD	_	-	0	0	0
SCIF	SCIF0_CTS, SCIF1_CTS, SCIF2_CTS	_	-	1	Z	Z
	SCIF0_RTS, SCIF1_RTS, SCIF2_RTS	_	=	0	Z	Z
	SCIF0_RXD, SCIF1_RXD, SCIF2_RXD	7		I	Z	Z
	SCIF0_SCK, SCIF1_SCK, SCIF2_SCK		_	I	Z	Z
	SCIF0_TXD, SCIF1_TXD, SCIF2_TXD		_	0	Z	Z
SIM	SIM_CLK		_	0	0	0
	SIM_D	_	_	I/O	Z	Z
	SIM_RST	_	_	0	0	0
IrDA	IrDA_IN	_	_	I	Z	Z
	IrDA_OUT	_	_	0	0	0
IIC	SCL	Z	Z	I/O	Z	Z
	SDA	Z	Z	I/O	Z	Z



Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby* ⁹
FLCTL	FCDE	_	_	0	O/Z*5	O/Z*5
	FCE	_	_	0	0	0
	FOE	_	_	0	0	0
	FRB	_	_	I	Z	Z
	FSC	_	_	0	0	0
	FWE	_	_	0	0	0
	NAF7 to NAF0	_	_	Z/I/O	Z	Z
VIO	VIO_CKO	_	_	0	0	0
	VIO_CLK	_	_	1	Z	Z
	VIO_CLK2	_	_	1	Z	Z
	VIO_D15 to VIO_D0	_	_	1	Z	Z
	VIO_FLD	_		1	Z	Z
	VIO_HD	_	- (V	Z	Z
	VIO_HD2	_	-	1	Z	Z
	VIO_STEM	_	+	0	0	0
	VIO_STEX		_	ľ	Z	Z
	VIO_VD		-	1	Z	Z
	VIO_VD2	$\varphi_{\wedge} = 0$		1	Z	Z
VOU	DV_CLK	-		0	0	0
	DV_CLKI	- 7	-	1	Z	Z
	DV_D15 to DV_D0	-	_	0	0	0
	DV_HSYNC	7	_	0	0	0
	DV_VSYNC	+	_	0	0	0
LCDC	LCDLCLK	7	_	1	Z	Z
	LCDCS	_	_	0	0	0
	LCDCS2	_	_	0	0	0
	LCDD23 to LCDD0	_	_	O/I	O/Z	O/Z
	LCDDCK			0	0	0
	LCDDISP			0	0	0
	LCDDON, LCDDON2			0	0	0
	LCDHSYN	_	_	0	0	0
	(1				


Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby*9
LCDC	LCDRD	_	_	0	0	0
	LCDRS	_	_	0	0	0
	LCDVCPWC/ LCDVCPWC2	_	_	0	0	0
	LCDVEPWC/ LCDVEPWC2	_	_	0	0	0
	LCDVSYN, LCDVSYN2	2 —	_	O/Z*5	O/Z*5	O/Z*5
	LCDWR	_	_	0	0	0
TSIF	TS_SCK	_	_	I	Z	Z
	TS_SDAT	_	_	1	Z	Z
	TS_SDEN	_	_	1	Z	Z
	TS_SPSYNC	_	-	1	Z	Z
SIU	SIUAIBT, SIUBIBT	_	-	I/O*5	Z/O*5	Z/O* ⁵
	SIUAILR, SIUBILR	_	-	I/O*5	Z/O* ⁵	Z/O* ⁵
	SIUAISLD, SIUBISLD	-	-	1	Z	Z
	SIUAISPD	A . \	-	I	Z	Z
	SIUAOBT, SIUBOBT	-		I/O* ⁵	Z/O* ⁵	Z/O*5
	SIUAOLR, SIUBOLR	-	-	I/O* ⁵	Z/O*5	Z/O*5
	SIUAOSLD, SIUBOSLD		_	0	0	0
	SIUAOSPD		_	0	0	0
	SIUFCKA, SIUFCKB		_	0	0	0
	SIUMCKA, SIUMCKB			1	Z	Z
USB	DM	L	L	Z/I/O	Z	Z
	DP	Н	Н	Z/I/O	Z	Z
	VBUS	1	1	I	I	I
	EXTALUSB	I	1	1	1	I
	XTALUSB	0	0	0	0	0

Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby*9
KEYSC	KEYIN1, KEYIN0	_	_	IU	IU	IU
	KEYIN4 to KEYIN2	_	_	IU	IU	IU
	KEYOUT3 to KEYOUT0	_	_	Z/O*5	Z/O* ⁵	Z/O* ⁵
	KEYOUT4/IN6	_	_	Z/I/O* ⁵	Z/I/O* ⁵	Z/I/O* ⁵
	KEYOUT5/IN5	_	_	Z/I/O*5	Z/I/O*5	Z/I/O* ⁵
SDHI	SDHICD	_	_	I	Z	Z
	SDHIWP	_	_	ı	Z	Z
	SDHID3 to SDHID0	_	_	I/O	Z	Z
	SDHICLK	_	_	0	z	Z
	SDHICMD	_	_	1/0	Z	Z
H-UDI	TCK	IU	IU _	IU	IU	IU
	TDI	IU	IU	IU	IU	IU
	TDO	Z/O	Z/O	Z/O* ⁶	Z/O*6	Z/O* ⁶
	TMS	IU	IU	IU	IU	IU
	TRST	IU	IU	IU* ⁷	IU* ⁷	IU* ⁷
	ASEBRK/BRKAK	IU/OU*8	IU/OU*8	IU/OU*8	IU/OU*8	IU/OU*8
	MPMD	IU	IU U	IU	IU	IU
AUD	AUDATA3 to AUDATA0	-	-	0	0	0
	AUDCK	0	0	0	0	0
	AUDSYNC	_	_	0	0	0
Port A	PTA7 to PTA0	ZD	ID	Р	K	K
Port B	PTB7 to PTB0	4	_	Р	K	K
Port C	PTC4 to PTC2, PTC0	-/	_	Р	K	K
	PTC5	_	_	Р	К	K
	PTC7	ZU	IU	Р	K	K
Port D	PTD0	L	0	Р	К	K
	PTD1	ZU	IU	Р	K	K
	PTD5 to PTD2	ZU	I	Р	K	K
	PTD6	ZU	IU	Р	K	K
	PTD7	ZU	IU	Р	K	K

Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby*9
Port E	PTE1, PTE0	ZU	IU	Р	K	К
	PTE7 to PTE4	_	_	Р	K	К
Port F	PTF0	L	0	Р	K	К
	PTF1	ZD	ID	Р	К	К
	PTF6 to PTF2	ZD	ID	Р	К	К
Port G	PTG4 to PTG0	L	0	Р	К	К
Port H	PTH1, PTH0	ZD	ID	Р	K	К
	PTH4 to PTH2	L	0	Р	K	К
	PTH6, PTH5	ZD	ID	Р	K	К
	PTH7	L	0	Р	К	К
Port J	PTJ1, PTJ0	ZU	IU	Р	К	К
	PTJ5			Р	К	К
	PTJ6	L	0	P	K	К
	PTJ7	_	-	P	K	K
Port K	PTK0	ZD	ID	Р	K	К
	PTK1	L	0	Р	K	К
	PTK2	ZD	ID	Р	K	К
	PTK6 to PTK3	ZD	ID	Р	K	К
Port L	PTL7 to PTL0	ZD	ID	Р	K	К
Port M	PTM7 to PTM0	ZD	ID	Р	K	К
Port N	PTN7 to PTN0		_	Р	K	К
Port Q	PTQ0	ZU	IU	Р	K	К
	PTQ1	L	0	Р	K	К
	PTQ2	ZD	ID	Р	K	К
	PTQ5 to PTQ3	ZD	ID	Р	K	К
	PTQ6	L	0	Р	K	K
Port R	PTR1, PTR0	L	0	Р	K	K
	PTR2			Р	K	K
	PTR3	_	_	Р	K	K
	PTR4	L	0	Р	К	К

Category	Pin Name	During Reset*1	After Reset*2	Sleep	Software Standby	U-Standby* ⁹
Port S	PTS0	L	0	Р	К	К
	PTS1	ZD	ID	Р	К	К
	PTS2	ZD	ID	Р	К	К
	PTS3	L	0	Р	К	K
	PTS4	ZD	ID	Р	К	К
Port T	PTT0	L	0	Р	К	К
	PTT1	ZD	ID	Р	K	K
	PTT4 to PTT2	ZD	ID	Р	K	К
Port U	PTU0	Z	Z	P	K	K
	PTU1	Z	Z	Р	К	K
	PTU4 to PTU2	ZD	ID	Р	K	К
Port V	PTV4 to PTV0	ZD	ID	P	К	К
Port W	PTW0	ZD	ID	Р	K	K
	PTW4 to PTW1	ZD	ID	Р	К	К
	PTW5	L	0	Р	К	К
	PTW6	ZD	ID	Р	К	К
Port X	PTX5 to PTX0	ZD	ID	Р	К	К
	PTX6	ZU	IU	Р	К	К
Port Y	PTY0	Z	Z	Р	K	К
	PTY1	Z	Z	Р	К	К
	PTY5 to PTY2	Z	Z	Р	К	К
Port Z	PTZ2, PTZ1	ZU	Z	Р	К	К
	PTZ5 to PTZ3	Z	Z	Р	К	К

[Legend]

I: Input (pull-up/pull-down MOS off)

IU: Input (pull-up MOS on)
ID: Input (pull-down MOS on)

H: High-level outputL: Low-level output

O: Output

OU: Output (pull-up MOS on)

P: Port function (whether pins are inputs or outputs, or are pulled up or down, depends on the register settings)

- K: Port state retained (fixed to input, output buffer state retained, pull-up/pull-down states retained)
- Z: High impedance (fixed to input, output buffer off, pull-up/pull-down MOS off)
- ZU: Pull-up state (fixed to input, output buffer off, pull-up MOS on)
- ZD: Pull-down state (fixed to input, output buffer off, pull-down MOS on)
- /: Default state on the left side of a slash (/)
- —: Not selected for the initial function.
- Notes: 1. Period when RESETOUT is asserted after RESETP is negated.
 - 2. After RESETOUT is negated.
 - 3. Z or H/L depending on the HIZMEM and HIZCNT bits in the CMNCR register of BSC.
 - 4. Z or H/L depending on the HIZSTB bit in the SDPCR register of SBSC.
 - 5. Depends on the register setting.
 - 6. Depends on the TAP controller state when MPMD = H. However, the state is on the right side of a slash (/) when MPMD = L.
 - 7. Able to switch between pull-up MOS on/off, depending on the PULCR register setting.
 - 8. Switching the I/O by the register setting by I/O with pull-up when MPMD = L. Input when TRST = L. Always input when MPMD = H.
 - 9. On return from U-standby, the states of pins other than clock control and system control pins are temporarily undefined. The period over which the states are undefined is the following periods at maximum: the system reset asserting period and the DLL/PLL oscillation settling times.

B. Package Dimensions

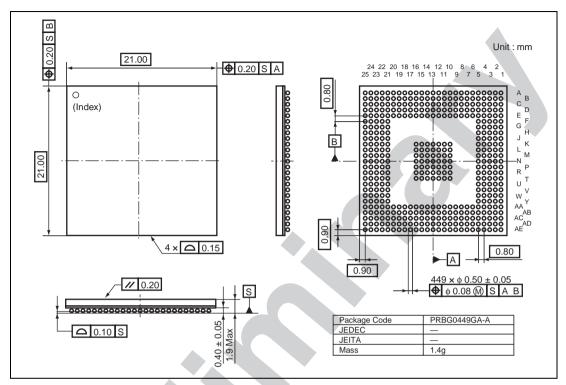
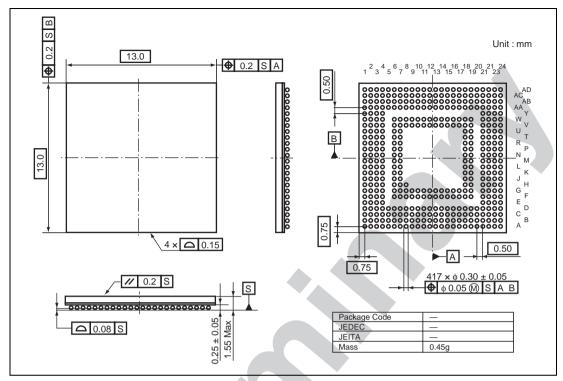



Figure B.1 Package Dimensions (BGA 449)

Package Dimensions (LFBGA 417) Figure B.2

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852-2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

SH7722 Data Sheet

