

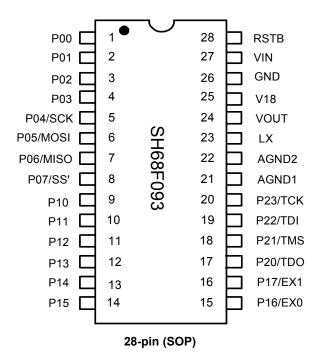
# SH68F093

8-Bit Microcontroller

## Features

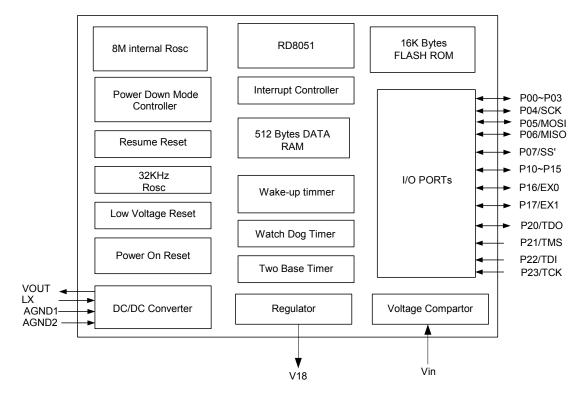
- CMOS technology for low power consumption
- Power Supply
  - DC-DC Input voltage ranges from 1.1V to 1.7V (static voltage without load)
  - Fixed DC-DC output voltage: 2.7V or 3.3V
  - Built-in 1.8V regulator for Micro-Processor (µP)
- 8-bit CMOS Micro-Processor (μP) core Instruction set is fully compatible with star
- Instruction set is fully compatible with standard 8051
   Program Memory
  - 16K Bytes Program Memory (flash ROM)
- Data Memory
  - 512-byte DATA Memory: internal 256-byte RAM and external 256-byte RAM
- Interrupts
  - 8 vector interrupt structure: two external interrupt, two base timer, resume Interrupt, wake-up Interrupt, OVL interrupt, and SPI interrupt
  - Two programmable priority levels

- On-Chip programmable RC Oscillator
  - System Clock: 8MHz/4MHz/2MHz/1MHz
  - Wake-up Timer: 8MHz/4MHz/2MHz/1MHz @IDLE mode
  - Wake-up Timer: 32KHz/16KHz @Power down mode
- Operation frequency: Programmable
- Two 8-Bit auto-reloadable base timers
- One programmable voltage comparator
- Reset
  - Hardware reset: Low-Voltage Reset, Power-on reset, and External Reset
  - Watch-dog Reset
  - Resume Reset
- General Purpose I/O
- Up to 20 Selectable GPIO on 28 pin SOP package
- Master/Slave SPI serial interface
- Package
- 28 pin SOP, CHIPFORM


#### **General Description**

SH68F093, an 8-bit micro-controller, is designed for the high-performance and low-power RF mouse application. The microcontroller contains on-chip flash-type program 16K bytes ROM, internal 512 bytes RAM, two 8-bit base timers, a wake-up timer, a watch-dog timer, a DC-DC converter, a 1.8V regulator for µP core, built-in 8MHz RC resonator, POR/LVR reset, resume reset, programmable voltage comparator, and master/slave SPI interface.






## **Pin Configurations**





#### **Block Diagram**





## Pin and Pad Descriptions

| Package Pin No.<br>28pin SOP | Pad No.  | Pad Name    | I/O        | Description                                             |
|------------------------------|----------|-------------|------------|---------------------------------------------------------|
| 1                            | 1        | P00         | I/O        | Bi-directional I/O pin                                  |
| 2                            | 2        | P01         | I/O        | Bi-directional I/O pin                                  |
| 3                            | 3        | P02         | I/O        | Bi-directional I/O pin                                  |
| 4                            | 4        | P03         | I/O        | Bi-directional I/O pin                                  |
| 5                            | 5        | P04<br>SCK  | I/O<br>I/O | Bi-directional I/O pin<br>SPI serial clock              |
| 6                            | 6        | P05<br>MOSI | I/O<br>I/O | Bi-directional I/O pin<br>SPI master output slave input |
| 7                            | 7        | P06<br>MISO | I/O<br>I/O | Bi-directional I/O pin<br>SPI master input slave output |
| 8                            | 8        | P07<br>/SS  | I/O<br>I   | Bi-directional I/O pin<br>SPI Slave Select              |
| 9                            | 9        | P10         | I/O        | Bi-directional I/O pin                                  |
| 10                           | 10       | P11         | I/O        | Bi-directional I/O pin                                  |
| 11                           | 11       | P12         | I/O        | Bi-directional I/O pin                                  |
| 12                           | 12       | P13         | I/O        | Bi-directional I/O pin                                  |
| 13                           | 14       | P14         | I/O        | Bi-directional I/O pin                                  |
| 14                           | 15       | P15         | I/O        | Bi-directional I/O pin                                  |
| 15                           | 16       | P16<br>EX0  | I/O<br>I   | Bi-directional I/O pin<br>External INT0                 |
| 16                           | 17       | P17<br>EX1  | I/O<br>I   | Bi-directional I/O pin<br>External INT1                 |
| 17                           | 18       | P20<br>TDO  | I/O<br>0   | Bi-directional I/O pin<br>JTAG DATA output pin          |
| 18                           | 19       | P21<br>TMS  | I<br>I     | Uni-directional input pin<br>JTAG MODE select pin       |
| 19                           | 20       | P22<br>TDI  | I<br>I     | Uni-directional input pin<br>JTAG DATA input pin        |
| 20                           | 21       | P23<br>TCK  |            | Uni-directional Input pin<br>JTAG clock input pin       |
| 21                           | 22/23    | AGND1       | I          | Analog Ground                                           |
| 22                           | 24/25    | AGND2       | I          | Analog Ground                                           |
| 23                           | 26/27    | LX          | Ι          | DC-DC Switching pin                                     |
| 24                           | 28/29/30 | VOUT/VDDIN  | I/O        | DC-DC Voltage output pin                                |
| 25                           | 31/32    | V18/VCC     | I/O        | Regulator pin                                           |
| 26                           | 33/34    | GND         | Ι          | Ground                                                  |
| 27                           | 35       | VIN         | Ι          | Voltage Comparator                                      |
| 28                           | 36       | RSTB        | Ι          | Reset pin                                               |



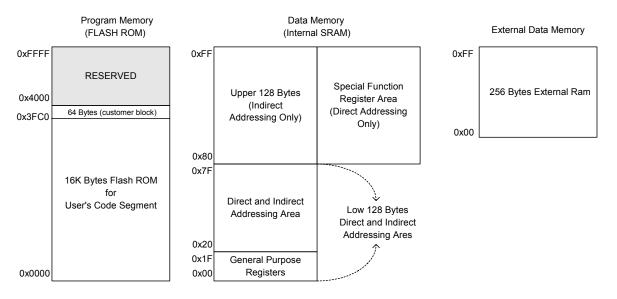
#### **Functional Description**

#### 1. Memory

#### 1.1. Memory Allocation

There are 16K bytes Program Memory and 512 bytes Data Memory.

#### 1.2. Program Memory


SH68F093 embeds 16K Bytes (0000H - 3FFFH) on-chip program memory for program code. The flash program memory provides electrical erasure and programming.

**Note:** The 0<sup>th</sup> sector (0000H - 03FFH) and the last 64 bytes for customer block (3FC0H - 3FFFH) are reserved and can't be used as program memory.

#### 1.3. Data Memory

SH68F093 provides internal 256-byte RAM and external 256-byte RAM.

Internal Special Function Registers (SFR): There are 128 bytes SFR, which is the internal reserved memory for system registers in the  $\mu$ P.



#### FIG. 1-1 SH68F093 Program/Data Memory Map

**Note:** SH68F093 provides traditional method for accessing of external RAM. Use MOVX A, @Ri or MOVX @Ri, A to access 256-byte external RAM.



## 1.4. Registers

|                                                                                                                             |                                                              |                                                                                                                                                                                                                                |                                                             |                                                                      | Syste                                                                                                        | m Registers                                                                                                    | ;                                                                                           |                                                                         |                                                                              |                                                                                                     |                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
| 00E0H                                                                                                                       | ACC                                                          | 00H                                                                                                                                                                                                                            | R/W                                                         | ACC.7                                                                | ACC.6                                                                                                        | ACC.5                                                                                                          | ACC.4                                                                                       | ACC.3                                                                   | ACC.2                                                                        | ACC.1                                                                                               | ACC.0                                                                        |
| 00F0H                                                                                                                       | В                                                            | 00H                                                                                                                                                                                                                            | R/W                                                         | B.7                                                                  | B.6                                                                                                          | B.5                                                                                                            | B.4                                                                                         | B.3                                                                     | B.2                                                                          | B.1                                                                                                 | B.0                                                                          |
| 00D0H                                                                                                                       | PSW                                                          | 00H                                                                                                                                                                                                                            | R/W                                                         | CY                                                                   | AC                                                                                                           | F0                                                                                                             | RS1                                                                                         | RS0                                                                     | OV                                                                           | 0                                                                                                   | Р                                                                            |
| 0081H                                                                                                                       | SP                                                           | 07H                                                                                                                                                                                                                            | R/W                                                         | SP7                                                                  | SP6                                                                                                          | SP5                                                                                                            | SP4                                                                                         | SP3                                                                     | SP2                                                                          | SP1                                                                                                 | SP0                                                                          |
| 0082H                                                                                                                       | DPL                                                          | 00H                                                                                                                                                                                                                            | R/W                                                         | DPL7                                                                 | DPL6                                                                                                         | DPL5                                                                                                           | DPL4                                                                                        | DPL3                                                                    | DPL2                                                                         | DPL1                                                                                                | DPL0                                                                         |
| 0083H                                                                                                                       | DPH                                                          | 00H                                                                                                                                                                                                                            | R/W                                                         | DPH7                                                                 | DPH6                                                                                                         | DPH5                                                                                                           | DPH4                                                                                        | DPH3                                                                    | DPH2                                                                         | DPH1                                                                                                | DPH0                                                                         |
| 00F7h                                                                                                                       | XPAGE                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | XPAGE7                                                               | XPAGE6                                                                                                       | XPAGE5                                                                                                         | XPAGE4                                                                                      | XPAGE3                                                                  | XPAGE2                                                                       | XPAGE1                                                                                              | XPAGE0                                                                       |
|                                                                                                                             |                                                              |                                                                                                                                                                                                                                |                                                             | Idle a                                                               | and Power-d                                                                                                  | own Contro                                                                                                     | I Registers                                                                                 |                                                                         |                                                                              |                                                                                                     |                                                                              |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
| 0087H                                                                                                                       | PCON                                                         | 0000000B                                                                                                                                                                                                                       | R/W                                                         | 0                                                                    | 0                                                                                                            | 0                                                                                                              | 0                                                                                           | 0                                                                       | 0                                                                            | PD                                                                                                  | IDL                                                                          |
| 008EH                                                                                                                       | SUSLO                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | SUSL7                                                                | SUSL6                                                                                                        | SUSL5                                                                                                          | SUSL4                                                                                       | SUSL3                                                                   | SUSL2                                                                        | SUSL1                                                                                               | SUSL0                                                                        |
| 00AFH                                                                                                                       | PRCON                                                        | 0000001B                                                                                                                                                                                                                       | R/W                                                         | 0                                                                    | 0                                                                                                            | 0                                                                                                              | 0                                                                                           | 0                                                                       | ENWDT                                                                        | 0                                                                                                   | ENLVR                                                                        |
|                                                                                                                             |                                                              |                                                                                                                                                                                                                                |                                                             |                                                                      |                                                                                                              | ) Ports Regi                                                                                                   |                                                                                             |                                                                         |                                                                              |                                                                                                     |                                                                              |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
| 0080H                                                                                                                       | P0                                                           | 11111111B                                                                                                                                                                                                                      | R/W                                                         | P0.7                                                                 | P0.6                                                                                                         | P0.5                                                                                                           | P0.4                                                                                        | P0.3                                                                    | P0.2                                                                         | P0.1                                                                                                | P0.0                                                                         |
| 0090H                                                                                                                       | P1                                                           | 11111111B                                                                                                                                                                                                                      | R/W                                                         | P1.7                                                                 | P1.6                                                                                                         | P1.5                                                                                                           | P1.4                                                                                        | P1.3                                                                    | P1.2                                                                         | P1.1                                                                                                | P1.0                                                                         |
| 00A0H                                                                                                                       | P2                                                           | 00011111B                                                                                                                                                                                                                      | R/W                                                         | 0                                                                    | 0                                                                                                            | 0                                                                                                              | 0                                                                                           | P2.3                                                                    | P2.2                                                                         | P2.1                                                                                                | P2.0                                                                         |
| 00A2H                                                                                                                       | POWK                                                         | 0000000B                                                                                                                                                                                                                       | R/W                                                         | P0WK7                                                                | P0WK6                                                                                                        | P0WK5                                                                                                          | P0WK4                                                                                       | P0WK3                                                                   | P0WK2                                                                        | P0WK1                                                                                               | P0WK0                                                                        |
| 00A3H                                                                                                                       | P1WK                                                         | 00000000B                                                                                                                                                                                                                      | R/W                                                         | P1WK7                                                                | P1WK6                                                                                                        | P1WK5                                                                                                          | P1WK4                                                                                       | P1WK3                                                                   | P1WK2                                                                        | P1WK1                                                                                               | P1WK0                                                                        |
| 00A4H                                                                                                                       | P2WK                                                         | 00000000B                                                                                                                                                                                                                      | R/W                                                         | 0                                                                    | 0                                                                                                            | 0                                                                                                              | 0                                                                                           | P2WK3                                                                   | P2WK2                                                                        | P2WK1                                                                                               | P2WK0                                                                        |
| 009AH                                                                                                                       | P0CON                                                        | 0000000B                                                                                                                                                                                                                       | R/W                                                         | P0CON7                                                               | P0CON6                                                                                                       | P0CON5                                                                                                         | P0CON4                                                                                      | P0CON3                                                                  | P0CON2                                                                       | P0CON1                                                                                              | P0CON0                                                                       |
| 009BH                                                                                                                       | P1CON                                                        | 00000000B                                                                                                                                                                                                                      | R/W                                                         | P1CON7                                                               | P1CON6                                                                                                       | P1CON5                                                                                                         | P1CON4                                                                                      | P1CON3                                                                  | P1CON2                                                                       | P1CON1                                                                                              | P1CON0                                                                       |
| 009CH                                                                                                                       | P2CON                                                        | 0000000B                                                                                                                                                                                                                       | R/W                                                         | 0                                                                    | 0                                                                                                            | 0                                                                                                              | 0                                                                                           | P2CON3                                                                  | P2CON2                                                                       | P2CON1                                                                                              | P2CON0                                                                       |
| Addamaa                                                                                                                     | N                                                            | he total Malace                                                                                                                                                                                                                | DAM                                                         | D147                                                                 |                                                                                                              | Registers                                                                                                      | Dite                                                                                        | <b>D</b> 140                                                            | D:40                                                                         | Ditd                                                                                                | Dito                                                                         |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
| 009DH                                                                                                                       | SPCON                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | DIR                                                                  | MSTR                                                                                                         | CPHA                                                                                                           | CPOL                                                                                        | SSDIS                                                                   | SPR2                                                                         | SPR1                                                                                                | SPR0                                                                         |
| 00F8H                                                                                                                       | SPSTA                                                        | 00H                                                                                                                                                                                                                            | R/W<br>R/W                                                  | SPEN                                                                 | SPIF                                                                                                         | MODF<br>SPD5                                                                                                   | WCOL                                                                                        | RXOV                                                                    | 0                                                                            | 0                                                                                                   | 0                                                                            |
| 009EH                                                                                                                       | SPDAT                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | SPD7                                                                 | SPD6                                                                                                         | se Timers                                                                                                      | SPD4                                                                                        | SPD3                                                                    | SPD2                                                                         | SPD1                                                                                                | SPD0                                                                         |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
| 00D2H                                                                                                                       | BT0                                                          | 00H                                                                                                                                                                                                                            | R/W                                                         | BT07                                                                 | BT06                                                                                                         | BT05                                                                                                           | BT04                                                                                        | BT03                                                                    | BT02                                                                         | BT01                                                                                                | BT00                                                                         |
| 00D2H                                                                                                                       | BT0<br>BT1                                                   | 00H                                                                                                                                                                                                                            | R/W                                                         | BT07<br>BT17                                                         | BT00<br>BT16                                                                                                 | BT05<br>BT15                                                                                                   | BT04<br>BT14                                                                                | BT03<br>BT13                                                            | BT02<br>BT12                                                                 | BT01<br>BT11                                                                                        | BT00<br>BT10                                                                 |
| 00D4H                                                                                                                       | BTCON                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | ENBT1                                                                | BT1M2                                                                                                        | BT1M1                                                                                                          | BT1M0                                                                                       | ENBT0                                                                   | BT0M2                                                                        | BT0M1                                                                                               | BTOMO                                                                        |
| 00D4H<br>00D5H                                                                                                              | BTCLK                                                        | 00H                                                                                                                                                                                                                            | R/W                                                         | 0                                                                    | 0                                                                                                            | BT1CLK1                                                                                                        | BT1CLK0                                                                                     | 0                                                                       | 0                                                                            | BT0CLK1                                                                                             | BTOCLKO                                                                      |
| CODON                                                                                                                       | BIOLIC                                                       | 0011                                                                                                                                                                                                                           | 10.00                                                       | -                                                                    | -                                                                                                            |                                                                                                                | trol Register                                                                               |                                                                         |                                                                              | BIOOLICI                                                                                            | BIOOLIKU                                                                     |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W                                                         | Bit7                                                                 | Bit6                                                                                                         | Bit5                                                                                                           | Bit4                                                                                        | Bit3                                                                    | Bit2                                                                         | Bit1                                                                                                | Bit0                                                                         |
|                                                                                                                             | WKT CON                                                      | F0H                                                                                                                                                                                                                            |                                                             | WKT_SEL1                                                             |                                                                                                              |                                                                                                                |                                                                                             |                                                                         | WKT2                                                                         | WKT1                                                                                                |                                                                              |
|                                                                                                                             |                                                              |                                                                                                                                                                                                                                |                                                             |                                                                      | WAL SELU                                                                                                     | ULK SELT                                                                                                       | ULK SELU                                                                                    | VVNIS                                                                   |                                                                              |                                                                                                     | VVNIU                                                                        |
|                                                                                                                             | RES CON                                                      | 00H                                                                                                                                                                                                                            |                                                             | 0                                                                    |                                                                                                              | OLK_SELT                                                                                                       | CLK_SEL0<br>0                                                                               | WKT3<br>0                                                               | 0                                                                            |                                                                                                     | WKT0<br>RES0                                                                 |
|                                                                                                                             | RES_CON                                                      | 00H                                                                                                                                                                                                                            | R/W                                                         |                                                                      | 0                                                                                                            | 0                                                                                                              | 0                                                                                           |                                                                         |                                                                              | RES1                                                                                                | RES0                                                                         |
|                                                                                                                             | -                                                            |                                                                                                                                                                                                                                | R/W                                                         | 0                                                                    | 0<br>Reset &                                                                                                 | 0<br>Resume Fla                                                                                                | 0<br>ag                                                                                     | 0                                                                       | 0                                                                            | RES1                                                                                                | RES0                                                                         |
| Address                                                                                                                     | -                                                            | Initial Value                                                                                                                                                                                                                  | R/W                                                         | 0                                                                    | 0                                                                                                            | 0<br>Resume Fla<br>Bit5                                                                                        | 0<br>ag<br>Bit4                                                                             |                                                                         | 0<br>Bit2                                                                    |                                                                                                     |                                                                              |
| Address                                                                                                                     | Name                                                         |                                                                                                                                                                                                                                | R/W<br><b>R/W</b>                                           | 0<br>Bit7<br>0                                                       | 0<br>Reset &<br>Bit6                                                                                         | 0<br>Resume Fla<br>Bit5<br>FLVR1                                                                               | 0<br>ag<br>Bit4<br>FLVR2                                                                    | 0<br>Bit3                                                               | 0<br>Bit2                                                                    | RES1<br>Bit1                                                                                        | RES0<br>Bit0                                                                 |
| Address                                                                                                                     | Name                                                         | Initial Value                                                                                                                                                                                                                  | R/W<br><b>R/W</b>                                           | 0<br>Bit7<br>0                                                       | 0<br>Reset &<br>Bit6<br>0                                                                                    | 0<br>Resume Fla<br>Bit5<br>FLVR1                                                                               | 0<br>ag<br>Bit4<br>FLVR2                                                                    | 0<br>Bit3                                                               | 0<br>Bit2                                                                    | RES1<br>Bit1                                                                                        | RES0<br>Bit0                                                                 |
| Address<br>0096H                                                                                                            | Name<br>MODE_FG                                              | Initial Value<br>00000001B                                                                                                                                                                                                     | R/W<br><b>R/W</b><br>R/W                                    | 0<br>Bit7<br>0<br>Wa                                                 | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6                                                             | 0<br>Resume Fla<br>Bit5<br>FLVR1<br>ner Control                                                                | 0<br>Bit4<br>FLVR2<br>Registers<br>Bit4                                                     | 0<br>Bit3<br>PORT_RSU<br>Bit3                                           | 0<br>Bit2<br>WKUP_RS                                                         | RES1<br>Bit1<br>WDT<br>Bit1                                                                         | RES0<br>Bit0<br>POF<br>Bit0                                                  |
| Address<br>0096H<br>Address<br>0093H                                                                                        | Name<br>MODE_FG<br>Name                                      | Initial Value<br>00000001B<br>Initial Value                                                                                                                                                                                    | R/W<br>R/W<br>R/W                                           | 0<br>Bit7<br>0<br>Wa<br>Bit7                                         | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6                                                             | 0<br>Resume Fla<br>Bit5<br>FLVR1<br>ner Control I<br>Bit5                                                      | 0<br>Bit4<br>FLVR2<br>Registers<br>Bit4                                                     | 0<br>Bit3<br>PORT_RSU<br>Bit3                                           | 0<br>Bit2<br>WKUP_RS<br>Bit2                                                 | RES1<br>Bit1<br>WDT<br>Bit1                                                                         | RES0<br>Bit0<br>POF<br>Bit0                                                  |
| Address<br>0096H<br>Address<br>0093H                                                                                        | Name<br>MODE_FG<br>Name<br>CLRWD                             | Initial Value<br>00000001B<br>Initial Value<br>55H                                                                                                                                                                             | R/W<br>R/W<br>R/W<br>W                                      | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7                              | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0                                             | 0<br>Resume Fli<br>Bit5<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5                                           | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0                                       | 0<br>Bit3<br>PORT_RSU<br>Bit3<br>CLRWDT3                                | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2                                      | RES1<br>Bit1<br>WDT<br>Bit1<br>CLRWDT1                                                              | RES0<br>Bit0<br>POF<br>Bit0<br>CLRWDT0                                       |
| Address           0096H           Address           0093H           0094H           Address                                 | Name<br>MODE_FG<br>Name<br>CLRWD                             | Initial Value<br>00000001B<br>Initial Value<br>55H                                                                                                                                                                             | R/W<br>R/W<br>R/W<br>W                                      | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7                              | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0                                             | 0<br>Resume Fli<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0                                              | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0                                       | 0<br>Bit3<br>PORT_RSU<br>Bit3<br>CLRWDT3                                | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2                                      | RES1<br>Bit1<br>WDT<br>Bit1<br>CLRWDT1                                                              | RES0<br>Bit0<br>POF<br>Bit0<br>CLRWDT0                                       |
| Address           0096H           Address           0093H           0094H                                                   | Name<br>MODE_FG<br>Name<br>CLRWD<br>PREWD                    | Initial Value<br>00000001B<br>Initial Value<br>55H<br>05H                                                                                                                                                                      | R/W<br>R/W<br>R/W<br>W<br>R/W                               | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7<br>0                         | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0<br>Interrupt C                              | 0<br>Resume Fli<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0<br>control Regi                              | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0<br>sters                              | 0<br>Bit3<br>PORT_RSU<br>Bit3<br>CLRWDT3<br>0                           | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2<br>WDT2                              | RES1<br>Bit1<br>WDT<br>Bit1<br>CLRWDT1<br>WDT1                                                      | RES0<br>Bit0<br>POF<br>Bit0<br>CLRWDT0<br>WDT0                               |
| Address<br>0096H<br>Address<br>0093H<br>0094H<br>0094H<br>Address<br>00A8H<br>00A9                                          | Name<br>MODE_FG<br>CLRWD<br>PREWD<br>Name<br>IE<br>IE2       | Initial Value<br>00000001B<br>Initial Value<br>55H<br>05H<br>Initial Value                                                                                                                                                     | R/W<br>R/W<br>R/W<br>R/W<br>R/W                             | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7<br>0<br>Bit7                 | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0<br>Interrupt C<br>Bit6<br>EOVL<br>0         | 0<br>Resume Fli<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0<br>control Regi<br>Bit5<br>EWKT<br>0         | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0<br>sters<br>Bit4<br>ERSU<br>0         | 0<br>Bit3<br>PORT_RSU<br>Bit3<br>0<br>Bit3<br>EBT1<br>0                 | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2<br>WDT2<br>Bit2                      | RES1<br>Bit1<br>WDT<br>Bit1<br>CLRWDT1<br>WDT1<br>Bit1                                              | RES0<br>Bit0<br>POF<br>Bit0<br>CLRWDT0<br>WDT0<br>Bit0                       |
| Address           0096H           Address           0093H           0094H           Address           0094H           0094H | Name<br>MODE_FG<br>CLRWD<br>PREWD<br>Name<br>IE              | Initial Value           0000001B           Initial Value           55H           05H           Initial Value           0000000B                                                                                                | R/W<br>R/W<br>R/W<br>W<br>R/W<br>R/W                        | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7<br>0<br>Bit7<br>EA           | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0<br>Interrupt C<br>Bit6<br>EOVL              | 0<br>Resume Fli<br>Bit5<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0<br>control Regi<br>Bit5<br>EWKT      | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0<br>sters<br>Bit4<br>ERSU              | 0<br>Bit3<br>PORT_RSU<br>CLRWDT3<br>0<br>Bit3<br>EBT1                   | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2<br>WDT2<br>Bit2<br>EBT0              | RES1<br>Bit1<br>WDT<br>Bit1<br>CLRWDT1<br>WDT1<br>Bit1<br>EX1                                       | RES0<br>Bit0<br>POF<br>CLRWDT0<br>WDT0<br>Bit0<br>EX0                        |
| Address<br>0096H<br>Address<br>0093H<br>0094H<br>0094H<br>M<br>Address<br>00A8H<br>00A9<br>00B8H<br>00B9H                   | Name<br>MODE_FG<br>CLRWD<br>PREWD<br>Name<br>IE<br>IE2       | Initial Value           0000001B           Initial Value           55H           05H           Initial Value           0000000B           0000000B           0000000B           0000000B           0000000B           0000000B | R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7<br>0<br>Bit7<br>EA<br>0      | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0<br>Interrupt C<br>Bit6<br>EOVL<br>0         | 0<br>Resume Fli<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0<br>control Regi<br>Bit5<br>EWKT<br>0         | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0<br>sters<br>Bit4<br>ERSU<br>0         | 0<br>Bit3<br>PORT_RSU<br>CLRWDT3<br>0<br>Bit3<br>EBT1<br>0<br>PBT1<br>0 | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2<br>WDT2<br>Bit2<br>EBT0<br>0         | RES1<br><b>Bit1</b><br>WDT<br><b>Bit1</b><br>CLRWDT1<br>WDT1<br><b>Bit1</b><br>EX1<br>0<br>PX1<br>0 | RES0<br>Bit0<br>POF<br>CLRWDT0<br>WDT0<br>Bit0<br>EX0<br>ESPI                |
| Address<br>0096H<br>Address<br>0093H<br>0094H<br>0094H<br>Address<br>00A8H<br>00A9<br>00B8H                                 | Name<br>MODE_FG<br>CLRWD<br>PREWD<br>Name<br>IE<br>IE2<br>IP | Initial Value           0000001B           Initial Value           55H           05H           Initial Value           0000000B           0000000B           0000000B           0000000B                                       | R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W<br>R/W        | 0<br>Bit7<br>0<br>Wa<br>Bit7<br>CLRWDT7<br>0<br>Bit7<br>EA<br>0<br>0 | 0<br>Reset &<br>Bit6<br>0<br>tch-Dog Tin<br>Bit6<br>CLRWDT6<br>0<br>Interrupt C<br>Bit6<br>EOVL<br>0<br>POVL | 0<br>Resume Fla<br>FLVR1<br>ner Control I<br>Bit5<br>CLRWDT5<br>0<br>control Regi<br>Bit5<br>EWKT<br>0<br>PWKT | 0<br>ag<br>FLVR2<br>Registers<br>Bit4<br>CLRWDT4<br>0<br>sters<br>Bit4<br>ERSU<br>0<br>PRSU | 0<br>Bit3<br>PORT_RSU<br>CLRWDT3<br>0<br>Bit3<br>EBT1<br>0<br>PBT1      | 0<br>Bit2<br>WKUP_RS<br>Bit2<br>CLRWDT2<br>WDT2<br>Bit2<br>EBT0<br>0<br>PBT0 | RES1<br>Bit1<br>WDT<br>CLRWDT1<br>WDT1<br>Bit1<br>EX1<br>0<br>PX1                                   | RES0<br>Bit0<br>POF<br>Bit0<br>CLRWDT0<br>WDT0<br>Bit0<br>EX0<br>ESPI<br>PX0 |



#### Register (continued)

|         |          |               |     | Info      | prmation Blo | ock Control | Registers     |           |           |           |           |
|---------|----------|---------------|-----|-----------|--------------|-------------|---------------|-----------|-----------|-----------|-----------|
| Address | Name     | Initial Value | R/W | Bit7      | Bit6         | Bit5        | Bit4          | Bit3      | Bit2      | Bit1      | Bit0      |
| 00F2H   | IBCON1   | 00H           | R/W | IBCON17   | IBCON16      | IBCON15     | IBCON14       | IBCON13   | IBCON12   | IBCON11   | IBCON10   |
| 00F3H   | IBCON2   | 00H           | R/W | 0         | 0            | 0           | 0             | IBCON23   | IBCON22   | IBCON21   | IBCON20   |
| 00F4H   | IBCON3   | 00H           | R/W | 0         | 0            | 0           | 0             | IBCON33   | IBCON32   | IBCON31   | IBCON30   |
| 00F5H   | IBCON4   | 00H           | R/W | 0         | 0            | 0           | 0             | IBCON43   | IBCON42   | IBCON41   | IBCON40   |
| 00F6H   | IBCON5   | 00H           | R/W | 0         | 0            | 0           | 0             | IBCON53   | IBCON52   | IBCON51   | IBCON50   |
| 00FBH   | IBOFFSET | 00H           | R/W | IBOFFSET7 | IBOFFSET6    | IBOFFSET5   | IBOFFSET4     | IBOFFSET3 | IBOFFSET2 | IBOFFSET1 | IBOFFSET0 |
| 00FCH   | IB_DAT   | 00H           | R/W | IBDATA7   | IBDATA6      | IBDATA5     | IBDATA4       | IBDATA3   | IBDATA2   | IBDATA1   | IBDATA0   |
|         |          |               |     | DC-DC &   | Voltage Co   | mparator Co | ontrol Regist | ters      |           |           |           |
| Address | Name     | Initial Value | R/W | Bit7      | Bit6         | Bit5        | Bit4          | Bit3      | Bit2      | Bit1      | Bit0      |
| 00C7H   | VSEL_D   | 0010000B      | R/W | 0         | 0            | DC_EN       | DCPD2         | DCPD1     | 0         | VSEL_DC   | VSEL_DC0  |
| 00C4H   | VC_CO    | 0100000B      | R/W | ENVC      | VREF2        | VREF1       | VREF0         | 0         | 0         | 0         | VCMP      |

Note1: Unlike the other resets (POR, LVR, and RST), resume reset will not reset some registers values

**Note2:** The read/write operations of reserved control registers may cause some unexpected events. Please remain aware during system software development.



#### 2. Interrupt and Reset Vectors

- External Interrupt 0
- External Interrupt 1
- Base Timer 0
- Base Timer 1

- Resume Interrupt
- Wake-up Interrupt
- OVL Interrupt
- SPI Interrupt

| Address | Interrupt Source     | Enable | IRQ Flag | Description                            |
|---------|----------------------|--------|----------|----------------------------------------|
| 0000H   | Reset                | -      | -        | System Reset                           |
| 0003H   | External Interrupt 0 | IE.0   | EX0      | P16 (falling edge/low level voltage)   |
| 000BH   | External Interrupt 1 | IE.1   | EX1      | P17 (falling edge/low level voltage)   |
| 0013H   | Base Timer 0         | IE.2   | EBT0     | Base Timer 0 Interrupt                 |
| 001BH   | Base Timer 1         | IE.3   | EBT1     | Base Timer 1 Interrupt                 |
| 0023H   | Resume Interrupt     | IE.4   | ERSU     | Port Resume Interrupt (IDLE mode)      |
| 002BH   | Wake-up Interrupt    | IE.5   | EWKT     | Wake up timer Interrupt (IDLE mode)    |
| 0033H   | OVL Interrupt        | IE.6   | EOVL     | Invalid ROM address detector Interrupt |
| 003BH   | SPI Interrupt        | IE2.0  | ESPI     | Serial peripheral interface Interrupt  |





#### 3. Micro-Processor

#### 3.1. General Description

SH68F093 is an 8-bit microprocessor optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for Internal RAM. The instruction set provides several byte instructions including multiply and divide instructions. In addition, several bit oriented instructions are also provided. This allows direct bit manipulation and testing in control and logic systems that require Boolean processing.

#### 3.2. Special Function Registers (SFRs)

SH68F093 has a total of 46 SFR's, as shown in the figure below --- SFR Map for SH68F093. Note that not all the addresses are occupied by SFR's. The unoccupied addresses are not implemented and should not be used by the customer. Read access from these unoccupied locations will return unpredictable data, while write accesses will have no effect on the chip.

|     |                     |     |        | SFR Map fo | r SH68F093 |         |         |         |     |
|-----|---------------------|-----|--------|------------|------------|---------|---------|---------|-----|
| F8H | SPSTA               | -   | -      | IB_OFFSET  | IB_DATA    | -       | -       | -       | FFH |
| F0H | В                   | -   | IBCON1 | IBCON2     | IBCON3     | IBCON4  | IBCON5  | XPAGE   | F7H |
| E8H | -                   | -   | -      | -          | -          | -       | -       | -       | EFH |
| E0H | ACC                 | -   | -      | -          | -          | -       | -       | -       | E7H |
| D8H | -                   | EIT | IF     |            | -          | -       | -       | -       | DFH |
| D0H | PSW                 | -   | BT0    | BT1        | BTCON      | BTCLK   | -       | -       | D7H |
| C8H | -                   | -   | -      | -          | -          | -       | -       | -       | CFH |
| C0H | -                   | -   | -      | -          | VC_CON     | -       | -       | VSEL_DC | C7H |
| B8H | IP                  | IP2 | -      | -          | -          | -       | -       | -       | BFH |
| B0H | -                   | -   | -      |            | -          | -       | -       | -       | B7H |
| A8H | IE                  | IE2 | -      | -          | -          | -       | -       | PRCON   | AFH |
| A0H | P2                  | -   | P0WK   | P1WK       | P2WK       | -       | -       | -       | A7H |
| 98H | -                   | -   | P0CON  | P1CON      | P2CON      | SPCON   | SPDAT   |         | 9FH |
| 90H | P1                  | -   | -      | CLRWDT     | PREWDT     | WKT_CON | MODE_FG | RES_CON | 97H |
| 88H | -                   | -   | -      | -          | -          | -       | SUSLO   | -       | 8FH |
| 80H | P0                  | SP  | DPL    | DPH        | -          | -       | -       | PCON    | 87H |
|     | P0<br>FR's in marke |     |        |            | -          | -       | -       | PCON    | 87H |

**Note1:** SFR's in marked column are bit addressable.

Note2: SFR's in gray color are standard 8051 SFR's, and others are SFR's for SH68F093.





#### 3.2.1. Accumulator (ACC)

ACC is the accumulator register used for most of the arithmetic and logical instructions. Its initial value is 00h.

#### 3.2.2. B Register (B)

The B register is an SFR which is used primarily in the multiply and divide instructions. It can also be used as a temporary scratch pad register for the other instructions and its initial value is 00h.

#### 3.2.3. Program Status Word (PSW)

The PSW is the register that holds information about the status of the Accumulator, the selected register banks and other information. Its initial value is 00h. This register is described in details in the following figure:

|    |     | PSW - Program Status Word Register                                                                                                                               |  |  |  |  |  |  |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| B7 | CY  | Carry flag                                                                                                                                                       |  |  |  |  |  |  |
| B6 | AC  | uxiliary Carry flag (for BCD operations)                                                                                                                         |  |  |  |  |  |  |
| B5 | F0  | Flag 0 (Available to the user for general purposes)                                                                                                              |  |  |  |  |  |  |
| B4 | RS1 | Register Bank select control bit 1 & 0<br>Set/cleared by software to determine working bank.<br>(RS1, RS0):<br>(00) - Bank 0 ⇔ Address → (00H - 07H)             |  |  |  |  |  |  |
| В3 | RS0 | (00) - Bank 0 ⇔ Address > (001 - 071)<br>(01) - Bank 1 ⇔ Address > (08H - 0FH)<br>(10) - Bank 2 ⇔ Address > (10H - 17H)<br>(11) - Bank 3 ⇔ Address > (18H - 1FH) |  |  |  |  |  |  |
| B2 | OV  | Overflow Flag                                                                                                                                                    |  |  |  |  |  |  |
| B1 | Х   | User definable flag                                                                                                                                              |  |  |  |  |  |  |
| В0 | Ρ   | Parity Flag<br>Set/Cleared by hardware each instruction cycle to indicate an odd/even number of "one" bit I the<br>Accumulator, i.e., even parity.               |  |  |  |  |  |  |

#### 3.2.4. Stack Pointer (SP)

The Stack Pointer is an 8-bit wide register that is used to point to the top of the stack where addresses are stored. After a reset, the stack pointer is initialized to 07H, and so the stack begins at 08H. However the stack can reside at any location in the Internal RAM and stack pointer can be programmed to suit the user's needs.

#### 3.2.5. Data Pointers (DPH, DPL)

One Data Pointers (DPTR) consist of DPH, DPL Its intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

#### 3.2.6. Port 0, Port1, and Port2 (P0, P1, and P2)

The three ports have three SFR's associated with them. Data to be brought out onto the port pins is written to the latches.

#### 3.2.7. External Memory page register (XPAGE)

The XPAGE is high byte of address bus when use MOVX with @ Ri.



## 4. Oscillator

SH68F093 has a built-in 8M RC resonator for system clock. The system clock can be selected as 8MHz, 4MHz, 2MHz, or 1MHz by Firmware. SH68F093 also has a built-in 32 KHz RC resonator to generate the wake-up timer clock source. The wake up timer clock can be selected as 16 KHz, 32 KHz, or system clock (8MHz/4MHz/2MHz/1MHz) with disabled 32 KHz RC resonator by firmware See the following table.

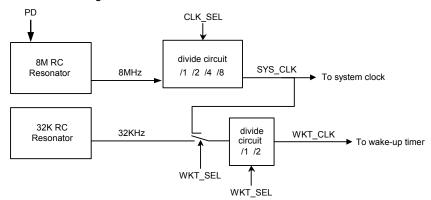



FIG.4-1 Programmable System Clock Diagram

| 0095H    | WKT_CON          | Initial Value |     | Wake-up Timer & Resume Reset Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|------------------|---------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B[7:6]   | WKT_<br>SEL[1:0] | 11b           | R/W | Wake-up timer clock source(ТWKT_CLK) selection<br>00: Disable Wake-up Timer<br>01: 16KHz(In Power-down mode)<br>01: Disable Wake-up Timer (In IDLE & normal operation mode)<br>10: 32KHz(In Power-down mode)<br>10: Disable Wake-up Timer (In IDLE & normal operation mode)<br>11: System clock (in IDLE mode)<br>11: Disable Wake-up Timer (In Power-down & normal operation mode)<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B[5:4]   | CLK_<br>SEL[1:0] | 11b           | R/W | System clock Frequency selection<br>00: 1 MHz<br>01: 2 MHz<br>10: 4 MHz<br>11: 8 MHz<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bit[3:0] | WKT[3:0]         | 0000b         | R/W | Wake up time         0000: Reserved         0001: 2 <sup>7</sup> xTwkt_CLK         0010: 2 <sup>8</sup> xTwkt_CLK         0010: 2 <sup>10</sup> xTwkt_CLK         0100: 2 <sup>10</sup> xTwkt_CLK         0101: 2 <sup>11</sup> xTwkt_CLK         0110: 2 <sup>12</sup> xTwkt_CLK         0111: 2 <sup>13</sup> xTwkt_CLK         0100: 2 <sup>14</sup> xTwkt_CLK         1000: 2 <sup>14</sup> xTwkt_CLK         1001: 2 <sup>15</sup> xTwkt_CLK         1010: 2 <sup>16</sup> xTwkt_CLK         1011: 2 <sup>15</sup> xTwkt_CLK         1011: 2 <sup>15</sup> xTwkt_CLK         1011: 2 <sup>16</sup> xTwkt_CLK         1100: 2 <sup>18</sup> xTwkt_CLK         1101: 2 <sup>19</sup> xTwkt_CLK         1111: 2 <sup>21</sup> xTwkt_CLK         1111: 2 <sup>21</sup> xTwkt_CLK         1111: 2 <sup>21</sup> xTwkt_CLK         1111: 2 <sup>21</sup> xTwkt_CLK         Reset source: Hardware reset or WDT reset |



#### 5. Reset

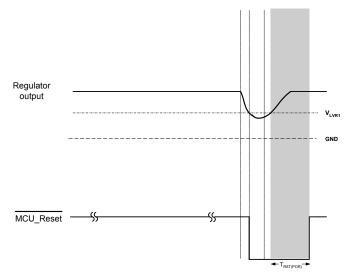
There are totally 3 MCU reset sources in the SH68F093 application.

- Hardware reset: Low-Voltage Reset, Power-On Reset or External Reset
- WDT (Watch-Dog Timer) Reset
- Resume Reset (power down mode)

5.1. Hardware Reset

#### Idle and Power-down Control Registers

| 00AFH    | PRCON  | Initial Value |     | Low-Voltage Control Register                                                                                                            |
|----------|--------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:3] | -      | 00000b        | -   | Reserved                                                                                                                                |
| Bit 2    | ENWDT  | 0b            | R/W | 1: Enable Watch-Dog timer under idle mode<br>0: Disable Watch-Dog timer under idle mode<br>Reset source: Hardware reset or Resume Reset |
| Bit 1    | -      | 0b            | -   | Reserved                                                                                                                                |
| Bit 0    | ENLVR1 | 1b            | R/W | 1: Enable LVR1 under power-down mode<br>0: Disable LVR1 under power-down mode<br><b>Reset source: Hardware reset or Resume Reset</b>    |


#### 5.1.1. Low-Voltage Reset (LVR)

SH68F093 has two LVR circuits named LVR1 and LVR2. The LVR1 circuit will monitor the regulator output voltage to the MCU core. The LVR2 will monitor the output voltage of DC-DC.

#### 1. Low-Voltage Reset (LVR1)

## (1) Normal Mode and IDLE:

When the regulator output power to the MCU core is less than  $V_{LVR1}$  (Note), the LVR1 reset will happen. During the reset, the MCU is going to reset and set the FLVR1 flag (MODE\_FG bit 5). If the regulator output power was larger than  $V_{LVR1}$ , the MCU will go back to be normal and regulator power on. MCU\_Reset signal is asserted until the end of  $T_{RST(POR)}$ . See Fig. 5-1 for the LVR1 behavior.



#### FIG.5-1 Programmable System Clock Diagram

**Note:**  $V_{LVR1}$  ( $V_{LVR1(min)} = 1.4V$ ,  $V_{LVR1(typ)} = 1.5V$ , and  $V_{LVR1(max)} = 1.6V$ )



#### (2) Power-down Mode:

- ENLVR1 = 0: Disable LVR1 under power-down mode
- ENLVR1 = 1: Enable LVR1 under power-down mode

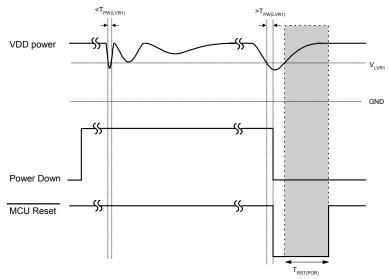



FIG.5-2 Low-Voltage Reset under Power-Down Mode (Note)

**Note1:**  $T_{PW(LVR1)}$  (Drop-Down Pulse Width for LVR1) =  $2^9 \times T_{SYS}$ . **Note2:**  $V_{LVR1}$  ( $V_{LVR1(min)} = 1.4V$ ,  $V_{LVR1(typ)} = 1.5V$ , and  $V_{LVR1(max)} = 1.6V$ )

#### 2. Low-Voltage Reset (LVR2)

The embedded Low-Voltage Reset (LVR2) circuit monitors the output voltage of DC-DC. When the output voltage was less than  $V_{LVR2}$  (Note), LVR2 signal will active. Then the MCU will be going to reset and set the FLVR2 flag (MODE\_FG bit4). Then the power of MCU will drop down slowly (because of the capacitor between  $V_{OUT}$  and GND). When the output voltage of DC-DC was larger than  $V_{LVR2}$ , then the MCU will go back to be normal and regulator power on. MCU\_Reset signal is asserted until the end of  $T_{RST(POR)}^{1}$ . See Fig. 5-3 for the LVR2 behavior.

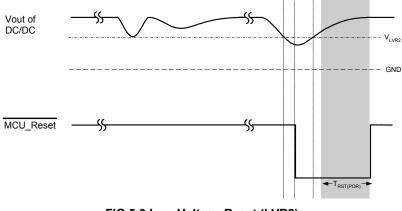


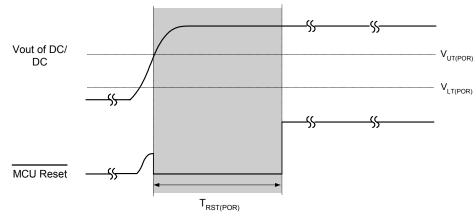

FIG.5-3 Low-Voltage Reset (LVR2)

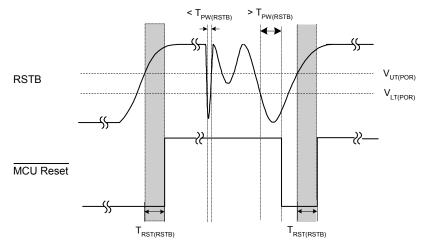
**Note:**  $V_{LVR2}$  ( $V_{LV2(min)} = 1.8V$ ,  $V_{LVR2 (typ)} = 1.9V$ , and  $V_{LVR2 (max)} = 2.0V$ )



#### 5.1.2. Power-On Reset (POR)

The embedded Power-On Reset (POR) will monitor the output power of DC-DC to the MCU core. When the supply voltage rises above  $V_{UT(POR)}$  during power on. POR signal is asserted until the end of  $T_{RST(POR)}$  (Note). See FIG.5-4 for the POR behavior.





FIG.5-4 Power-On Reset (Note)

**Note1:**  $T_{RST(POR)}$  (Internal Power-on Reset Hold Time) = 11ms **Note2:**  $V_{UT(POR)}$  (Upper-Threshold Voltage) = 0.8±0.1V **Note3:**  $V_{LT(POR)}$  (Lower-Threshold Voltage) = 0.6±0.1V

#### 5.1.3. External Reset

#### 1. Normal Mode and IDLE

The MCU will generate internal system reset when the pin level of the External Reset is less than the low-threshold voltage  $(V_{LT(RSTB)} = 0.3V_{OUT})$  and its pulse width larger than  $T_{PW(RSTB)}$  (Note). The reset cycle will end after  $T_{RST(RSTB)}$  (Note) when the RSTB pin level is Large than the upper threshold voltage  $(V_{UT(RSTB)} = 0.7V_{OUT})$ .



#### FIG.5-5 External Reset

**Note1:**  $T_{PW(RSTB)}$  (RESETB Input Low Pulse Width) =  $2^{13} X T_{SYS}$ . **Note2:**  $T_{RST(RSTB)}$  (Internal External Reset Hold Time) = 11ms.

#### 2. Power-down Mode

When the device was in Power-down mode, an External Reset can't force the device to exit its Power-down mode. SH68F093 has a built-in warm-up counter. Due to to eliminate unstable state, the counter provides a short time to make the MCU stable.



#### 5.2. WDT (Watch-Dog Timer) Reset

This MCU implements a watchdog timer reset to avoid system stop or malfunction. The clock source of the WDT is from  $F_{SYS}$ . The Watchdog timer's time-out interval is selected by WDT[2:0]. If the software is in normal operation sequence, then the Watchdog timer must be cleared within time-out period; otherwise the Watchdog timer will overflow and cause a system reset. The Watchdog reset cycle will end after  $T_{RST(WDT)}$  (Note). The Watchdog timer is cleared and enabled after the system is reset, and can be disabled by the software under IDLE mode. Users can clear the Watchdog timer by writing a 55H to the CLRWDT (0093H) register.

**Note:** T<sub>RST(WDT)</sub> (internal Watch-Dog reset hold time) = 0.5ms.

| 0093H    | CLRWDT          | Initial Value |   | Clear Watch-dog Timer Control Register                                                           |
|----------|-----------------|---------------|---|--------------------------------------------------------------------------------------------------|
| Bit[7:0] | CLRWDT<br>[7:0] | 55H           | W | Write "55H" to clear watch-dog timer<br>Reset source: Hardware reset, WDT reset, or Resume reset |

| 00AFH    | PRCON  | Initial Value |     | Low-Voltage Control Register                                                                                                            |  |
|----------|--------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit[7:3] | I      | 00000b        | -   | Reserved                                                                                                                                |  |
| Bit2     | ENWDT  | Ob            | R/W | 1: Enable Watch-Dog timer under idle mode<br>0: Disable Watch-Dog timer under idle mode<br>Reset source: Hardware reset or Resume Reset |  |
| Bit1     | -      | 0b            | -   | Reserved                                                                                                                                |  |
| Bit0     | ENLVR1 | 1b            | R/W | 1: Enable LVR1 under power-down mode<br>0: Disable LVR1 under power-down mode<br>Reset source: Hardware reset or Resume Reset           |  |

| 0094H    | PREWDT   | Initial Value |     | Watch-dog Timer Control Register                                                                                                                                                                                                                                                                                       |
|----------|----------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:3] | -        | 00000b        | -   | Reserved                                                                                                                                                                                                                                                                                                               |
| Bit[2:0] | WDT[2:0] | 101b          | R/W | Watch-dog Timer time-out selection $000: 2^{15} \times Tsys$ $001: 2^{16} \times Tsys$ $010: 2^{17} \times Tsys$ $011: 2^{18} \times Tsys$ $100: 2^{19} \times Tsys$ $100: 2^{19} \times Tsys$ $101: 2^{20} \times Tsys$ $111: 2^{20} \times Tsys$ $111: 2^{22} \times Tsys$ Reset source: Hardware reset or WDT reset |



#### 5.3. Resume Reset (Power Down Mode)

A resume reset holds SFR values, CPU status and Pin state, but program is re-run at 0000h. **Port 0, Port 1, and Port 2** can be set as a resume port by setting P0WK, P1WK, and P2WK. **The low level, raising edge, falling edge, or double edge** of enabled resume source is triggered in power-down mode will causes a resume reset.

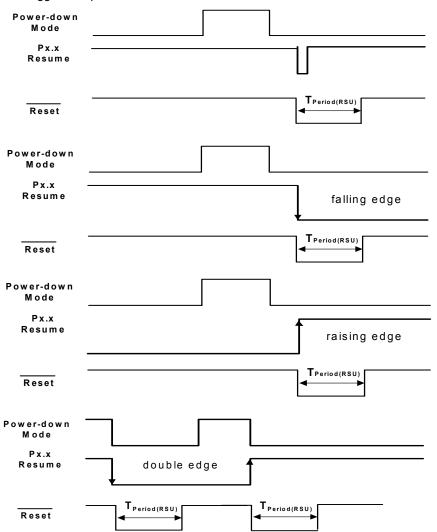



FIG.5-6 In power-down enabled resume ports are triggered at the low level, raising edge, falling edge, and double edge *Note:*  $T_{Period(RSU)}$  (resume reset period) = 24µs.

| 0097H    | RES_CON  | Initial Value |     | Resume Control Register                                                                                                                                                                                                                                                                                                                       |
|----------|----------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:2] | -        | 000000b       | -   | Reserved                                                                                                                                                                                                                                                                                                                                      |
| Bit[1:0] | RES[1:0] | 00b           | R/W | <ul> <li>00: low level triggered resume port hold reset/interrupt</li> <li>01: raising edge triggered resume port hold reset/interrupt</li> <li>10: falling edge triggered resume port hold reset/interrupt</li> <li>11: double edge triggered resume port hold reset/interrupt</li> <li>Reset Source: Hardware reset or WDT Reset</li> </ul> |



#### 6. Power-reducing Mode

SH68F093 has two power-reducing modes: IDLE and Power-down. A sketch map below shows the internal circuitry, which implement these features. In IDLE mode (IDLE = 1 & SUSLO = 55H), the 8MHz RC resonator continues to run and the Interrupt and Timer blocks continue to be clocked. In Power-down (PD = 1 & SUSLO = 55H), the 8MHz RC resonator is frozen. Setting bits in SFR (Special Function Register) PCON activates IDLE and Power-down modes.

| 008EH    | SUSLO      | Initial Value | Power saving Control Register 1                                                                                                                                       |  |  |
|----------|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit[7:0] | SUSLO[7:0] | 00H           | IDL = 1 & SUSLO = 55H: Enter idle mode         R/W       PD = 1 & SUSLO = 55H: Enter Power-down mode         Reset source: Hardware reset, WDT reset, or Resume reset |  |  |

| 0087H    | PCON | Initial Value | Power saving Control Register 2                                                                             |  |  |
|----------|------|---------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Bit[7:2] | -    | 000000b       | - Reserved                                                                                                  |  |  |
| Bit1     | PD   | 0b            | R/W PD = 1 & SUSLO = 55H: Enter Power-down mode<br>Reset source: Hardware reset, WDT reset, or Resume reset |  |  |
| Bit0     | IDL  | 0b            | R/W IDL = 1 & SUSLO = 55H: Enter idle mode<br>Reset source: Hardware reset, WDT reset, or Resume reset      |  |  |

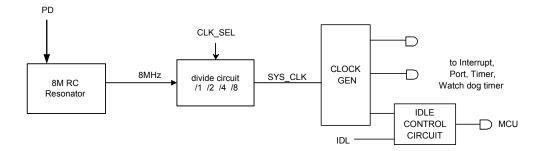
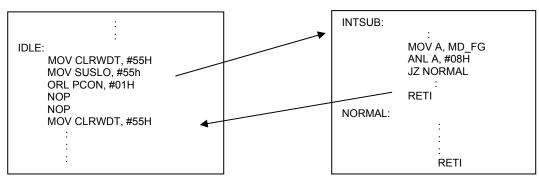



FIG.6-1: Sketch map for IDLE and Power-Down Mode implement

#### 6.1. IDLE Mode


Two continuous instructions that set PCON.0 to 1 and set SUSLO to 55H are executed before IDLE mode begins. In IDLE mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during IDLE mode. The port pins hold the logical states they had at the time IDLE mode was activated. Under IDLE Mode, the clock source of wake-up timer is from system clock.

There are four ways to terminate IDLE mode. (If Watchdog timer was disabled at IDLE mode, then it will restart to count from the value where it was stopped when entering IDLE Mode. When leave IDLE Mode, PCON.0 and SUSLO will be cleared by hardware)

- (1) Activation of any enabled interrupt will cause SH68F093 exit form IDLE Mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into IDLE mode. In order to make sure program executed properly, user should add two NOPs after the instruction that put the device into IDLE mode. (Watchdog timer begins to count from the value where it was stopped.)
- (2) When the wake-up timer is time-out in IDLE mode, it will set the IRQ\_WKT (IF.5) flag. If the interrupt is enabled by writing "1" to the IE.5 before entering IDLE mode, then it will interrupt 8051 CPU for terminating IDLE mode. Wake-up timer can be disabled by set WKT\_SEL = 00b.
- (3) Port0, Port1, and Port2 can be set as a resume port by setting P0WK, P1WK, and P2WK. When a low level of enabled resume source is triggered in IDLE mode, it will set the IRQ\_RSU (IF.4) flag if the interrupt is enabled by writing "1" to the IE.4 before entering IDLE mode, then it will interrupt 8051 CPU for terminating IDLE mode. In order to make sure program, it will executes properly, user should add two NOPs after the instruction that put the device into IDLE mode.
- (4) The other way of terminating IDLE mode is with a LVR, POR, External reset or Watchdog reset. At this time, the CPU resumes program execution from the beginning of the whole program, which is 0000H.







In this example, Watch-dog Timer can be cleared either before entering IDLE mode or after terminating IDLE mode. The number of NOPs applied after the instruction that put the device into IDLE mode depends on the type of the instruction in order to make program work properly. In INTSUB, it detects if interrupts occur in Idle mode or not.

| 00A2H    | P0WK      | Initial Value | Port0 Resume Enable Register                                                                                                                               |  |  |
|----------|-----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit[7:0] | P0WK[7:0] | 00h           | 1: Enable wake-up function of PORT0's pins         R/W       0: Disable wake-up function of PORT0's pins         Reset source: Hardware reset or WDT reset |  |  |

| 00A3H     | P1WK      | Initial Value | Port1 Resume Enable Register |                                                                                                                      |  |
|-----------|-----------|---------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Bit [7:0] | P1WK[7:0] | 00h           | R/W 0: Disa                  | ble wake-up function of PORT1's pins<br>able wake-up function of PORT1's pins<br>source: Hardware reset or WDT reset |  |

| 00A4H     | P2WK      | Initial Value | Port2 Resume Enable Register                                                                                                                     |  |  |
|-----------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit [3:0] | P2WK[3:0] | 00h           | 1: Enable wake-up function of PORT2's pins         0: Disable wake-up function of PORT2's pins         Reset source: Hardware reset or WDT reset |  |  |

**Port 0, Port 1, and Port 2** can be set as a resume port by setting P0WK, P1WK, and P2WK. **The low level, raising edge, falling edge, or double edge** of enabled resume source is triggered in power-down mode will causes a resume reset. See resume port timing on the next page.

#### 6.2. Power-Down Mode

Before enter Power-Down mode, user have to set the CLK\_SEL to 11b. After Two continuous instructions that set PCON.1 to 1 and set SUSLO to 55H, SH68F093 will enter Power-Down mode immediately.

In the Power- down mode, if the WKT\_SEL = 00b, the on-chip programmable 32KHz RC resonator clock will be frozen, all functions are stopped, but the on-chip RAM and Special function Registers are held. The port pins output the values held by their respective SFR. With the wake-up timer enable (WKT\_SEL  $\neq$  00b), the wake-up timer will be enabled, and wake-up system when wake-up timer overflow. In order to make sure program will resume properly, user should add two NOPs after setting PCON.1 to "1" and SUSLO = 55h. Under Power-Down Mode, the clock source of wake-up timer is set by WKT\_SEL.

When the device was in Power-down mode, an External Reset can't force the device to exit its Power-down mode.

There are two ways to exit from power-down.

#### 1. Low Voltage Reset

If the ENLVR1 = 1b, when the voltage level of the output of regulator is less than  $V_{LVR1}$ , the MCU will generate internal LVR reset.

#### 2. Resume Reset

A resume reset holds SFR values, CPU status and Pin state, but program is re-run at 0000h. There are two ways to generate resume reset.



(1) Port 0, Port 1, and Port 2 can be set as a resume port by setting P0WK, P1WK, and P2WK. The low level, raising edge, falling edge, or double edge of enabled resume source is triggered in power-down mode will causes a resume reset.

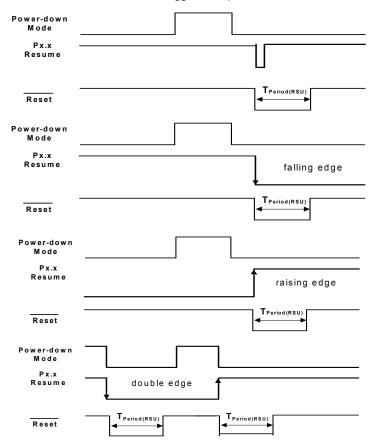



FIG.6-2 In power-down enabled resume ports are triggered at the low level, raising edge, falling edge, and double edge Note:  $T_{\text{Period}(\text{RSU})}$  (resume reset period) =  $24\mu$ s.

| 0097H    | RES_CON  | Initial Value | Resume Control Register |                                                                                                                                                                                                                                                                                                                                               |  |
|----------|----------|---------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit[7:2] | -        | 000000b       | - Reserved              |                                                                                                                                                                                                                                                                                                                                               |  |
| Bit[1:0] | RES[1:0] | 00b           | R/W                     | <ul> <li>00: low level triggered resume port hold reset/interrupt</li> <li>01: raising edge triggered resume port hold reset/interrupt</li> <li>10: falling edge triggered resume port hold reset/interrupt</li> <li>11: double edge triggered resume port hold reset/interrupt</li> <li>Reset Source: Hardware reset or WDT Reset</li> </ul> |  |

(2) Wake-up Timer Time-out

| Power-down<br>Mode       |                                  | _ |
|--------------------------|----------------------------------|---|
| Wake-up Timer<br>Timeout |                                  | - |
| Reset                    | T <sub>Period(RSU)</sub><br>◀─── | - |

FIG.6-3 Wake-up timer time out waveform

**Note:** T<sub>Period(RSU)</sub> (resume reset period) = 24µs.



#### 6.3. Wake-up Timer

SH68F093 has a Built-in programmable RC resonator providing of wake-up timer. The wake-up timer can be enabled/disable by WKT\_SEL[1:0]. If the Wake-up timer is enabled, the wake-up timer will free run, and the time-out period can be adjusted by WKT[3:0]. See the following block diagram:

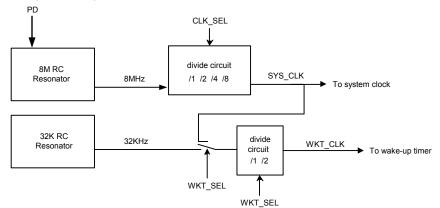



FIG.6-4 The Clock Block Diagram

| 0095H    | WKT_CON          | Initial Value |     | Wake-up Timer & Resume Reset Control Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------------------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:6] | WKT_<br>SEL[1:0] | 11b           | R/W | Wake-up timer clock source(TwkT_CLK) selection<br>00: Disable Wake-up Timer<br>01: 16KHz (In Power-down mode)<br>01: Disable Wake-up Timer (In IDLE & normal operation mode)<br>10: 32KHz (In Power-down mode)<br>10: Disable Wake-up Timer (In IDLE & normal operation mode)<br>11: System clock (In IDLE mode)<br>11: Disable Wake-up Timer (In Power-down & normal operation mode)<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                                                                                                          |
| Bit[5:4] | CLK_<br>SEL[1:0] | 11b           | R/W | System clock Frequency selection<br>00: 1MHz<br>01: 2MHz<br>10: 4MHz<br>11: 8MHz<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bit[3:0] | WKT[3:0]         | 0000b         | R/W | Wake up Time         0000: Reserved         0001: $2^7 \times Twkt_clk$ 0010: $2^8 \times Twkt_clk$ 0010: $2^{10} \times Twkt_clk$ 0100: $2^{10} \times Twkt_clk$ 0101: $2^{11} \times Twkt_clk$ 0101: $2^{12} \times Twkt_clk$ 0111: $2^{12} \times Twkt_clk$ 0111: $2^{12} \times Twkt_clk$ 0101: $2^{14} \times Twkt_clk$ 0101: $2^{14} \times Twkt_clk$ 1000: $2^{14} \times Twkt_clk$ 1001: $2^{15} \times Twkt_clk$ 1001: $2^{15} \times Twkt_clk$ 1011: $2^{15} \times Twkt_clk$ 1011: $2^{17} \times Twkt_clk$ 1100: $2^{18} \times Twkt_clk$ 1101: $2^{19} \times Twkt_clk$ 1101: $2^{19} \times Twkt_clk$ 1111: $2^{20} \times Twkt_clk$ 1111: $2^{21} \times Twkt_clk$ Reset source: Hardware reset or WDT reset |



#### 6.4. Change System Clock Source

SH68F093 can select several system clock frequency modes that are 1MHz, 2MHz, 4MHz, or 8MHz. To change the system clock, user just needs to write CLK\_SEL[1:0] and the clock control will change the system clock when all clock source at rising edge.

## 6.5. MODE\_FG Flag

| 0096H    | MODE_FG  | Initial Value |                                                                                                                                                             | Mode Register                                                                                                                                                   |  |
|----------|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit[7:6] | -        | 00b           | - Reserved                                                                                                                                                  |                                                                                                                                                                 |  |
| Bit5     | FLVR1    | 0b            | Set "1": after LVR1 reset. Write "0" to clear, write "1" no effect.         R/W       1: set by LVR1         Reset source: Power-on reset or External Reset |                                                                                                                                                                 |  |
| Bit4     | FLVR2    | 0b            | R/W                                                                                                                                                         | R/W Set "1": after LVR2 reset. Write "0" to clear, write "1" no effect.<br>1: set by LVR2<br>Reset source: Power-on reset or External Reset                     |  |
| Bit3     | PORT_RSU | 0b            | R/W Set"1" after Port Resume reset in Power down mode.<br>Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT Reset             |                                                                                                                                                                 |  |
| Bit2     | WKUP_RSU | 0b            | R/W                                                                                                                                                         | R/W Set "1" after Wake-up timer time-out Resume reset in Power down mode, Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT Reset |  |
| Bit1     | WDT      | 0b            | R/W                                                                                                                                                         | R/W Set "1" after Watchdog reset. Write "0" to clear, write "1" no effect<br>Reset source: Hardware reset                                                       |  |
| Bit0     | POF      | 1b            | R/W                                                                                                                                                         | Set "1" after power-on reset or External reset.<br>Write "0" to clear, write "1" no effect.<br>Reset source: Power-on reset or External Reset                   |  |

**Note:** In the beginning SH68F093 applied the power until stable situation MODE\_FG (11H) is set both FLVR2 and POF flag to ONE. In order to avoid confusing, we suggest that the user be following examples.

## Example 1: POF, LVR1, and LVR2 are the same priority level.

Example 2: POF is higher priority level than LVR1 and LVR2.



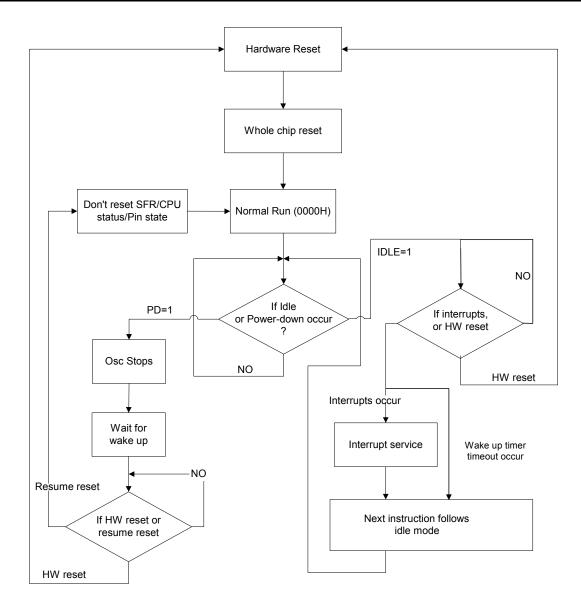



FIG.6-5 Flow chart of IDLE Mode and Power-down Mode



## Summary IDLE Mode

| To enter this mode        | Set PCON.0 = 1, SUSLO = 55h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Watch dog timer           | ENWDT = 1, enable watch-dog timer<br>ENWDT = 0, disable watch-dog timer                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Function                  | Interrupt, Base Timer, and I/O port are available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Register                  | Internal RAM, external RAM, and SFR were held                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| To terminate<br>IDLE mode | <ul> <li>(1) Interrupt:<br/>Any activate interrupt will terminate IDLE Mode. If EA = 0, the interrupt will not be serviced, if EA = 1, the interrupt will be serviced.</li> <li>(2) Wake-up Timer:<br/>Wake-up timer time-out (enable by setting WKT_SEL[1:0] = 11b) and EWKT = 1</li> <li>(3) Port Wake-up:</li> <li>(4) Port0-2 are triggered by low level, raising edge, falling edge, or double edge when P0WK-P2WK are enabled and ERSU = 1</li> <li>(5) Reset: LVR1, LVR2, POR, external reset, and watch-dog reset</li> </ul> |  |  |  |  |  |
| Resume                    | Interrupt and go to interrupt vector (0023H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Wake-up                   | Interrupt and go to interrupt vector (002BH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

#### Power-down Mode

| To enter this mode               | Set PCON.1 = 1, SUSLO = 55h                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Watch dog timer Disable          |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Function                         | All function (Interrupt, Base Timer, and I/O port are available) are stopped                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Register                         | Internal RAM, external RAM, and SFR were held                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| To terminate<br>Power-down mode  | <ul> <li>(1) LVR1 Reset (Disabled if ENLVR1 = 0)</li> <li>(2) LVR2 Reset</li> <li>(3) Resume Reset:</li> <li>Port0-2 are triggered by low level voltage, raising edge, falling edge, or double edge when P0WK-P2WK are enabled</li> <li>(4) Wake-up timer:</li> <li>Wake-up timer time out (enabled by setting WKT_SEL[1:0] = 01b or WKT_SEL[1:0] = 10b)</li> </ul> |  |  |  |  |  |
| 16/32KHz RC oscillator           | WKT_SEL[1:0]<br>00b: disable programmable ring oscillator<br>01b: Wake-up timer use 16KHz Ring Oscillator<br>10b: Wake-up timer use 32KHz Ring Oscillator<br>11b: Wake-up timer use system clock, define in CLK_SEL[1:0]                                                                                                                                            |  |  |  |  |  |
| Resume Reset and re-run at 0000H |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Wake-up                          | Reset and re-run at 0000H                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |



## 7. Input/Output Ports

#### 7.1. Port-0 Configuration: (Reset source: Hardware reset)

| I/O Port    | Function | I/O | Circuit Structure | Control Bits |         | Description                                                                          |
|-------------|----------|-----|-------------------|--------------|---------|--------------------------------------------------------------------------------------|
| NO FOIL     | Function | 1/0 |                   | P0.x         | P0CON.x | Description                                                                          |
|             |          | 0   | Shown in FIG.7-1  | 0            | 0       | Output Low (MAX: 0.3Vout) @ Vout = 2.7V<br>Output Low (MAX: 0.3Vout) @ Vout = 3.3V   |
| Port0 [7:0] | Port0    |     |                   | 1            | 0       | Output High (MIN: 0.7Vout) @ Vout = 2.7V<br>Output High (MIN: 0.7Vout) @ Vout = 3.3V |
|             |          |     |                   | Х            | 1       | HI-Z (Note 1)                                                                        |

## 7.2. Port-1 Configuration: (Reset source: Hardware reset)

| I/O Port    | Function | I/O | Circuit Structure | Control Bits |         | Description                                                                          |
|-------------|----------|-----|-------------------|--------------|---------|--------------------------------------------------------------------------------------|
| NO FOIL     | Function | 1/0 |                   | P1.x         | P1CON.x | Description                                                                          |
|             |          | 0   | Shown in FIG.7-1  | 0            | 0       | Output Low (MAX: 0.3Vout) @ Vout = 2.7V<br>Output Low (MAX: 0.3Vout ) @ Vout = 3.3V  |
| Port1 [7:0] | Port1    | 0   |                   | 1            | 0       | Output High (MIN: 0.7Vout) @ Vout = 2.7V<br>Output High (MIN: 0.7Vout) @ Vout = 3.3V |
|             |          | I   |                   | Х            | 1       | HI-Z (Note 1)                                                                        |

#### 7.3. Port-2 Configuration: (Reset source: Hardware reset)

| I/O Port    | Function | I/O | Circuit Structure | Contr | ol Bits | Description                                                                          |
|-------------|----------|-----|-------------------|-------|---------|--------------------------------------------------------------------------------------|
| NO FOIL     | Function | 1/0 |                   | P2.x  | P2CON.x | Description                                                                          |
|             |          |     |                   | 0     | 0       | Output Low (MAX: 0.3Vout) @ Vout = 2.7V<br>Output Low (MAX: 0.3Vout ) @ Vout = 3.3V  |
| Port2 [0]   | Port2    | 0   | Shown in FIG.7-1  | 1     | 0       | Output High (MIN: 0.7Vout) @ Vout = 2.7V<br>Output High (MIN: 0.7Vout) @ Vout = 3.3V |
|             |          |     |                   | Х     | 1       | HI-Z (Note 1)                                                                        |
| Port2 [1:3] |          | I   | Shown in FIG.7-2  | Х     | х       | Input High (0.7Vout)<br>Input Low (0.3Vout) <b>(Note 2)</b>                          |

**Note1:** P00-P07, P10-P17, and P20 are set input pins to become those ports without pull resistors; these ports have better to be connected a pull resistor (about 10k ohm) to V<sub>DD</sub>.

Note2: Used to only unidirectional input pins from Port21 to Port23.



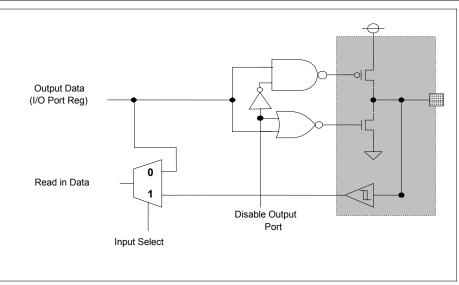



FIG.7-1 Input/Output Port Diagram

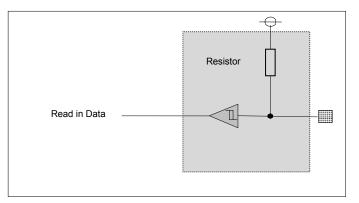



FIG.7-2 P21, P22, and P23 Port Diagram

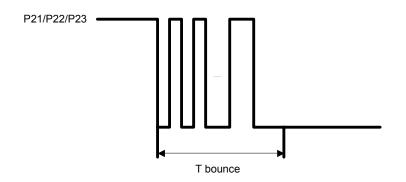



FIG.7-3 P21, P22, and P23 port input when switch pressed

**Note1:** Assume P21, P22, and P23 connected to switches. The unidirectional input pins have T<sub>BOUCNE</sub> delay for switch bounce.

**Note2:**  $T_{BOUCNE} \doteq 15ms$ .



#### 8. Interrupts

#### 8.1. Interrupt Enables

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the SFR named IE. The register IE also contains a global disable bit, which can be cleared to disable all interrupts at once. The following figure shows the interrupt register for SH68F093.

## Interrupt Enable Register

| 00A8h     | IE                                                                                                                           | Initial Value |     | Interrupt Enable Register in the SH68F093                                                                                                                                                       |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit7      | EA                                                                                                                           | Ob            | R/W | Disable all interrupts.<br>If EA = 0, no any interrupts will be acknowledged.<br>If EA = 1, each interrupt source is individually enabled or disabled by setting<br>or clearing its enable bit. |  |
| Bit6      | EOVL                                                                                                                         | 0b            | R/W | Invalid ROM address detector Interrupt                                                                                                                                                          |  |
| Bit5      | EWKT                                                                                                                         | 0b            | R/W | Wake up time interrupt (IDLE mode)                                                                                                                                                              |  |
| Bit4      | ERSU                                                                                                                         | 0b            | R/W | Port resume interrupt (IDLE mode)                                                                                                                                                               |  |
| Bit3      | EBT1                                                                                                                         | 0b            | R/W | Base Timer 1 interrupt                                                                                                                                                                          |  |
| Bit2      | EBT0                                                                                                                         | 0b            | R/W | Base Timer 0 interrupt                                                                                                                                                                          |  |
| Bit1      | EX1                                                                                                                          | 0b            | R/W | External interrupt 1                                                                                                                                                                            |  |
| Bit0      | EX0                                                                                                                          | 0b            | R/W | External interrupt 0                                                                                                                                                                            |  |
| Enable bi | Enable bit = 1, enables the interrupt<br>Enable bit = 0, disables the interrupt<br>Reset source: Hardware reset or WDT reset |               |     |                                                                                                                                                                                                 |  |

| 00A9h     | IE2                                                                                                                          | Initial Value | Interrupt Enable Register in the SH68F093 |               |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|---------------|--|
| Bit[7:1]  | -                                                                                                                            | 000000b       | -                                         | Reserved      |  |
| Bit0      | ESPI                                                                                                                         | 0b            | R/W                                       | SPI interrupt |  |
| Enable bi | Enable bit = 1, enables the interrupt<br>Enable bit = 0, disables the interrupt<br>Reset source: Hardware reset or WDT reset |               |                                           |               |  |



#### 8.2. Interrupt Priorities Interrupt Enable Register

|            | •                                   |               |     |                                                     |  |
|------------|-------------------------------------|---------------|-----|-----------------------------------------------------|--|
| 00B8H      | IP                                  | Initial Value |     | IP (Interrupt Priority) Register in the SH68F093    |  |
| Bit7       | -                                   | 0b            | -   | Reserved                                            |  |
| Bit6       | POVL                                | 0b            | R/W | Invalid ROM address detector Interrupt priority bit |  |
| Bit5       | PWKT                                | 0b            | R/W | Wake up time interrupt priority bit                 |  |
| Bit4       | PRSU                                | 0b            | R/W | Port resume interrupt priority bit                  |  |
| Bit3       | PBT1                                | 0b            | R/W | Base Timer 1 interrupt priority bit                 |  |
| Bit2       | PBT0                                | 0b            | R/W | Base Timer 0 interrupt priority bit                 |  |
| Bit1       | PX1                                 | 0b            | R/W | External interrupt 1 priority bit                   |  |
| Bit0       | PX0                                 | 0b            | R/W | External interrupt 0 priority bit                   |  |
| 1 = high p | 1 = high priority; 0 = low priority |               |     |                                                     |  |

Reset Source: Hardware reset, or WDT Reset

| 00B9H      | IP2                                 | Initial Value | e Interrupt Priority Register in the SH68F093 |                            |
|------------|-------------------------------------|---------------|-----------------------------------------------|----------------------------|
| Bit[7:1]   | -                                   | 0b            | -                                             | Reserved                   |
| Bit0       | PSPI                                | 0b            | R/W                                           | SPI interrupt priority bit |
| 1 = high p | 1 = high priority; 0 = low priority |               |                                               |                            |

Reset Source: Hardware reset or WDT Reset

#### **2 Priority Levels**

| IP0 | Level |
|-----|-------|
| 0   | 0     |
| 1   | 1     |

A low-priority interrupt can be interrupted by a high-priority interrupt, but cannot be interrupted by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source. If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests the same priority levels are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by software polling sequence.

In operation, all the interrupt flags are latched into the interrupt control system every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is set to 1, the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks an interrupt, such as an interrupt of equal or higher priority level already in progress.

The hardware-generated LCALL accesses the contents of the Program Counter pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted, the service routine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed onto the stack, not the PSW or any other register. Having only the PC automatically saved allows the programmer to decide how much time to spend saving other registers. This enhances the interrupt response time, albeit at expense of increasing the programmer's burden of responsibility. As a result, many interrupt functions that are typical in control applications—toggling a port pin, for example, or reloading a timer, or unloading a serial buffer—can often be completed in less time than it takes other architectures to commence them.



## 8.3. Interrupt Flag

| 00DAH | IF      | Initial Value |     | Interrupt Control Flag                                                                                                                                                                                                                                     |
|-------|---------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit7  | -       | 0b            | -   | Reserved                                                                                                                                                                                                                                                   |
| Bit6  | IRQ_OVL | 0b            | R/W | OVL Interrupt flag. Set by hardware when an invalid program ROM address is detected. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset                                                                                 |
| Bit5  | IRQ_WKT | Ob            | R/W | Wake-up Timer Interrupt request flag. Set by hardware when the Wake-up timer overflow is detected in IDLE mode. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect. <b>Reset source: Hardware reset or WDT reset</b> |
| Bit4  | IRQ_RSU | 0b            | R/W | Port Resume Interrupt request flag. Set by hardware when the Port Resume signal is detected in IDLE mode. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset           |
| Bit3  | IRQ_BT1 | 0b            | R/W | Base Timer 1 Interrupt request flag. Set by hardware when the Base timer 1 overflow is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset                    |
| Bit2  | IRQ_BT0 | 0b            | R/W | Base Timer 0 Interrupt request flag. Set by hardware when the Base Timer 0 overflow is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset                    |
| Bit1  | EXT1    | Ob            | R/W | External Interrupt 0 flag. Set by hardware when the P17 Interrupt edge signal is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset                          |
| Bit0  | EXT0    | Ob            | R/W | External Interrupt 0 flag. Set by hardware when the P16 Interrupt edge signal is detected. Cleared by hardware when interrupt is processed. Write "0" to clear, write "1" no effect.<br>Reset source: Hardware reset or WDT reset                          |

| 00D9H    | EIT  | Initial Value |     | Interrupt Control Flag                                                                                                                                                                  |  |  |
|----------|------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit[7:2] | -    | 000000b       | -   | Reserved                                                                                                                                                                                |  |  |
| Bit1     | EIT1 | 0b            | R/W | External interrupt 1 type control bit:<br>0: falling edge triggered External Interrupt<br>1: low level triggered External Interrupt<br>Reset source: Hardware reset or WDT reset        |  |  |
| Bit0     | EIT0 | Ob            | R/W | External interrupt 0 type control bit:<br>0: falling edge triggered External Interrupt<br>1: low level triggered External Interrupt<br><b>Reset source: Hardware reset or WDT reset</b> |  |  |

| 0097H    | RES_CON | Initial Value | e Resume Control Register |                                                                                                                                                                                                                                                                                                                                               |
|----------|---------|---------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:2] | -       | 000000b       | -                         | Reserved                                                                                                                                                                                                                                                                                                                                      |
| Bit[1:0] | RES     | 00b           | R/W                       | <ul> <li>00: low level triggered resume port hold reset/interrupt</li> <li>01: raising edge triggered resume port hold reset/interrupt</li> <li>10: falling edge triggered resume port hold reset/interrupt</li> <li>11: double edge triggered resume port hold reset/interrupt</li> <li>Reset Source: Hardware reset or WDT Reset</li> </ul> |



#### 8.4. Interrupt Sources

#### 8.4.1. External Interrupt Sources

The External interrupt source is activated when the External Interrupt edge is detected. The following figure shows the detailed structure of the INT0 interrupt sources.

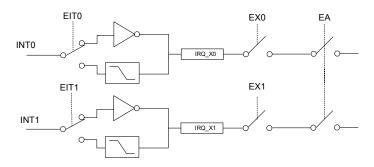



FIG.8-1 External Interrupt Source

#### 8.4.2 Base Timer 0/Base Timer 1 Interrupt Sources

The Base Timer 0/Base Timer 1 interrupt source is activated when the Base Timer0/Base Timer 1 overflows. The following figure shows the detailed structure of the BT0/BT1 interrupt sources.

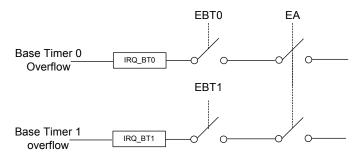



FIG.8-2 Base Timer 0/Base Timer 1 Interrupt Source

#### 8.4.3 OVL Interrupt Sources

The OVL interrupt source is activated when the CPU detects an invalid program ROM address. The following figure shows the detailed structure of the OVL sources.

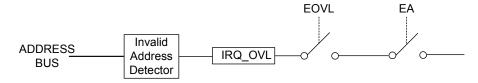



FIG.8-3 OVL Interrupt Source



#### 8.4.4. Resume Interrupt Sources

The RSU interrupt source is activated when a port resume source is triggered in IDLE mode. The following figure shows the detailed structure of the RSU sources.

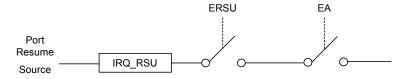



FIG.8-4 Resume Interrupt Source

#### 8.4.5. WKT Interrupt Sources

The WKT interrupt source is activated when Wake-up timer overflows in IDLE mode. The following figure shows the detailed structure of the WKT sources.

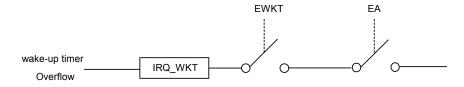



FIG.8-5 Wake-up timer Interrupt Source

#### 8.4.6. SPI Interrupt Sources

The SPI interrupt source is activated when SPIF or MODF is triggered. The following figure shows the detailed structure of the SPI sources.

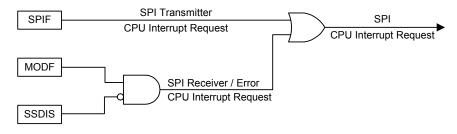



FIG.8-6 SPI Interrupt Source



#### 9. Base Timer

The Timer-x is an 8-bit counter with a programmable clock source selection and the value of Base Timer-x counter can be read out any time. The Base Timer-x can be enabled/disabled by the CPU. After reset, the Base Timer-x is disabled and cleared. The Base Timer-x can be preset by writing a preset value to BTx register at any time. When the Base Timer-x is enabled, the Base Timer-x starts counting from the preset value to FFH and when the values reaches 00H, it generates a Base Timer-x interrupt if the Base Timer-x interrupt is enabled. When it reaches 00H, the Base Timer-x will auto-load the value in BTx register and begins counting. The Base Timer-x can be enabled by writing a "1" to "ENBTx" in the BTCON (Base Timer Control) register. The ENBTx is level trigger. If any value is written to BTx register when it is counting, Base Timer-x will reload that value immediately and continue counting from that written value. Every time ENBTx goes rising, the counter begins to count from the preset value in BTx register.

The input clock of Base Timer-x is controlled by the BTxCLK[1:0] register. The following table shows 4 types: 8MHz, 4MHz, 2MHz, or 1MHz. The clock source of Base Timer-x is controlled by the BTxM[2:0] register. The following table shows 8 ranges of the Base Timer-x.

| 00D2H    | BT0      | Initial Value | Base Timer-0 Control Register |                                                                 |
|----------|----------|---------------|-------------------------------|-----------------------------------------------------------------|
| Bit[7:0] | BT0[7:0] | 00h           |                               | Base Timer 0 register Reset Source: Hardware reset or USB reset |

| 00D3H    | BT1      | Initial Value | Base Timer-1 Control Register |                                                                    |
|----------|----------|---------------|-------------------------------|--------------------------------------------------------------------|
| Bit[7:0] | BT1[7:0] | 00h           |                               | Base Timer 1 register<br>Reset Source: Hardware reset or USB reset |

| 00D5H    | BTCLK           | Initial Value | Base Timer Clock Register |                                                                                                                                                                  |
|----------|-----------------|---------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:6] | -               | 00b           | R/W                       | Reserved                                                                                                                                                         |
| Bit[5:4] | BT1CLK<br>[1:0] | 00b           | R/W                       | Frequency Base Timer-1 clock register (FBT1 <sub>CLK</sub> )<br>11: 8MHz<br>10: 4MHz<br>01: 2MHz<br>00: 1MHz<br><b>Reset Source: Hardware reset or WDT reset</b> |
| Bit[3:2] | -               | 00b           | R/W                       | Reserved                                                                                                                                                         |
| Bit[1:0] | BTOCLK<br>[1:0] | 00b           | R/W                       | Frequency Base Timer-0 clock register (FBT0 <sub>CLK</sub> )<br>11: 8MHz<br>10: 4MHz<br>01: 2MHz<br>00: 1MHz<br><b>Reset Source: Hardware reset or WDT reset</b> |



## SH68F093

| 00D4H    | BTCON     | Initial Value |     | Base Timer Control Register                                                                                                                                                                                                                                                                     |  |
|----------|-----------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit7     | ENBT1     | 0b            | R/W | 0: Disable Base Timer-1<br>1: Enable Base Timer-1<br><b>Reset Source: Hardware reset or WDT reset</b>                                                                                                                                                                                           |  |
| Bit[6:4] | BT1M[2:0] | 000Ь          | R/W | Base Timer-1 clock source<br>$000: FBT1_{CLK}/2^{0}$<br>$001: FBT1_{CLK}/2^{1}$<br>$010: FBT1_{CLK}/2^{2}$<br>$011: FBT1_{CLK}/2^{3}$<br>$100: FBT1_{CLK}/2^{4}$<br>$101: FBT1_{CLK}/2^{6}$<br>$110: FBT1_{CLK}/2^{8}$<br>$111: FBT1_{CLK}/2^{10}$<br>Reset Source: Hardware reset or WDT reset |  |
| Bit3     | ENBT0     | 0b            | R/W | 0: Disable Base Timer-0<br>1: Enable Base Timer-0<br><b>Reset Source: Hardware reset or WDT reset</b>                                                                                                                                                                                           |  |
| Bit[2:0] | BT0M[2:0] | 000b          | R/W | Base Timer-0 clock source<br>$000: FBT0_{CLK}/2^{0}$<br>$001: FBT0_{CLK}/2^{1}$<br>$010: FBT0_{CLK}/2^{2}$<br>$011: FBT0_{CLK}/2^{3}$<br>$100: FBT0_{CLK}/2^{4}$<br>$101: FBT0_{CLK}/2^{6}$<br>$110: FBT0_{CLK}/2^{8}$<br>$111: FBT0_{CLK}/2^{10}$<br>Reset Source: Hardware reset or WDT reset |  |

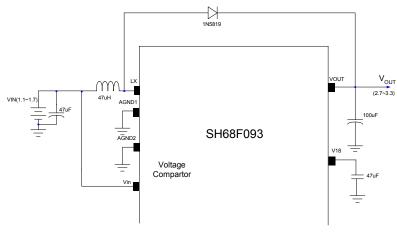
**Note:** For counting accuracy, please set the Base Timer-x register first, then preset the BTxM[2:0] register; last, enable the Base Timer-x.



#### 10. DC-DC Converter

#### 10.1. Features

- Boost Type DC-DC converter
- Operating voltage range: 1.1V 1.7V (static voltage without load)
- Output voltage: 2.7V or 3.3V
- Maximum output currents (built-in): 70mA at V<sub>BAT</sub> = 1.5V, V<sub>OUT</sub> = 3.3V
  - 100mA at  $V_{BAT} = 1.5V$ ,  $V_{OUT} = 2.7V....$  (Note)


**Note:** DC-DC converter specification refers as page 46 and performance depends on external components and PCB layout.

## 10.2. General Description

The DC-DC converter is a high performance Boost type converter with low noise and low supply current. The DC-DC converter part consists of a switching transistor, oscillation circuit and comparator. As external parts, a coil, a diode, and a capacitor are available for obtaining a constant output voltage,  $V_{OUT}$  (2.7V or 3.3V) higher than the output voltage of the battery for the DC-DC converter part.

#### **10.3. Block Diagram and Application Circuits**

(1) Enable built-in DC-DC converter:





(2) Disable built-in DC-DC converter:

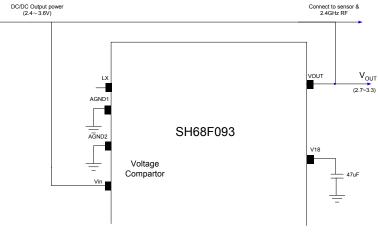



FIG. 10-2

Note: about voltage comparator usage, see page 36.



## 10.4. Register

| 00C7H    | VSEL_DC          | Initial Value |     | DC-DC Feedback resistor Control Register                                                                                                                                                                                    |  |
|----------|------------------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit[7:6] | -                | 00b           | -   | Reserved                                                                                                                                                                                                                    |  |
| Bit5     | EN_DC            | 1b            | R/W | 1: Enable built-in DC-DC<br>0: Disable built-in DC-DC                                                                                                                                                                       |  |
| Bit[4:3] | DCPD[1:0]        | 00            | R/W | DC-DC converter power down mode select<br>00: PWM mode (operating current: 600uA)<br>01: VFM mode (operating current: 255uA)<br>10: Stop mode (turn DC/DC off)<br>11: reserved<br>Reset source: Hardware reset or WDT reset |  |
| Bit2     | -                | 0b            | -   | Reserved                                                                                                                                                                                                                    |  |
| Bit[1:0] | VSEL_DC<br>[1:0] | 00b           | R/W | DC-DC output voltage control register<br>00: DC-DC output: 2.7V<br>01: DC-DC output: 2.8V (optional)<br>10: DC-DC output: 3.3V<br>11: DC-DC output:3.4V (optional)<br>Reset source: Hardware reset or WDT reset             |  |

Compare enable built-in DC-DC with disable built-in DC-DC

| Enable/Disable | Enable Built-in DC-DC Converter                                                                                                                      | Disable Built-in DC-DC Converter                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| DCPD           | DCPD=00: PWM mode (operating current: 500uA)<br>DCPD=01: VFM mode (operating current: 200uA)<br>DCPD=10: Stop mode (turn DC/DC off)                  | DCPD = XX                                                                                                     |
|                | <ul> <li>(1) When waked up or resume, MCU immediately goes back to default (PWM mode)</li> <li>(2) In stop mode (DCPD = 10), Vbat = Vout.</li> </ul> | Due to be turned built-in DC-DC off, setting DCPD does not work at DC-DC converter power down mode selection. |



#### 11. Voltage Comparator

The Voltage Comparator compares the voltage on  $V_{REF}$  and  $V_{IN}$ . Use the Voltage Comparator user can easily get the  $V_{IN}$  voltage level.

#### **11.1. Control Procedure**

- It compares the voltage input voltage (V<sub>IN</sub>) with the reference voltage (V<sub>REF</sub>). And then, it stores the results (V<sub>CMP</sub>) into the VC\_CON.0 register. The typical comparing time for voltage detector is 5us.
- The detection steps are shown below:
  - V<sub>REF</sub>[2:0]
  - Set EN\_VC
  - Wait for 5us
  - Read VC\_CON.0

#### 11.2. Register

| 00C4H    | VC_CON    | Initial Value | Voltage Comparator Control Register |                                                                                                                                                                                                                                |
|----------|-----------|---------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit7     | EN_VC     | 0b            | R/W                                 | Enable or disable the programmable voltage comparator circuit.<br>1: enable<br>0: disable<br>Reset source: Hardware reset or WDT reset                                                                                         |
| Bit[6:4] | VREF[2:0] | 100b          | R/W                                 | Set reference voltage (Note)<br>000b - 010b: reserved<br>011b: V <sub>REF</sub> = 0.8V<br>100b: V <sub>REF</sub> = 0.9V<br>101b: V <sub>REF</sub> = 1.0V<br>110b - 111b: reserved<br>Reset source: Hardware reset or WDT reset |
| Bit[3:1] | -         | 000b          | -                                   | Reserved                                                                                                                                                                                                                       |
| Bit0     | VCMP      | Ob            | R                                   | Compare result of the voltage detector.<br>1: V <sub>IN</sub> >= V <sub>REF</sub><br>0: V <sub>IN</sub> < V <sub>REF</sub><br><b>Reset source: Hardware reset or WDT reset</b>                                                 |

**Note:**  $V_{BAT}$  from 1.1V to 1.7V that means static voltage without load so that at the condition of dynamic voltage with load the one-cell battery provides is lower voltage than that provides at the static voltage without load. Therefore the battery actually provides from 0.8V to 1.5V at the condition of the dynamic voltage with load.

#### 11.3. Block Diagram

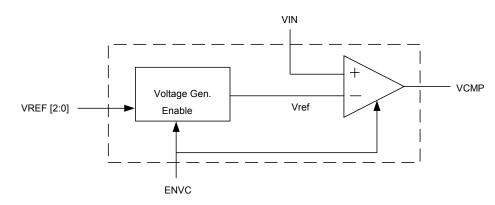
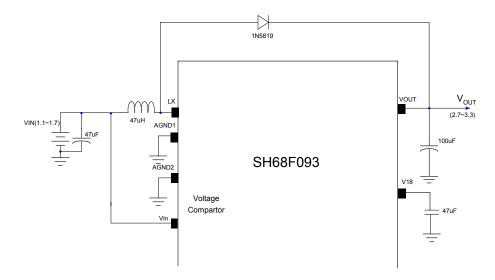




FIG.11-1 Voltage Comparator Block Diagram



## 11.4. Voltage Comparator Application Circuit



#### FIG.11-2 Voltage comparator connected to battery under enable built-in DC-DC converter

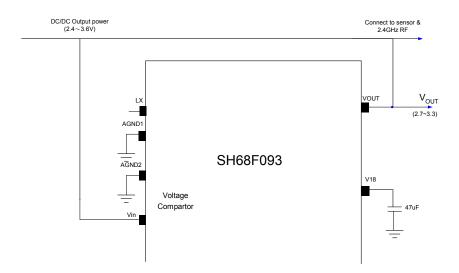



FIG.11-3 Voltage comparator connected to DC-DC output under disable built-in DC-DC converter



### 12. SPI (Serial Peripheral Interface)

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

#### 12.1. Features

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Six programmable Master clock rates
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection
- LSB or MSB transfer selectable

The following diagram shows a typical SPI bus configuration using one Master controller and many Slave peripherals. The bus is made of three wires connecting all the devices. The Master device selects the individual Slave devices by using four pins of a parallel port to control the four SS pins of the Slave devices.

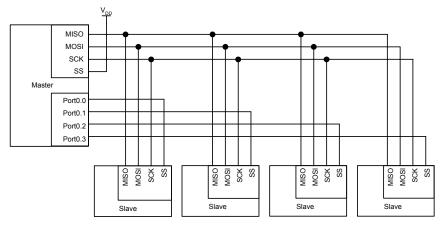



FIG.12-1 SPI bus connection between the master and the slaves

#### 12.2. Signal Description

**Master Output Slave Input (MOSI):** This 1-bit signal is directly connected between the master device and a slave device. The MOSI line is used to transfer data in series from the master to the slave. Therefore, it is an output signal from the master, and an input signal to a slave.

**Master Input Slave Output (MISO):** This 1-bit signal is directly connected between the slave device and a master device. The MISO line is used to transfer data in series from the Slave to the Master. Therefore, it is an output signal from the Slave, and an input signal to the Master. The MISO pin is placed in a high-impedance state when the SPI operates as a slave that is not selected. (/SS = high) A static high level on the /SS pin puts the MISO line of a slave in a high-impedance state.

**SPI Serial Clock (SCK):** This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one byte on the serial lines. The SCK signal is ignored by a SPI slave when the slave is not selected (/SS = 1).

**Slave Select (/SS):** Each Slave peripheral is selected by one Slave Select pin (/SS). This signal must stay low for any active Slave. It is obvious that only one Master (/SS high) can drive the network. The Master may select each Slave device by software through port pins. To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission. In a Master configuration, the /SS line can be used in conjunction with the MODF flag in the SPI Status register to prevent multiple masters from driving MOSI and SCK.

The /SS pin could be used as a general IO if the following conditions are met:

- The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can happen when only one Master is driving the network. Therefore, the MODF flag in the SPSTA will never be set.
- The Device is configured as a Slave with CPHA and SSDIS control bits set. This kind of configuration can happen when the network comprises only one Master and one Slave only. Therefore, the device should always be selected and the Master will never use the slave's /SS pin to select the target communication Slave.

**Note**: When CPHA = '0', the /SS pin is used to start the transmission.

**Baud rate**: In Master mode, the baud rate is chosen from one of the six clock rates by the division of the internal clock by 4, 8, 16, 32, 64 or 128 set by the three bits SPR[2:0] in the SPCON register.



## 12.3. Functional Description

The following diagram shows a detailed structure of the SPI module.

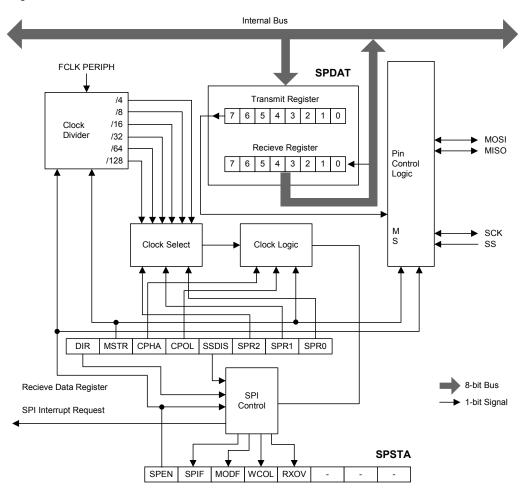



FIG.12-2 SPI Module Block Diagram



# 12.4. Registers

| 009DH    | SPCON    | Initial Value |     | Serial Peripheral Interface Control Register                                                                                                                                                                                                                                                                                            |
|----------|----------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit7     | DIR      | Ob            | R/W | Transfer Direction Selection<br>0 = MSB first<br>1 = LSB first<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                                             |
| Bit6     | MSTR     | Ob            | R/W | Serial Peripheral Master<br>0 = Configure the SPI as a Slave<br>1 = Configure the SPI as a Master<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                          |
| Bit5     | СРНА     | Ob            | R/W | Clock Phase<br>0 = Data sampled on first edge of SCK period<br>1 = Data sampled on second edge of SCK period<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                               |
| Bit4     | CPOL     | Ob            | R/W | Clock Polarity<br>0 = SCK line low in idle state<br>1 = SCK line high in idle state<br>Reset source: Hardware reset or WDT reset                                                                                                                                                                                                        |
| Bit3     | SSDIS    | Ob            | R/W | <ul> <li>/ss Disable</li> <li>0 = Enable /SS pin in both Master and Slave modes</li> <li>1 = Disable /SS pin in both master and slave modes</li> <li>MODF interrupt request will not generate, if SSDIS is set</li> <li>In Slave mode, this bit has no effect if CPHA = 0</li> <li>Reset source: Hardware reset or WDT reset</li> </ul> |
| Bit[2:0] | SPR[2:0] | 000b          | R/W | Serial Peripheral Clock Rate<br>000 = system clock/4 (default)<br>001 = system clock/8<br>010 = system clock/16<br>011 = system clock/32<br>100 = system clock/64<br>others = system clock/128<br>Reset source: Hardware reset or WDT reset                                                                                             |



| 00F8H    | SPSTA | Initial Value |     | Serial Peripheral Interface Status Register                                                                                                                                                                      |
|----------|-------|---------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit7     | SPEN  | Ob            | R/W | SPI enable<br>0 = Disable the SPI interface<br>1 = Enable the SPI interface<br>Reset source: Hardware reset or WDT reset                                                                                         |
| Bit6     | SPIF  | Ob            | R/W | Serial peripheral data transfer flag<br>0 = Clear by software<br>1 = Set by hardware to indicate that the data transfer has been completed<br>Reset source: Hardware reset or WDT reset                          |
| Bit5     | MODF  | Ob            | R/W | Mode fault<br>0 = Cleared by software<br>1 = Set by hardware to indicate that the /SS pin is at inappropriate logic level<br>Reset source: Hardware reset or WDT reset                                           |
| Bit4     | WCOL  | 0b            | R/W | Write collision flag<br>0 = Cleared by software to indicate write collision has be processed<br>1 = Set by hardware to indicate that a collision has been detected<br>Reset source: Hardware reset or WDT reset  |
| Bit3     | RXOV  | Ob            | R/W | Receive Overrun<br>0 = Cleared by software to indicate receive overrun has be processed<br>1 = Set by hardware to indicate that a receive overrun has been detected<br>Reset source: Hardware reset or WDT reset |
| Bit[2:0] | -     | 000b          | -   | Reserved                                                                                                                                                                                                         |

| 009EH    | SPDAT      | Initial Value | Serial Peripheral Interface Data Register                                                                                                                                                       |  |
|----------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bit[7:0] | SPDAT[7:0] | 00H           | A write to SPDAT places data directly into the transfer shift register. A readR/Wof the SPDAT returns the value located in the receive shift register.Reset source: Hardware reset or WDT reset |  |

## 12.5. SPI Modes

The Serial Peripheral Interface can be configured as one of the two modes: Master mode or Slave mode. Once the SPI is configured, the data exchange is made using SPCON (The Serial Peripheral Control register), SPSTA (The Serial Peripheral Status register), and SPDAT (The Serial Peripheral Data register).

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (/SS) allows individual selection of a SPI Slave; SPI Slave that are not selected do not interfere with SPI bus activities.

When the SPI Master transmits data to the SPI Slave via the MOSI line, the SPI Slave responds by sending data to the SPI Master via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock. Both transmit shift register and receive shift register uses the same SFR Address = a write operation to SPDATA will write to the transmit shift register, and a read operation from SPDATA will retrieve the data in receive shift register.

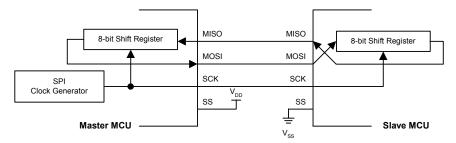



FIG.12-3 Full-Duplex Master-Slave Interconnection Diagram





#### 12.5.1. Master Mode

**Enable:** A SPI master device initiates all data transfers on a SPI bus. The SPI operates in master mode when the MSTR is set in SPCON register. Only one master can initiate transmission.

**Transmit:** When in SPI master mode, writing a byte of data to the SPI data register (SPDAT) will write to the transmit shift buffer. If the transmit shift register already contains data, the SPI master will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted. Else if the transmit shift register is empty, the SPI master will immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF flag in SPSTA register is set to logic '1' at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set.

**Receive:** While the master transfers data to a slave on the MOSI line, the addressed slave simultaneously transfers the contents of its transmit shift register to the master's receive shift register on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPDAT. If an overrun occurs, RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI master will not receive any further data until SPIF was cleared.

#### 12.5.2. Slave Mode

**Enable:** The SPI operates in Slave mode when the MSTR is cleared in the SPCON register. Before a data transmission occurs, the Slave Select (/SS) pin of the Slave device must be set to '0'. The /SS pin must remain low until the 1-byte transmission is complete.

**Transmit & Receive:** When in SPI slave mode, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter counts SCK edges. When 8 bits have been shifted in the receive shift register and another 8 bits have been shifted out the transmit shift register, the SPIF flag is set to logic '1'. Data is read from the receive shift register by reading SPDAT. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set.

To prevent an overflow condition, the SPI slave software must read the SPDAT before another byte enters the shift register. Else a RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI slave will not receive any further data until SPIF was cleared.

A SPI slave cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPDAT. Writes to SPDAT are placed in the transmit buffer first. So a SPI slave must complete the write to the SPDAT (transmit shift register) in one SPI clock before the master starts a new transmission. If the write to SPDAT is late, the SPI will transmit a '0x00' byte in the following transmission, if the write operation occurs during this time, a WCOL signal will be set. If the transmit shift register already contains data, the SPI slave will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted.





#### 12.6. Transmission Formats

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA and CPOL.

CPOL is defined the default SCK line level in idle state. It has no significant effect on the transmission format. CPHA is defined the edges on which the input data are sampled and the edges on which the output data are shifted. The clock phase and polarity should be identical for the master and the communicating slave.

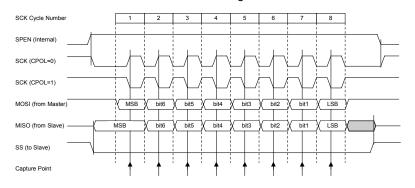



FIG.12-4 Data Transmission Format (CPHA = 0)

If CPHA = 0, the first SCK edge is the capture strobe. Therefore the Slave must begin driving its data before the first SCK edge, and a falling edge on the /SS pin is used to start the transmission. The /SS pin must be toggled high and then low between each byte transmitted. So SSDIS bit is invalid when CPHA = 0.

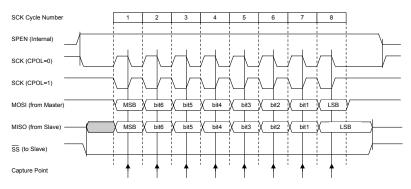



FIG.12-5 Data Transmission Format (CPHA = 1)

If CPHA = 1, the Master begins driving its MOSI pin on the first SCK edge. Therefore the slave uses the first SCK edge as a start transmission signal. So the user must put the SPDAT during the two edge of first SCK. The /SS pin can remain low between transmissions. This format may be preferred in systems with only one master and only one slave.

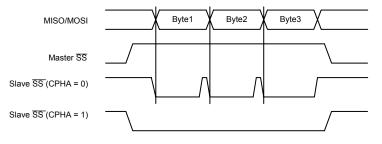



FIG.12-6 CPHA and /SS Timing

**Note:** When SPI is configured as Slave mode and CPOL bit in SPCON is cleared, the SCK pin must be set to input mode and enable pull-high resistor before SPEN bit in SPSTA is set to logic '1'.





### 12.7. Error Conditions

The following flags in the SPSTA signal SPI error conditions:

**Mode Fault (MODF):** Mode Fault error in master mode SPI indicates that the level on the Slave Select (/SS) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI system is affected in the following ways:

An SPI receiver/error CPU interrupt request is generated

The SPEN bit in SPSTA is cleared. This disables the SPI

■ The MSTR bit in SPCON is cleared

When /SS Disable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the /SS signal becomes '0'. However, as stated before, for a system with one Master, if the /SS pin of the master device is pulled low, there is no way that another master attempts to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the /SS pin as a general-purpose I/O pin.

The user must clear the MODF bit by software, and enable SPEN in SPSTA register again for further communication, and enable MSTR bit to continue master mode.

Write Collision (WCOL): A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence. WCOL does not cause an interruption, and the transfer continues uninterrupted. The WCOL bit is cleared by software.

**Overrun Condition (RXOV):** An overrun condition occurs when the master or slave tries to send several data bytes and the slave or master has not cleared the SPIF bit issuing from the previous data byte transmitted. In this case, the receive shift register keep the byte that SPIF was lastly set, also the SPI device will not receive any further data until SPIF was cleared. The SPIF still keep on invoke interrupt before it is cleared, though the transmission can still be driven by SCK. RXOV does not cause an interruption, the RXOV bit is cleared by software.

#### 12.8. Interrupts

Two SPI status flags can generate a CPU interrupt requests SPIF & MODF.

- Serial Peripheral data transfer flag, SPIF is set by hardware when a transfer has been completed.
- Mode Fault flag, MODF bit becomes set to indicate that the level on the /SS pin is inconsistent with the mode of the SPI. MODF with SSDIS reset will generate receiver/error CPU interrupt requests. When SSDIS is set, no MODF interrupt request is generated.

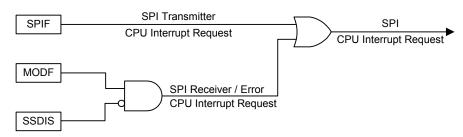



FIG.12-7 SPI Interrupt Requests Generation





#### 13. Flash Program Memory

### 13.1. General Description

SH68F093 embeds 16K flash program memory for program code. The flash program memory provides electrical erasure and programming. Each of the sectors is equal to 1024 bytes. SH68F093 provides the user with SSP (self sector programming) function to write or erase the sector. To prevent the data from carelessly writing information block, the user must do five states (S0, S1, S2, S3, and S4) in sequence. If the dedicated conditions are not met from IBCON1 to IBCON5, the SSP will be terminated. Used to enable/disable the read operation through MOVC instruction, user want to read other sectors.

**Note:** The 0<sup>th</sup> sector (0000H - 03FFH) and the last 64 bytes for customer block (3FC0H - 3FFFH) and it cannot be rewritten before sector erase.

### 13.2. Registers

| 00F2H    | IBCON1 | Initial Value | Information Block Control Register 1 |                                                                                                                                                                                                        |
|----------|--------|---------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:0] | IBCON1 | 00h           | R/W                                  | Enable or disable the information block controller<br>E6H: Erase the information block<br>6EH: Write to the information block<br>Other: don't care<br><b>Reset source: Hardware reset or WDT reset</b> |

| 00F3H    | IBCON2      | Initial Value | Information Block Control Register 2 |                                                                              |
|----------|-------------|---------------|--------------------------------------|------------------------------------------------------------------------------|
| Bit[7:4] | -           | 0000b         | -                                    | Reserved                                                                     |
| Bit[3:0] | IBCON2[3:0] | 0000b         | R/W                                  | 5H: enter S1<br>Other: enter S0<br>Reset source: Hardware reset or WDT reset |

| 00F4H    | IBCON3 | Initial Value | Information Block Control Register 3 |                                                                              |  |
|----------|--------|---------------|--------------------------------------|------------------------------------------------------------------------------|--|
| Bit[7:4] | -      | 0000b         | -                                    | Reserved                                                                     |  |
| Bit[3:0] | IBCON3 | 00h           | R/W                                  | AH: enter S2<br>Other: enter S1<br>Reset condition: common reset   IBCON2≠5H |  |

| 00F5H    | IBCON4 | Initial Value | Information Block Control Register 4 |                                                                                          |
|----------|--------|---------------|--------------------------------------|------------------------------------------------------------------------------------------|
| Bit[7:4] | -      | 0000b         | -                                    | Reserved                                                                                 |
| Bit[3:0] | IBCON4 | 0000b         | R/W                                  | 9H: enter S3<br>Other: enter S2<br>Reset condition: common reset   IBCON2≠5H   IBCON3≠AH |

| 00F6H    | IBCON5 | Initial Value | Information Block Control Register 5 |                                                                                                                              |
|----------|--------|---------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:4] | -      | 0000b         | -                                    | Reserved                                                                                                                     |
| Bit[3:0] | IBCON5 | 0000b         | R/W                                  | 6H: enter S4<br>Other: enter S3<br>Reset condition: common reset  IBCON2 <i>≠</i> 5H  IBCON3 <i>≠</i> AH  IBCON4 <i>≠</i> 9H |



| 00F7H    | XPAGE      | Initial Value | System Registers |                                                                                                                                                                           |
|----------|------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7:2] | XPAGE[7:2] | 000000b       | R/W              | Sector of the flash memory to be programmed<br>000000 - 001111: Sector #0 - Sector #15 (Note 1)<br>010000 - 111111: reserved<br>Reset source: Hardware reset or WDT reset |
| Bit[1:0] | XPAGE[1:0] | 00b           | R/W              | High address of offset of the flash memory sector to be programmed (Note 2)<br>Reset source: Hardware reset or WDT reset                                                  |

| 00FE  | ЗH  | IBOFFSET | Initial Value | Information Block Control Register |                                                                                                                                                       |
|-------|-----|----------|---------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7 | :0] | IBOFFSET | 00h           | R/W                                | Offset in the flash memory<br>Low address of offset of the flash memory sector to be programmed (Note 2)<br>Reset source: Hardware reset or WDT reset |

| 001 | FCH          | IB_DATA | Initial Value |     | Data Register for Programming Information Block |
|-----|--------------|---------|---------------|-----|-------------------------------------------------|
| B[' | <b>7</b> :0] | IB_DATA | 00h           | R/W | Reset source: Hardware reset or WDT reset       |

Note1: Define the number of sector in the XPAGE register

| XPAGE                |             |  |  |  |  |  |
|----------------------|-------------|--|--|--|--|--|
| XPAGE[7:2]           | XPAGE[1:0]  |  |  |  |  |  |
| The number of sector | OFFSET BYTE |  |  |  |  |  |

**Note2:** Combine XPAGE[1:0] and IBOFFSET[7:0] to become 10-bit offset byte so that the user can assign one byte of the information block for writing or reading.

| offset byte | High a | ddress  | Low address of offset of the flash memory sector to be programmed |               |   |        |          |   |   |   |  |  |
|-------------|--------|---------|-------------------------------------------------------------------|---------------|---|--------|----------|---|---|---|--|--|
| onset byte  | XPAG   | 6E[1:0] |                                                                   |               |   | IBOFFS | SET[7:0] |   |   |   |  |  |
| 0           | 0      | 0       | 0                                                                 | 0 0 0 0 0 0 0 |   |        |          |   |   |   |  |  |
| 1           | 0      | 0       | 0                                                                 | 0             | 0 | 0      | 0        | 0 | 0 | 1 |  |  |
| 2           | 0      | 0       | 0                                                                 | 0 0 0 0 0 1   |   |        |          |   |   |   |  |  |
| :           | :      | :       | :                                                                 | :             | : | :      | :        | : | : | : |  |  |
| 1022        | 1      | 1       | 1                                                                 | 1             | 1 | 1      | 1        | 1 | 1 | 0 |  |  |
| 1023        | 1      | 1       | 1                                                                 | 1             | 1 | 1      | 1        | 1 | 1 | 1 |  |  |

# Notice:

To successfully complete SSP programming, the user has to follow the steps below:

### A. for WRITE programming the information block

Step 1: Disable interrupt

Step 2: Fill in the XPAGE and IBOFFSET for the corresponding sector

- Step 3: Fill in IB\_DATA if programming is wanted
- Step 4: Fill in IBCON1 5 sequentially

Step 5: Code/Data programming, CPU will be in IDLE mode

- Step 6: Add 4 nops; if more bytes want to be programmed, go back to step 2.
- Step 7: Enable interrupt
- B. for ERASE programming the information block
- Step 1: Disable interrupt
- Step 2: Fill in the XPAGE for the corresponding sector
- Step 3: Fill in IBCON1 5 sequentially
- Step 4: Erase the information block, CPU will be in IDLE mode

Step 5: Add 4 nop; if one more sector want to be erased, go back to step 2.

- Step 6: Enable interrupt
- C. for Code Reading
  - Use "MOVC A, @A+DPTR" or "MOVC A, @A+PC"



### 13.3. Flash Control Flow

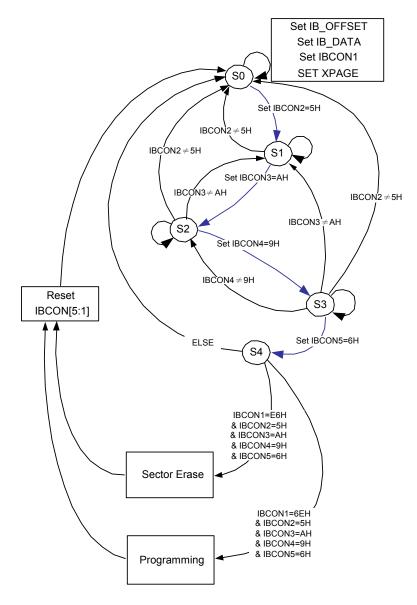
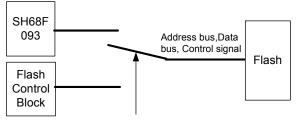




FIG.13-1 Flash Control Flow





Flash interface Switch

## FIG.13-2 Flash interface Block Diagram

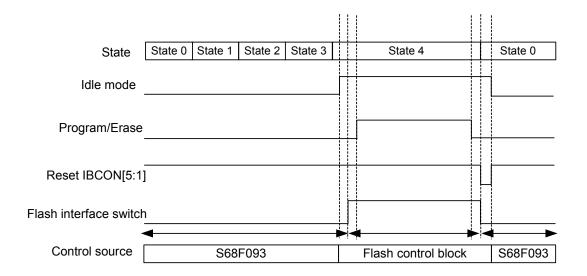
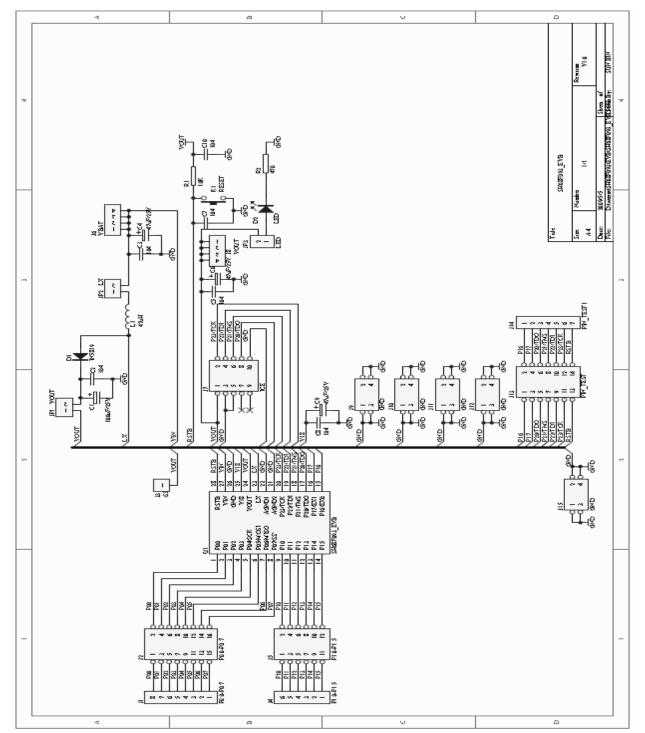




FIG.13-3 Flash Control Timing Diagram



## 14. Application Circuit





## 15. Instruction Set Table

| ARITHMETIC OPERATIONS |                                             |           |      |       |
|-----------------------|---------------------------------------------|-----------|------|-------|
| Opcode                | Description                                 | Code      | Byte | Cycle |
| ADD A, Rn             | Add register to accumulator                 | 0x28-0x2F | 1    | 1     |
| ADD A, direct         | Add direct byte to accumulator              | 0x25      | 2    | 2     |
| ADD A, @Ri            | Add indirect RAM to accumulator             | 0x26-0x27 | 1    | 2     |
| ADD A, #data          | Add immediate data to accumulator           | 0x24      | 2    | 2     |
| ADDC A, Rn            | Add register to accumulator with carry flag | 0x38-0x3F | 1    | 1     |
| ADDC A, direct        | Add direct byte to A with carry flag        | 0x35      | 2    | 2     |
| ADDC A, @Ri           | Add indirect RAM to A with carry flag       | 0x36-0x37 | 1    | 2     |
| ADDC A, #data         | Add immediate data to A with carry flag     | 0x34      | 2    | 2     |
| SUBB A, Rn            | Subtract register from A with borrow        | 0x98-0x9F | 1    | 1     |
| SUBB A, direct        | Subtract direct byte from A with borrow     | 0x95      | 2    | 2     |
| SUBB A, @Ri           | Subtract indirect RAM from A with borrow    | 0x96-0x97 | 1    | 2     |
| SUBB A, #data         | Subtract immediate data from A with borrow  | 0x94      | 2    | 2     |
| INC A                 | Increment accumulator                       | 0x04      | 1    | 1     |
| INC Rn                | Increment register                          | 0x08-0x0F | 1    | 2     |
| INC direct            | Increment direct byte                       | 0x05      | 2    | 3     |
| INC @Ri               | Increment indirect RAM                      | 0x06-0x07 | 1    | 3     |
| DEC A                 | Decrement accumulator                       | 0x14      | 1    | 1     |
| DEC Rn                | Decrement register                          | 0x18-0x1F | 1    | 2     |
| DEC direct            | Decrement direct byte                       | 0x15      | 1    | 3     |
| DEC @Ri               | Decrement indirect RAM                      | 0x16-0x17 | 2    | 3     |
| INC DPTR              | Increment data pointer                      | 0xA3      | 1    | 4     |
| MULAB 8X8             | Multiply A and D                            | 0×4.4     | 1    | 11    |
| MUL AB 16 X 8         | Multiply A and B                            | 0xA4      | 1    | 20    |
| DIV AB 8/8            | Divide A by B                               | 0x84      | 1    | 11    |
| DIV AB 16 / 8         |                                             | 0.04      |      | 20    |
| DA A                  | Decimal adjust accumulator                  | 0xD4      | 1    | 1     |



| LOGIC OPERATIONS  |                                            | - 1       | T    | 1     |
|-------------------|--------------------------------------------|-----------|------|-------|
| Opcode            | Description                                | Code      | Byte | Cycle |
| ANL A, Rn         | AND register to accumulator                | 0x58-0x5F | 1    | 1     |
| ANL A, direct     | AND direct byte to accumulator             | 0x55      | 2    | 2     |
| ANL A, @Ri        | AND indirect RAM to accumulator            | 0x56-0x57 | 1    | 2     |
| ANL A, #data      | AND immediate data to accumulator          | 0x54      | 2    | 2     |
| ANL direct, A     | AND accumulator to direct byte             | 0x52      | 2    | 3     |
| ANL direct, #data | AND immediate data to direct byte          | 0x53      | 3    | 3     |
| ORL A, Rn         | OR register to accumulator                 | 0x48-0x4F | 1    | 1     |
| ORL A, direct     | OR direct byte to accumulator              | 0x45      | 2    | 2     |
| ORL A, @Ri        | OR indirect RAM to accumulator             | 0x46-0x47 | 1    | 2     |
| ORL A, #data      | OR immediate data to accumulator           | 0x44      | 2    | 2     |
| ORL direct, A     | OR accumulator to direct byte              | 0x42      | 2    | 3     |
| ORL direct, #data | OR immediate data to direct byte           | 0x43      | 3    | 3     |
| XRL A, Rn         | Exclusive OR register to accumulator       | 0x68-0x6F | 1    | 1     |
| XRL A, direct     | Exclusive OR direct byte to accumulator    | 0x65      | 2    | 2     |
| XRL A, @Ri        | Exclusive OR indirect RAM to accumulator   | 0x66-0x67 | 1    | 2     |
| XRL A, #data      | Exclusive OR immediate data to accumulator | 0x64      | 2    | 2     |
| XRL direct, A     | Exclusive OR accumulator to direct byte    | 0x62      | 2    | 3     |
| XRL direct, #data | Exclusive OR immediate data to direct byte | 0x63      | 3    | 3     |
| CLR A             | Clear accumulator                          | 0xE4      | 1    | 1     |
| CPL A             | Complement accumulator                     | 0xF4      | 1    | 1     |
| RL A              | Rotate accumulator left                    | 0x23      | 1    | 1     |
| RLC A             | Rotate accumulator left through carry      | 0x33      | 1    | 1     |
| RR A              | Rotate accumulator right                   | 0x03      | 1    | 1     |
| RRC A             | Rotate accumulator right through carry     | 0x13      | 1    | 1     |
| SWAP A            | Swap nibbles within the accumulator        | 0xC4      | 1    | 4     |

| BOOLEAN MANIPULATION |                                       |      |       |   |  |  |  |  |  |  |
|----------------------|---------------------------------------|------|-------|---|--|--|--|--|--|--|
| Opcode               | Code                                  | Byte | Cycle |   |  |  |  |  |  |  |
| CLR C                | Clear carry flag                      | 0xC3 | 1     | 1 |  |  |  |  |  |  |
| CLR bit              | Clear direct bit                      | 0xC2 | 2     | 3 |  |  |  |  |  |  |
| SETB C               | Set carry flag                        | 0xD3 | 1     | 1 |  |  |  |  |  |  |
| SETB bit             | Set direct bit                        | 0xD2 | 2     | 3 |  |  |  |  |  |  |
| CPL C                | Complement carry flag                 | 0xB3 | 1     | 1 |  |  |  |  |  |  |
| CPL bit              | Complement direct bit                 | 0xB2 | 2     | 3 |  |  |  |  |  |  |
| ANL C, bit           | AND direct bit to carry flag          | 0x82 | 2     | 2 |  |  |  |  |  |  |
| ANL C, /bit          | AND complement of direct bit to carry | 0xB0 | 2     | 2 |  |  |  |  |  |  |
| ORL C, bit           | OR direct bit to carry flag           | 0x72 | 2     | 2 |  |  |  |  |  |  |
| ORL C, /bit          | OR complement of direct bit to carry  | 0xA0 | 2     | 2 |  |  |  |  |  |  |
| MOV C, bit           | Move direct bit to carry flag         | 0xA2 | 2     | 2 |  |  |  |  |  |  |
| MOV bit, C           | Move carry flag to direct bit         | 0x92 | 2     | 3 |  |  |  |  |  |  |



| DATA TRANSFERS       |                                               |           |      |       |
|----------------------|-----------------------------------------------|-----------|------|-------|
| Opcode               | Description                                   | Code      | Byte | Cycle |
| MOV A, Rn            | Move register to accumulator                  | 0xE8-0xEF | 1    | 1     |
| MOV A, direct        | Move direct byte to accumulator               | 0xE5      | 2    | 2     |
| MOV A, @Ri           | Move indirect RAM to accumulator              | 0xE6-0xE7 | 1    | 2     |
| MOV A, #data         | Move immediate data to accumulator            | 0x74      | 2    | 2     |
| MOV Rn, A            | Move accumulator to register                  | 0xF8-0xFF | 1    | 2     |
| MOV Rn, direct       | Move direct byte to register                  | 0xA8-0xAF | 2    | 3     |
| MOV Rn, #data        | Move immediate data to register               | 0x78-0x7F | 2    | 2     |
| MOV direct, A        | Move accumulator to direct byte               | 0xF5      | 2    | 2     |
| MOV direct, Rn       | Move register to direct byte                  | 0x88-0x8F | 2    | 2     |
| MOV direct1, direct2 | Move direct byte to direct byte               | 0x85      | 3    | 3     |
| MOV direct, @Ri      | Move indirect RAM to direct byte              | 0x86-0x87 | 2    | 3     |
| MOV direct, #data    | Move immediate data to direct byte            | 0x75      | 3    | 3     |
| MOV @Ri, A           | Move accumulator to indirect RAM              | 0xF6-0xF7 | 1    | 2     |
| MOV @Ri, direct      | Move direct byte to indirect RAM              | 0xA6-0xA7 | 2    | 3     |
| MOV @Ri, #data       | Move immediate data to indirect RAM           | 0x76-0x77 | 2    | 2     |
| MOV DPTR, #data16    | Load data pointer with a 16-bit constant      | 0x90      | 3    | 3     |
| MOVC A, @A+DPTR      | Move code byte relative to DPTR to A          | 0x93      | 1    | 7     |
| MOVC A, @A+PC        | Move code byte relative to PC to A            | 0x83      | 1    | 8     |
| MOVX A, @Ri          | Move external RAM (8-bit address) to A        | 0xE2-0xE3 | 1    | 5     |
| MOVX A, @DPTR        | Move external RAM (16-bit address) to A       | 0xE0      | 1    | 6     |
| MOVX @Ri, A          | Move A to external RAM (8-bit address)        | 0xF2-F3   | 1    | 4     |
| MOVX @DPTR, A        | Move A to external RAM (16-bit address)       | 0xF0      | 1    | 5     |
| PUSH direct          | Push direct byte onto stack                   | 0xC0      | 2    | 5     |
| POP direct           | Pop direct byte from stack                    | 0xD0      | 2    | 4     |
| XCH A, Rn            | Exchange register with accumulator            | 0xC8-0xCF | 1    | 3     |
| XCH A, direct        | Exchange direct byte with accumulator         | 0xC5      | 2    | 4     |
| XCH A, @Ri           | Exchange indirect RAM with accumulator        | 0xC6-0xC7 | 1    | 4     |
| XCHD A, @Ri          | Exchange low-order nibble indirect RAM with A | 0xD6-0xD7 | 1    | 4     |



| PROGRAM BRANCHES                |                                                  |           |      |       |
|---------------------------------|--------------------------------------------------|-----------|------|-------|
| Opcode                          | Description                                      | Code      | Byte | Cycle |
| ACALL addr11                    | Absolute subroutine call                         | 0x11-0xF1 | 2    | 7     |
| LCALL addr16                    | Long subroutine call                             | 0x12      | 3    | 7     |
| RET                             | Return from subroutine                           | 0x22      | 1    | 8     |
| RETI                            | Return from interrupt                            | 0x32      | 1    | 8     |
| AJMP addr11                     | Absolute jump                                    | 0x01-0xE1 | 2    | 4     |
| LJMP addr16                     | Long jump                                        | 0x02      | 3    | 5     |
| SJMP rel                        | Short jump (relative address)                    | 0x80      | 2    | 4     |
| JMP @A+DPTR                     | Jump indirect relative to the DPTR               | 0x73      | 1    | 6     |
| JZ rel (not taken)              | Jump if accumulator is zero                      | 0x60      | 2    | 3     |
| JZ rel (taken)                  |                                                  | 0,000     | 2    | 5     |
| JNZ rel (not taken)             | lump if accumulator is not zoro                  | 0x70      | 2    | 3     |
| JNZ rel (taken)                 | Jump if accumulator is not zero                  | 0.00      | 2    | 5     |
| JC rel (not taken)              | lump if corrugher is not                         | 0.40      | 2    | 2     |
| JC rel (taken)                  | Jump if carry flag is set                        | 0x40      | 2    | 4     |
| JNC (not taken)                 |                                                  | 0×50      | 2    | 2     |
| JNC (taken)                     | Jump if carry flag is not set                    | 0x50      | 2    | 4     |
| JB bit, rel (not taken)         | lunan if direct hit is not                       | 000       | 3    | 4     |
| JB bit, rel (taken)             | Jump if direct bit is set                        | 0x20      |      | 6     |
| JNB bit, rel (not taken)        | lump if direct bit is not get                    | 0.20      | 2    | 4     |
| JNB bit, rel (taken)            | - Jump if direct bit is not set                  | 0x30      | 3    | 6     |
| JBC bit, rel (not taken)        | lump if direct bit is not and abor bit           | 0.40      | 3    | 4     |
| JBC bit, rel (taken)            | Jump if direct bit is set and clear bit          | 0x10      | 3    | 6     |
| CJNE A, direct rel (not taken)  | Compare direct bute to A and jump if not equal   | OVDE      | 2    | 4     |
| CJNE A, direct rel (taken)      | - Compare direct byte to A and jump if not equal | 0xB5      | 3    | 6     |
| CJNE A, #data rel (not taken)   | Compare immediate to A and jump if not equal     | 0xB4      | 3    | 4     |
| CJNE A, #data rel (taken)       | Compare immediate to A and jump if not equal     | 0204      | 3    | 6     |
| CJNE Rn, #data rel (not taken)  | Compare immediate to reg. And iump if not equal  | 0xB8-0xBF | 2    | 4     |
| CJNE Rn, #data rel (taken)      | Compare immediate to reg. And jump if not equal  |           | 3    | 6     |
| CJNE @Ri, #data rel (not taken) | Compare immediate to Di and iumn if not acual    |           | 0    | 4     |
| CJNE @Ri, #data rel (taken)     | Compare immediate to Ri and jump if not equal    | 0xB6-0xB7 | 3    | 6     |
| DJNZ Rn, rel (not aken)         | Deprement register and jump if not zero          |           | 2    | 3     |
| DJNZ Rn, rel (taken)            | Decrement register and jump if not zero          | 0xD8-0xDF | 2    | 5     |
| DJNZ direct, rel (not taken)    | Degrament direct buts and jump if not            |           | 2    | 4     |
| DJNZ direct, rel (taken)        | Decrement direct byte and jump if not zero       | 0xD5      | 3    | 6     |
| NOP                             | No operation                                     | 0         | 1    | 1     |





**DC/AC Specifications** 

#### Absolute Maximum Rating\*

- Operating Voltage (V<sub>BAT</sub>) . . . . . . . . . . +1.1V to +1.7V
- Input/Output Voltage . . . . . . . . GND 0.2V to V<sub>BAT</sub> + 0.2V
- Operating Ambient Temperature . . . . . . . -25°C to 60°C
- Storage Temperature .....-55°C to +125°C

### \*Comments

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

**DC Electrical Characteristics** (Enable built-in DC-DC, V<sub>BAT</sub> = 1.5V, GND = 0V, TA = 25°C, unless otherwise noted)

|                    | Main Power           |      |      |      |      |                                                                                                                                                |  |  |  |  |  |
|--------------------|----------------------|------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Symbol             | Parameters           | Min. | Тур. | Max. | Unit | Conditions                                                                                                                                     |  |  |  |  |  |
| V <sub>BAT</sub>   | Operating Voltage 1  | 1.1  | 1.5  | 1.7  | V    | Battery output voltage (enable built-in DC-DC)                                                                                                 |  |  |  |  |  |
| I <sub>OP1</sub>   | Operating Current 1  | -    | 3.7  | 4.2  | mA   | No load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>OP2</sub>   | Operating Current 2  | -    | 2.5  | 3    | mA   | No load ( $F_{SYS}$ = 4Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>OP3</sub>   | Operating Current 3  | -    | 1.9  | 2.4  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>OP4</sub>   | Operating Current 4  | -    | 1.5  | 2    | mA   | No load ( $F_{SYS}$ = 1Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>OP5</sub>   | Operating Current 5  | -    | 3.9  | 4.4  | mA   | No load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>OP6</sub>   | Operating Current 6  | -    | 2.5  | 3    | mA   | No load ( $F_{SYS}$ = 4Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>OP7</sub>   | Operating Current 7  | -    | 1.9  | 2.4  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>OP8</sub>   | Operating Current 8  | -    | 1.5  | 2    | mA   | No load ( $F_{SYS}$ = 1Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>IDLE1</sub> | Idle Current 1       | -    | 2    | 2.5  | mA   | No load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>IDLE2</sub> | Idle Current 2       | -    | 1.6  | 2.1  | mA   | No load ( $F_{SYS}$ = 4Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>IDLE3</sub> | Idle Current 3       | -    | 1.4  | 1.9  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>IDLE4</sub> | Idle Current 4       | -    | 1.3  | 1.8  | mA   | No load ( $F_{SYS}$ = 1Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V)                                                                                |  |  |  |  |  |
| I <sub>IDLE5</sub> | Idle Current 5       | -    | 2    | 2.5  | mA   | No load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>IDLE6</sub> | Idle Current 6       | -    | 1.6  | 2.1  | mA   | No load ( $F_{SYS}$ = 4Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>IDLE7</sub> | Idle Current 7       | -    | 1.4  | 1.9  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>IDLE8</sub> | Idle Current 8       | -    | 1.3  | 1.8  | mA   | No load ( $F_{SYS}$ = 1Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V)                                                                                |  |  |  |  |  |
| I <sub>PD1</sub>   | Power down Current 1 | -    | 605  | 805  | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V), Enable built-in DC-DC, In Power-down mode ( <b>PWM mode</b> ):<br>Enable LVR1 |  |  |  |  |  |
| I <sub>PD2</sub>   | Power down Current 2 | -    | 600  | 800  | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V), Enable built-in DC-DC, In Power-down mode ( <b>PWM mode</b> ): Disable LVR1   |  |  |  |  |  |
| I <sub>PD3</sub>   | Power down Current 3 | -    | 255  | 355  | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V), Enable built-in DC-DC, In Power-down mode (VFM mode):<br>Enable LVR1          |  |  |  |  |  |
| I <sub>PD4</sub>   | Power down Current 4 | -    | 250  | 350  | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 2.7V), Enable built-in DC-DC, In Power-down mode (VFM mode):<br>Disable LVR1         |  |  |  |  |  |
| I <sub>PD5</sub>   | Power down Current 5 | -    | 10   | -    | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 1.5V), Enable built-in DC-DC, In Power-down mode <b>(STOP mode)</b> :<br>Enable LVR1 |  |  |  |  |  |



(continued)

|                   |                       |      |       | Ма    | ain Po | wer                                                                                                                                                                   |
|-------------------|-----------------------|------|-------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol            | Parameters            | Min. | Тур.  | Max.  | Unit   | Conditions                                                                                                                                                            |
| I <sub>PD6</sub>  | Power down Current 6  | -    | 10    | -     | uA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 1.5V), Enable built-in DC-DC, In Power-down mode ( <b>STOP mode)</b> : Disable LVR1                         |
| I <sub>PD7</sub>  | Power down Current 7  | -    | 1.005 | 1.205 | mA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V), Enable built-in DC-DC, In Power-down mode ( <b>PWM mode</b> ), Enable LVR1                           |
| I <sub>PD8</sub>  | Power down Current 8  | -    | 1     | 1.2   | mA     | No Load (F <sub>SYS</sub> = 8Mhz, V <sub>BAT</sub> = 1.5V, V <sub>OUT</sub> = 3.3V), Enable<br>built-in DC-DC, In Power-down mode <b>(PWM mode)</b> :<br>Disable LVR1 |
| I <sub>PD9</sub>  | Power down Current 9  | -    | 355   | 455   | uA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V), Enable built-in DC-DC, In Power-down mode ( <b>VFM mode</b> ):<br>Enable LVR1                        |
| I <sub>PD10</sub> | Power down Current 10 | -    | 350   | 450   | uA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 3.3V), Enable built-in DC-DC, In Power-down mode (VFM mode): Disable LVR1                                   |
| I <sub>PD11</sub> | Power down Current 11 | -    | 10    | -     | uA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 1.5V), Enable built-in DC-DC, In Power-down mode ( <b>STOP mode</b> ):<br>Enable LVR1                       |
| I <sub>PD12</sub> | Power down Current 12 | -    | 10    | -     | uA     | No Load ( $F_{SYS}$ = 8Mhz, $V_{BAT}$ = 1.5V, $V_{OUT}$ = 1.5V), Enable built-in DC-DC, In Power-down mode ( <b>STOP mode)</b> : Disable LVR1                         |

DC Electrical Characteristics (Disable built-in DC-DC, V<sub>OUT</sub> = 3V, GND = 0V, T<sub>A</sub> = 25°C, unless otherwise noted)

|                     | Main Power            |      |      |      |      |                                                                                                                                               |  |  |  |  |  |
|---------------------|-----------------------|------|------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Symbol              | Parameters            | Min. | Тур. | Max. | Unit | Conditions                                                                                                                                    |  |  |  |  |  |
| V <sub>OUT</sub>    | Operating Voltage 2   | 2.4  |      | 3.6  | V    | (disable built-in DC-DC)                                                                                                                      |  |  |  |  |  |
| I <sub>OP9</sub>    | Operating Current 9   | -    | 1.8  | 2.2  | mA   | No load (F <sub>SYS</sub> = 8Mhz, V <sub>OUT</sub> = 3V)                                                                                      |  |  |  |  |  |
| I <sub>OP10</sub>   | Operating Current 10  | -    | 1.2  | 1.6  | mA   | No load ( $F_{SYS}$ = 4Mhz, $V_{OUT}$ = 3V)                                                                                                   |  |  |  |  |  |
| I <sub>OP11</sub>   | Operating Current 11  | -    | 0.9  | 1.3  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{OUT}$ = 3V)                                                                                                   |  |  |  |  |  |
| I <sub>OP12</sub>   | Operating Current 12  | -    | 0.8  | 1.1  | mA   | No load (F <sub>SYS</sub> = 1Mhz, V <sub>OUT</sub> = 3V)                                                                                      |  |  |  |  |  |
| I <sub>IDLE9</sub>  | Idle Current 9        | -    | 1    | 1.4  | mA   | No load (F <sub>SYS</sub> = 8Mhz, V <sub>OUT</sub> = 3V)                                                                                      |  |  |  |  |  |
| I <sub>IDLE10</sub> | Idle Current 10       | -    | 0.9  | 1.2  | mA   | No load (F <sub>SYS</sub> = 4Mhz, V <sub>OUT</sub> = 3V)                                                                                      |  |  |  |  |  |
| I <sub>IDLE11</sub> | Idle Current 11       | -    | 0.8  | 1.1  | mA   | No load ( $F_{SYS}$ = 2Mhz, $V_{OUT}$ = 3V)                                                                                                   |  |  |  |  |  |
| I <sub>IDLE12</sub> | Idle Current 12       | -    | 0.7  | 1    | mA   | No load ( $F_{SYS}$ = 1Mhz, $V_{OUT}$ = 3V)                                                                                                   |  |  |  |  |  |
| I <sub>PD13</sub>   | Power down Current 13 | -    | 65   | 85   | uA   | No Load (F <sub>SYS</sub> = 8Mhz, V <sub>OUT</sub> = 3V)<br>Disable built-in DC-DC, In Power-down mode, enable<br>wake-up timer, Enable LVR1  |  |  |  |  |  |
| I <sub>PD14</sub>   | Power down Current 14 | -    | 60   | 80   | uA   | No Load (F <sub>SYS</sub> = 8Mhz, V <sub>OUT</sub> = 3V)<br>Disable built-in DC-DC, In Power-down mode, enable<br>wake-up timer, Disable LVR1 |  |  |  |  |  |
| I <sub>PD15</sub>   | Power down Current 15 | -    | 10   | -    | uA   | No Load (F <sub>SYS</sub> = 8Mhz, V <sub>OUT</sub> = 3V)<br>Disable built-in DC-DC, In Power-down mode: disable<br>wake-up timer, Enable LVR1 |  |  |  |  |  |
| I <sub>PD16</sub>   | Power down Current 16 | -    | 10   | -    | uA   | No Load ( $F_{SYS}$ = 8Mhz, $V_{OUT}$ = 3V)<br>Disable built-in DC-DC, In Power-down mode: disable<br>wake-up timer, Disable LVR1             |  |  |  |  |  |



#### (continued)

|                      | DC-DC Converter            |      |             |      |      |                                                                                                   |  |  |  |  |  |
|----------------------|----------------------------|------|-------------|------|------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Symbol               | Parameters                 | Min. | Тур.        | Max. | Unit | Conditions                                                                                        |  |  |  |  |  |
| V <sub>OUT</sub>     | Output Voltage             | -    | 3.3<br>/2.7 | -    | V    | Depend on VSEL_DC[1:0], not include output Variation.<br>$V_{OUT} = 2.7V(default)/V_{OUT} = 3.3V$ |  |  |  |  |  |
| $V_{\text{BAT}}$     | Operation Start-up Voltage | 1.1  | -           | 1.7  | V    |                                                                                                   |  |  |  |  |  |
| V /V                 | V <sub>OUT</sub> Variation | -    | -           | 3    | %    | V <sub>OUT</sub> - Target V <sub>OUT</sub>  /Target V <sub>OUT</sub> , I <sub>OUT</sub> = 5mA     |  |  |  |  |  |
| I <sub>OUTMAX1</sub> | Maximum output current 1   | 70   | -           | -    | mA   | V <sub>BAT</sub> = 1.5V, V <sub>OUT</sub> = 3.3V                                                  |  |  |  |  |  |
| I <sub>OUTMAX2</sub> | Maximum output current 2   | 100  | -           | -    | mA   | V <sub>BAT</sub> = 1.5V, V <sub>OUT</sub> = 2.7V                                                  |  |  |  |  |  |
| I <sub>OUTMIN1</sub> | Minimum output current 1   | 50   | -           | -    | mA   | V <sub>BAT</sub> = 1.1V, V <sub>OUT</sub> = 3.3V                                                  |  |  |  |  |  |
| I <sub>OUTMIN2</sub> | Minimum output current 2   | 60   | -           | -    | mA   | V <sub>BAT</sub> = 1.1V, V <sub>OUT</sub> = 2.7V                                                  |  |  |  |  |  |
| R <sub>SWON</sub>    | LX Switch-On Resistance    | -    | 1.4         | 2.4  | Ohm  | Same as IDD1. V <sub>LX</sub> = 0.4V. (Note 1)                                                    |  |  |  |  |  |
| T <sub>DC-DCST</sub> | DC-DC start up time        | -    | 4           | 6    | ms   | From 10% V <sub>OUT</sub> to 90% V <sub>OUT</sub>                                                 |  |  |  |  |  |
| EFFI1                | Efficiency 1 (Note 2)      | -    | 85          | -    | %    | V <sub>LX</sub> = 1.5V, V <sub>OUT</sub> = 2.7V, I <sub>OUT</sub> = 30mA                          |  |  |  |  |  |
| EFFI2                | Efficiency 2 (Note 2)      | -    | 85          | -    | %    | V <sub>LX</sub> = 1.5V, V <sub>OUT</sub> = 3.3V, I <sub>OUT</sub> = 30mA                          |  |  |  |  |  |

**Note1:** V<sub>LX</sub> means the DC-DC Input voltage **Note2:** EFFI = {[(Output Voltage) X (Output Current)] ÷ [(Input Voltage) X (Input Current)]} X 100%

|        | Regulator      |      |      |      |      |                                     |  |  |  |  |
|--------|----------------|------|------|------|------|-------------------------------------|--|--|--|--|
| Symbol | Parameters     | Min. | Тур. | Max. | Unit | Conditions                          |  |  |  |  |
| Vo     | Output Voltage | 1.7  | 1.8  | 1.9  | V    | Output voltage used for RD8051 core |  |  |  |  |

|                   | GPIO                                             |                           |      |                         |      |                                                        |  |  |  |  |  |
|-------------------|--------------------------------------------------|---------------------------|------|-------------------------|------|--------------------------------------------------------|--|--|--|--|--|
| Symbol            | Parameters                                       | Min.                      | Тур. | Max.                    | Unit | Conditions                                             |  |  |  |  |  |
| V <sub>OH</sub>   | Output High Voltage (Port0, Port1, and Port2)    | V <sub>оит</sub> -<br>0.6 | -    | -                       | V    | @V <sub>OUT</sub> = 2.7/3.3V (I <sub>OH1</sub> = -4mA) |  |  |  |  |  |
| V <sub>OL</sub>   | Output Low Voltage (Port0, Port1, and Port2)     | -                         | -    | 0.4                     | V    | @V <sub>OUT</sub> = 2.7/3.3V (I <sub>OL1</sub> = 4mA)  |  |  |  |  |  |
| R <sub>RST</sub>  | RSTB internal pull-up resistor                   | -                         | 30   | -                       | kohm | @0V                                                    |  |  |  |  |  |
| V <sub>STIH</sub> | Schmitt Trigger Input High<br>Voltage (all GPIO) | 0.8<br>V <sub>OUT</sub>   | -    | V <sub>OUT</sub>        | V    | @V <sub>OUT</sub> = 2.7V/3.3V                          |  |  |  |  |  |
| V <sub>STIL</sub> | Schmitt Trigger Input Low<br>Voltage (all GPIO)  | GND                       | -    | 0.2<br>V <sub>OUT</sub> | V    | @V <sub>OUT</sub> = 2.7V/3.3V                          |  |  |  |  |  |

|                       | Reset                                                 |                         |      |                         |      |                                            |  |  |  |
|-----------------------|-------------------------------------------------------|-------------------------|------|-------------------------|------|--------------------------------------------|--|--|--|
| Symbol                | Parameters                                            | Min.                    | Тур. | Max.                    | Unit | Conditions                                 |  |  |  |
| $V_{LVR1}$            | LVR1 Threshold Voltage                                | 1.4                     | 1.5  | 1.6                     | V    | Testing Pulse Width > T <sub>PW(LVR)</sub> |  |  |  |
| $V_{LVR2}$            | LVR2 Threshold Voltage                                | 1.8                     | 1.9  | 2.0                     | V    |                                            |  |  |  |
| V <sub>UT(RSTB)</sub> | Schmitt Upper-Threshold<br>Voltage for external reset | 0.8<br>V <sub>OUT</sub> |      | V <sub>OUT</sub>        | V    | @V <sub>OUT</sub> = 2.7V/3.3V              |  |  |  |
| V <sub>LT(RSTB)</sub> | Schmitt Lower-Threshold<br>Voltage for external reset | GND                     |      | 0.2<br>V <sub>OUT</sub> | V    | @V <sub>OUT</sub> = 2.7V/3.3V              |  |  |  |

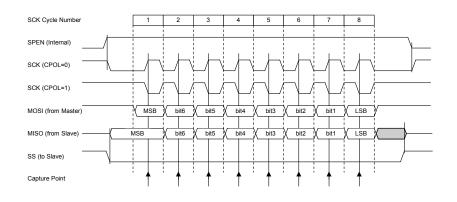
|                                                                                                  | Power Down Mode             |   |                         |   |    |             |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------|---|-------------------------|---|----|-------------|--|--|--|
| Symbol         Parameters         Min.         Typ.         Max.         Unit         Conditions |                             |   |                         |   |    |             |  |  |  |
| V <sub>PDL1</sub>                                                                                | Input Low Voltage 1         | - | 0.3<br>V <sub>ОUT</sub> | - | V  | P2.1 - P2.3 |  |  |  |
| T <sub>Bounce</sub>                                                                              | Bounce time After triggered | - | 15                      | I | ms | P2.1 - P2.3 |  |  |  |



AC Electrical Characteristics ( $V_{BAT}$  = 1.5V, GND = 0V,  $T_A$  = 25°C,  $F_{SYS}$  = 8MHz (internal RC), unless otherwise noted)

|                  | Oscillator                                                                                       |       |    |       |     |                                                                    |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------|-------|----|-------|-----|--------------------------------------------------------------------|--|--|--|--|
| Symbol           | Symbol         Parameters         Min.         Typ.         Max.         Unit         Conditions |       |    |       |     |                                                                    |  |  |  |  |
| F <sub>RC1</sub> | Internal RC Frequency 1                                                                          | 7.6   | 8  | 8.4   | MHz | $\pm 5\%$ @V <sub>OUT</sub> = 2.7V/3.3V, T <sub>A</sub> = 0 - 60°C |  |  |  |  |
| F <sub>RC2</sub> | Internal RC Frequency 2                                                                          | 30.08 | 32 | 33.92 | KHz | $\pm 6\%$ V <sub>OUT</sub> = 2.7V/3.3V, T <sub>A</sub> = 0 - 60°C  |  |  |  |  |

|                          | Reset                                 |      |                 |      |                  |                                                        |  |  |  |  |
|--------------------------|---------------------------------------|------|-----------------|------|------------------|--------------------------------------------------------|--|--|--|--|
| Symbol                   | Parameters                            | Min. | Тур.            | Max. | Unit             | Conditions                                             |  |  |  |  |
| T <sub>PW(RSTB)</sub>    | RESETB Input Low Pulse Width          | -    | 2 <sup>13</sup> | -    | $T_{SYS}$        | F <sub>SYS</sub> = 8MHz                                |  |  |  |  |
| T <sub>PW(LVR1)</sub>    | Drop-Down Pulse Width for<br>LVR1     | -    | 2 <sup>9</sup>  | -    | T <sub>SYS</sub> | F <sub>SYS</sub> = 8MHz, Power < V <sub>LT(LVR1)</sub> |  |  |  |  |
| T <sub>RST(POR)</sub>    | Internal Power-on Reset Hold<br>Time  | -    | 11              | -    | ms               | F <sub>SYS</sub> = 8MHz                                |  |  |  |  |
| T <sub>RST(WDT)</sub>    | Internal Watch-Dog Reset<br>Hold Time | -    | 0.5             | -    | ms               | F <sub>SYS</sub> = 8MHz                                |  |  |  |  |
| T <sub>RST(RSTB)</sub>   | Internal External Reset Hold<br>Time  | -    | 11              | -    | ms               | F <sub>SYS</sub> = 8MHz                                |  |  |  |  |
| T <sub>Period(RSU)</sub> | Resume Reset Period                   | -    | 24              | -    | μs               | 16 clock/2MHz plus 128clock/8MHz RC Resonator          |  |  |  |  |


|                            | GPIO                                 |      |                |      |                  |                         |  |  |  |
|----------------------------|--------------------------------------|------|----------------|------|------------------|-------------------------|--|--|--|
| Symbol                     | Parameters                           | Min. | Тур.           | Max. | Unit             | Conditions              |  |  |  |
| t <sub>PW(Ext0/Ext1)</sub> | Noise cancellation for<br>EXT0/EXT01 | -    | 2 <sup>2</sup> | -    | T <sub>SYS</sub> | F <sub>SYS</sub> = 8MHz |  |  |  |

|                   | Voltage Comparator                                                                               |   |   |    |    |                        |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------|---|---|----|----|------------------------|--|--|--|--|
| Symbol            | Symbol         Parameters         Min.         Typ.         Max.         Unit         Conditions |   |   |    |    |                        |  |  |  |  |
| T <sub>CONV</sub> | Voltage comparator compare time                                                                  | - | - | 5  | us |                        |  |  |  |  |
| VC <sub>VAR</sub> | Voltage reference variation                                                                      |   |   | ±5 | %  | @ 0.8V, 0.9V, and 1.0V |  |  |  |  |





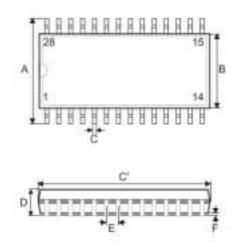
# SPI Interface Timing Requirements (Master Mode)

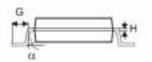


|        | SPI Interface      |     |                      |      |      |                                                        |  |  |  |  |
|--------|--------------------|-----|----------------------|------|------|--------------------------------------------------------|--|--|--|--|
| Symbol | Symbol Parameters  |     | Тур.                 | Max. | Unit | Conditions                                             |  |  |  |  |
| SCK1   | SCK frequency      | -   | -                    | 2    | MHz  | @ Master mode (f <sub>sck</sub> = 1/t <sub>sck</sub> ) |  |  |  |  |
| SCK2   | SCK high/low       | -   | 50%                  | -    |      | duty cycle @ Master mode                               |  |  |  |  |
| SCK3   | SCK rise/fall time | -   | 3.6                  | 100  | ns   | @ Master mode (C <sub>load</sub> = 5pF)                |  |  |  |  |
| SCK4   | MOSI to SCK        | 120 | 0.5*t <sub>sck</sub> | -    | ns   | @ Master mode                                          |  |  |  |  |
| SCK5   | SCK to MOSI (hold) | 200 | -                    | -    | ns   | @ Master mode                                          |  |  |  |  |
| SCK6   | SCK to MISO (hold) |     | 10                   | 120  | ns   | @ Master mode                                          |  |  |  |  |



# **Ordering Information**


| Part No.  | Package  |
|-----------|----------|
| SH68F093H | CHIPFORM |
| SH68F093M | 28 SOP   |

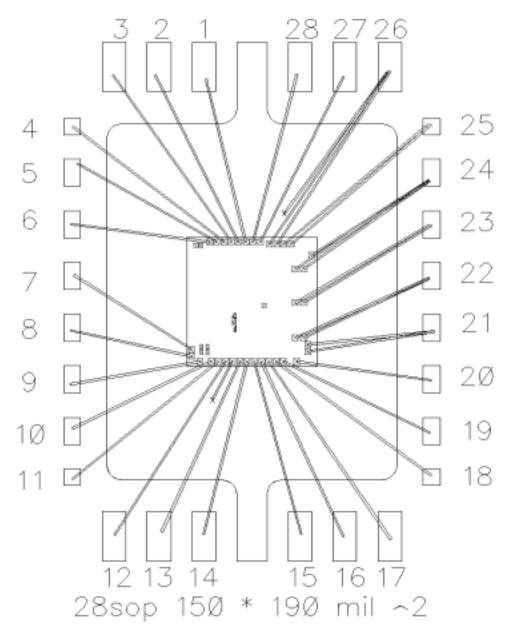



# Package Information 28-Pin SOP Outline Dimensions

unit: mil

SH68F093






| Sumbol |      | Dimensions in mil |      |
|--------|------|-------------------|------|
| Symbol | Min. | Nom.              | Max. |
| A      | 394  | _                 | 419  |
| В      | 290  | _                 | 300  |
| С      | 14   | _                 | 20   |
| C,     | 697  | _                 | 713  |
| D      | 92   | _                 | 104  |
| E      | _    | 50                | _    |
| F      | 4    | _                 | _    |
| G      | 16   | _                 | 50   |
| н      | 4    | _                 | 12   |
| α      | 0°   | _                 | 10°  |





# Bonding Diagram





| ad Location |          |         |         | unit: $\mu$ m  |
|-------------|----------|---------|---------|----------------|
| Pad NO.     | Pad Name | Х       | Y       | 28 SOP Pin NO. |
| 1           | port0[0] | 809.64  | 81.98   | 1              |
| 2           | port0[1] | 809.64  | 176.98  | 2              |
| 3           | port0[2] | 809.64  | 271.98  | 3              |
| 4           | port0[3] | 809.64  | 366.98  | 4              |
| 5           | port0[4] | 809.64  | 461.98  | 5              |
| 6           | port0[5] | 809.64  | 556.98  | 6              |
| 7           | port0[6] | -643.46 | 788.64  | 7              |
| 8           | port0[7] | -738.46 | 788.64  | 8              |
| 9           | port1[0] | -809.64 | 681.53  | 9              |
| 10          | port1[1] | -809.64 | 539.1   | 10             |
| 11          | port1[2] | -809.64 | 444.09  | 11             |
| 12          | port1[3] | -809.64 | 349.09  | 12             |
| 13          | GND      | -809.64 | 254.09  | bound to frame |
| 14          | port1[4] | -809.64 | 159.09  | 13             |
| 15          | port1[5] | -809.64 | 64.09   | 14             |
| 16          | port1[6] | -809.64 | -30.91  | 15             |
| 17          | port1[7] | -809.64 | -125.92 | 16             |
| 18          | port2[0] | -809.64 | -220.91 | 17             |
| 19          | port2[1] | -809.64 | -315.91 | 18             |
| 20          | port2[2] | -809.64 | -410.91 | 19             |
| 21          | port2[3] | -809.64 | -586.64 | 20             |
| 22          | GND3     | -674.76 | -731.64 | 21             |
| 23          | GND2     | -579.76 | -731.64 | 21             |
| 24          | GND      | -484.76 | -681.6  | 22             |
| 25          | GND      | -484.76 | -571.6  | 22             |
| 26          | LX       | -15.23  | -681.6  | 23             |
| 27          | LX       | -15.23  | -571.6  | 23             |
| 28          | VOUT     | 442.77  | -681.6  | 24             |
| 29          | VOUT     | 446.77  | -571.6  | 24             |
| 30          | VDDIN    | 632.96  | -788.64 | 24             |
| 31          | V18      | 779.64  | -517.02 | 25             |
| 32          | VCC      | 779.64  | -422.02 | 25             |
| 33          | GND      | 779.64  | -327.02 | 26             |
| 34          | GND      | 779.64  | -232.02 | 26             |
| 35          | VIN      | 809.64  | -108.02 | 27             |
| 36          | RSTB     | 809.64  | -13.02  | 28             |



# **Data Sheet Revision History**

| Revision No. | History                                                      | Date      |
|--------------|--------------------------------------------------------------|-----------|
| 2.0          | Modify IPD5/IPD6/IPD11/IPD12/IPD15/IPD16 Current to 10uA Typ | May. 2010 |
| 1.0          | Original                                                     | Aug. 2009 |