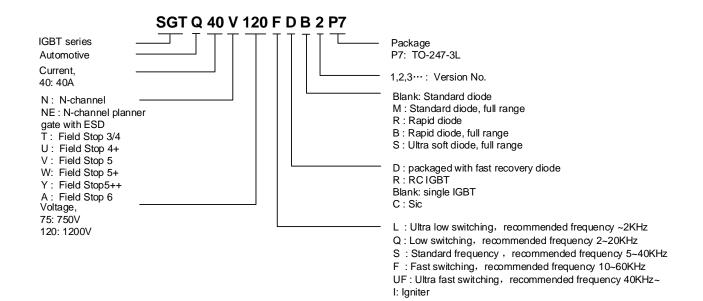

40A, 1200V FIELD STOP IGBT

DESCRIPTION


The SGTQ40T120SDB2P7 field stop IGBT adopts Silan Trench Field Stop IV technology. It features low conduction loss and switching loss, is applicable to photovoltaic, UPS, SMPS and PFC fields.

FEATURES

- AEC-Q101 qualified
- 40A, 1200V, $V_{CE(sat)(typ.)}$ =1.75V@ I_C =40A
- Low conduction loss
- Fast switching
- High input impedance
- T_{Jmax}. =175°C

NOMENCLATURE

ORDERING INFORMATION

Part No.	Package	Marking	Hazardous Substance Control	Packing Type
SGTQ40T120SDB2P7	TO-247-3L	Q40T120SDB2	Halogen free	Tube

Rev.:1.2 http://www.silan.com.cn Page 1 of 12

ABSOLUTE MAXIMUM RATINGS (UNLESS OTHERWISE NOTED, T_C=25°C)

Charac	teristics	Symbol	Ratings	Unit
Collector-emitter V	oltage	V_{CE}	1200	V
Gate-emitter Voltage		V_{GE}	±20	V
Transient Gate-Em (t _p ≤10µs, D<0.010)	•	V_{GE}	±30	V
Calla stan Commant	T _C =25°C	- I _C	80	Δ.
Collector Current	T _C =100°C		40	A
Pulsed Collector Current		Ісм	160	Α
Diode current ——	T _C =25°C		80	Α
	T _C =100°C	l _F	40	А
Diode Pulse Current		I _{FM}	160	А
Power Dissipation (T _C =25°C)		P _{tot}	429	W
Operating Junction Temperature		TJ	-40∼+175	°C
Storage Temperature Range		T _{stg}	-55∼+150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Thermal Resistance, Junction to Case	R _{th(j-C)}				0.35	°C/W
(IGBT)	T (III(J-C)				0.00	0/11
Thermal Resistance, Junction to Case	0				0.45	0000
(FRD)	$R_{th(j-C)}$				0.45	°C/W
Thermal Resistance, Junction to	0				40	0000
Ambient (IGBT)	$R_{th(j-a)}$				40	°C/W
Soldering Temperature (in line)	T_{sold}	15 ⁺² ₋₀ sec, 1time			260	°C

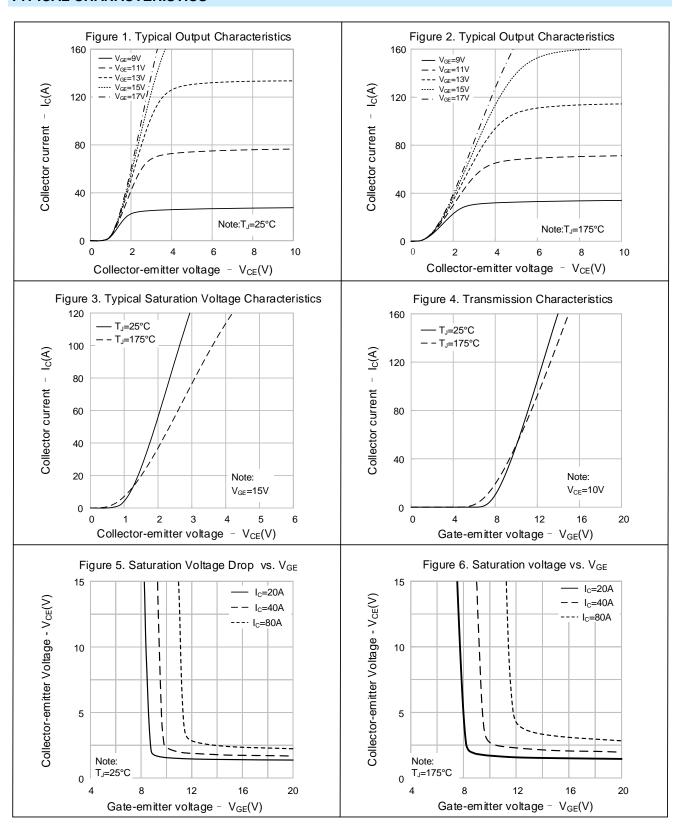
ELECTRICAL CHARACTERISTICS OF IGBT (UNLESS OTHERWISE NOTED, TJ=25°C)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Collector-emitter Breakdown Voltage	V _{(BR)CES}	V _{GE} =0V, I _C =500μA	1200			V
Zero Gate Voltage Collector Current	I _{CES}	V _{CE} =1200V, V _{GE} =0V			400	μA
Gate-emitter Leakage Current	I _{GES}	V _{GE} =20V, V _{CE} =0V			±200	nA
Gate-emitter Threshold Voltage	$V_{GE(th)}$	I _C =1.5mA, V _{CE} =V _{GE}	4.2	5.8	7.4	V
Collector-emitter Saturation Voltage	V	I _C =40A, V _{GE} =15V, T _J =25°C	1	1.75	2.2	V
Collector-enfilter Saturation voltage	$V_{CE(sat)}$	I _C =40A, V _{GE} =15V, T _J =175°C		2.1		V
Input Capacitance	C _{ies}	V _{CE} =30V		4257		
Output Capacitance	Coes	V _{GE} =0V		197		pF
Reverse Transfer Capacitance	Cres	f=1MHz		81		
Turn-On Delay Time	T _{d(on)}	.,,		50		ns
Rise Time	Tr	V _{CE} =600V		28		
Turn-Off Delay Time	$T_{d(off)}$	I _C =40A		297		
Fall Time	T_f	$R_g=10\Omega$ $V_{GE}=15V$		94		
Turn-on Energy	Eon	inductive load T _J =25°C		2.62		mJ
Turn-off Energy	E _{off}			1.51		
Total Switching Energy	E _{st}			4.13		
Turn-On Delay Time	T _{d(on)}	V _{CE} =600V		46		
Rise Time	T _r			15		20
Turn-Off Delay Time	T _{d(off)}	I _C =20A		321		ns
Fall Time	T_f	$R_g=10\Omega$		92		
Turn-on Energy	E _{on}	V _{GE} =15V		1.31		
Turn-off Energy	E _{off}	inductive load - T _J =25°C		0.88		mJ
Total Switching Energy	E _{st}			2.19		
Total Gate Charge	Qg			267		
Gate to Emitter Charge	Q _{ge}	V _{CE} =600V, I _C =40A, V _{GE} =15V		41		nC
Gate to Collector Charge	Q _{gc}			141		

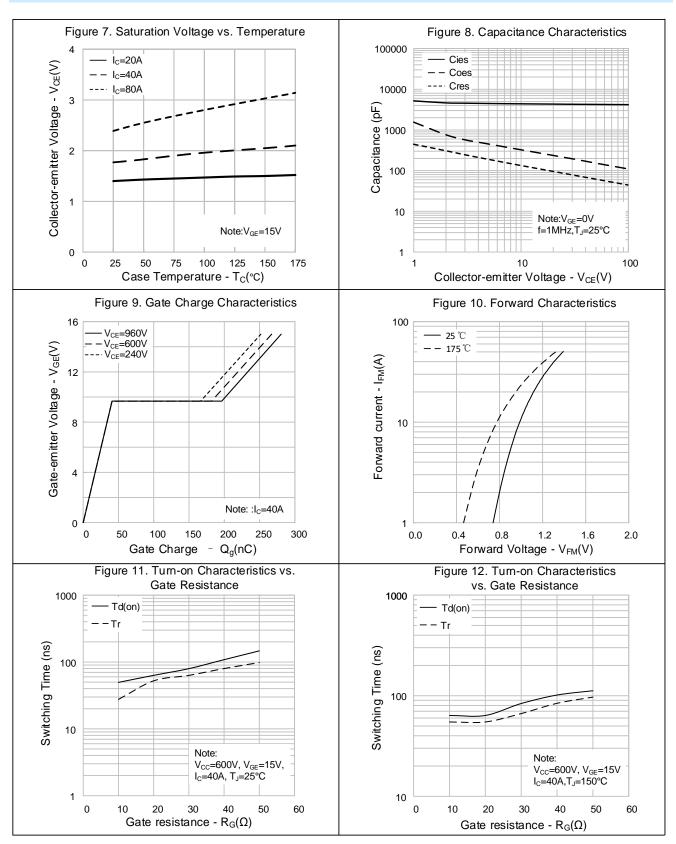
ELECTRICAL CHARACTERISTICS OF FRD (T_J=25°C, UNLESS OTHERWISE NOTED)

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Diedo Ferriard Veltere	V _F	I _F =40A, T _J =25°C	-	1.35	1.7	V
Diode Forward Voltage		I _F =40A, T _J =175°C	-	1.21	1	
Diode Reverse Recovery Time	Trr	1 404 dl /dt 4004/up		512	1	ns
Diode Reverse Recovery Charge	Q _{rr}	l _{ES} =40A, dl _{ES} /dt=100A/μs, V _R =50V, T _J =25°C		1.92		μC
Diode Reverse Recovery Current	I _{rrm}	V _R =50V, T _J =25°C		10	-	Α

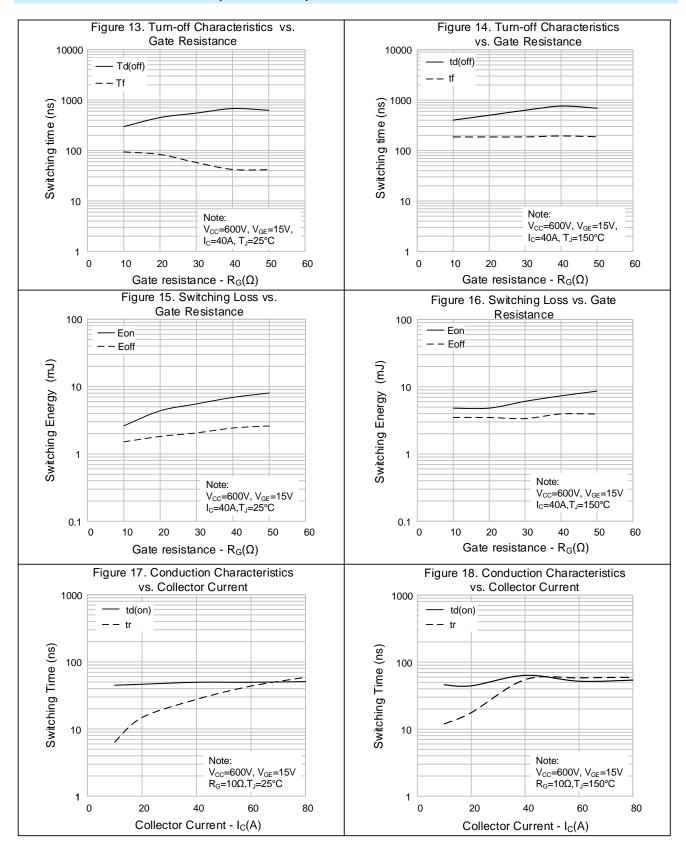
Rev.:1.2

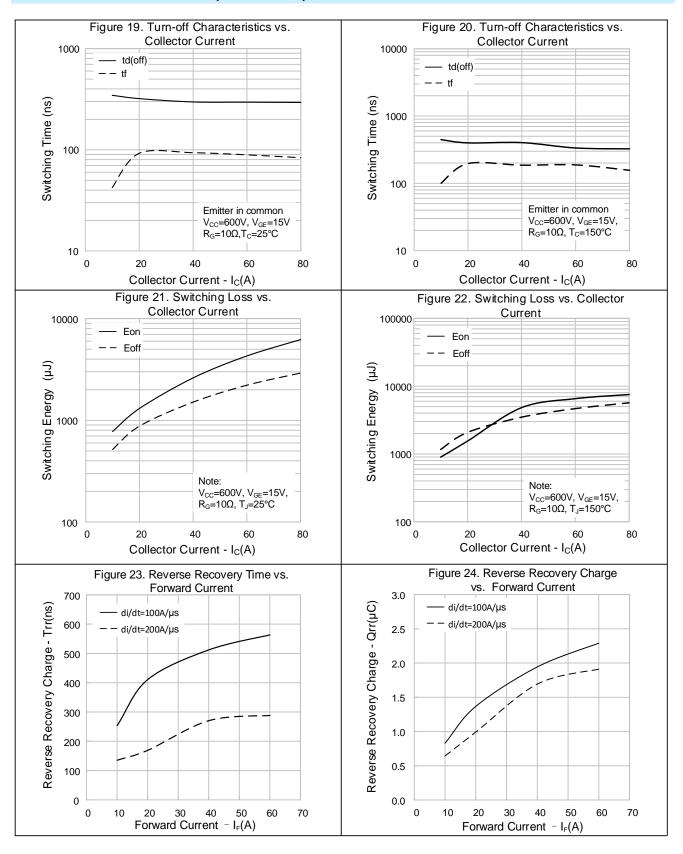

ELECTRICAL CHARACTERISTICS OF IGBT (T_J=150°C)

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Turn-On Delay Time	$T_{d(on)}$			64	-	
Rise Time	Tr	V _{CE} =600V		55	-	ns
Turn-Off Delay Time	$T_{d(off)}$	I_{C} =40A R_{q} =10 Ω	-	402	1	115
Fall Time	T_f	$V_{GE}=10\Omega$	1	186	1	
Turn-on Energy	E _{on}	inductive load	1	4.82	1	
Turn-off Energy	E_{off}	T _i =150°C	1	3.49	1	mJ
Total Switching Energy	E _{st}	1 J=150°C		8.31	-	
Turn-On Delay Time	$T_{d(on)}$			44	-	
Rise Time	Tr	V _{CE} =600V		18	-	20
Turn-Off Delay Time	$T_{d(off)}$	I _C =20A		399	-	ns
Fall Time	Tf	$R_g=10\Omega$		197		
Turn-on Energy	Eon	V _{GE} =15V inductive load		1.55		
Turn-off Energy	E _{off}	Tu=150°C		2.08		mJ
Total Switching Energy	E _{st}	1,-150 0		3.63		

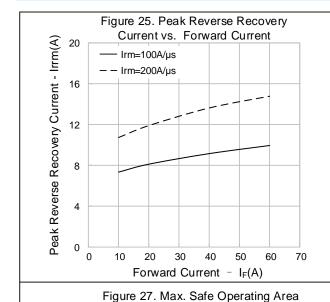

Rev.:1.2

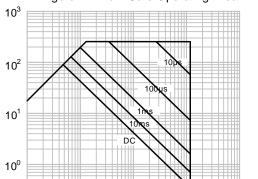
TYPICAL CHARACTERISTICS



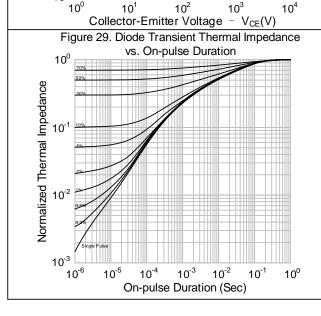

Rev.:1.2

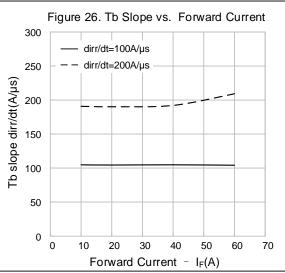
Rev.:1.2

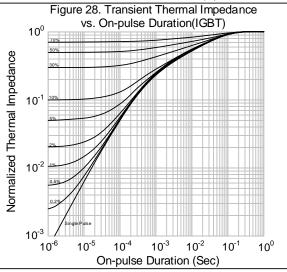




Rev.:1.2 Page 8 of 12

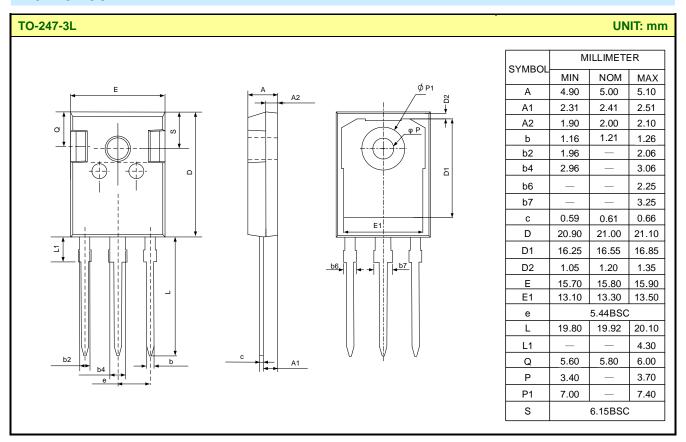





Collector Current - I_C(A)

10⁻¹

10⁰



Rev.:1.2 http://www.silan.com.cn Page 9 of 12

10⁴

PACKAGE OUTLINE

IGBT DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the IGBT electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- IGBT devices should be packed in antistatic/conductive containers for transportation.

Rev.:1.2

Important notice:

- 1. Silan reserves the right to make changes of this instruction without notice.
- 2. Customers should obtain the latest relevant information when purchasing and should verify whether such information is latest and complete. Please read this instruction and application manual and related materials carefully before using products, including the circuit operation precautions, etc.
- Silan does not give any warranties as to the suitability of the Silan's product for any specific use. The design intent, design definition 3. and design of the product are not intended for application (the application stated in this instruction includes use, etc.) in medical equipment, life-saving equipment, aerospace equipment, non-civil equipment or non-civil use, etc. (the equipment stated in this instruction includes systems, devices, etc., all referred to as equipment), The product should not be used in any equipment or system whose manufacture, use or sale is prohibited under any applicable laws or regulations ("unintended use"). If the product is used for unintended use, therefore the full risks of such products application are borne by the customer and Silan assumes no liability for the product used for the unintended use. If the customer intends to use the Silan's product in a application where malfunction or failure can be reasonably be expected to result in personal injury, or serious property, or environment damage, the customer shall make adequate assessment, testing and verification, and Silan shall not be liable for such applications.
- The application of the product described in this instruction, the application manual of the product and related materials is for illustrative purposes only, and Silan makes no warranty that such application can be used directly without further testing, verification or modification. Silan is not responsible for any assistance in product application or customers' product design. Customer shall be responsible for the application of Silan's products and the design, manufacture and use of customers' products using Silan's products (in this document, "use products", "apply Silan's products", "product application" and "customers' products using Silan's products" are synonymous). It is the sole responsibility of the customer to take the following actions: 1) Verify and determine whether Silan's products are suitable for the customers' applications and customers' products; 2) All applicable standards of the customers' industry shall be complied with and fully tested and verified when applying Silan's product or using Silan's product to develop and design customers' products; 3) Although Silan is constantly committed to improve product's quality and reliability, semiconductor products have possibility to malfunction or fail in various application environments. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for customers' products using Silan's product to minimize risks and avoid situations in which a malfunction or failure could cause bodily injury or damage to property; 4) When using the products, please do not exceed the maximum rating of the products, Stress above one or more limiting values will cause damage to the product and the equipment or affect the reliability to the equipment (customers' product); 5) Ensure customers' product using Silan's product are designed, manufactured and used in full compliance with all applicable standards, safety standards and other requirements of the customers' industry. The parameters stated in this instruction may and do vary in different applications, actual performance may vary over time. Customers must use the products within their effective static storage period, please contact Silan sales or Silan customer service support and sales management department if there is any questions about the effective static storage period, Silan does not assume any responsibility if the product has exceeded the static storage period when it
- Do not disassemble, reverse-engineer, alter, modify, decompile or copy product, without Silan's prior written consent. 5.
- Please identify Silan's trademark when purchasing our product. Please contact us if there is any question. Our products are not sold through TAOBAO or any other third-party e-commerce platforms. If customers purchase from such platforms, please contact us in writing before purchasing to confirm whether the product is authentic and original from Silan.
- 7. Please use and apply product in compliance with all applicable laws and regulations, including but not limited to trade control regulations etc. The product is civil electronic product, please do not use it in non-civil fields.
- Product promotion is endless, our company will wholeheartedly provide customers with better products! 8.
- 9. Website: http://www.silan.com.cn

Rev.:1.2

Part No.: SGTQ40T120SDB2P7 Document Type: Datasheet

Copyright: HANGZHOU SILAN MICROELECTRONICS CO.,LTD Website: http://www.silan.com.cn

Rev.: 1.2

Revision History:

1. Update features

2. Update some parameter names

Rev.: 1.1

Revision History:

1. Update package outline

Rev.: 1. Revision History:

1. First release

HANGZHOU SILAN MICROELECTRONICS CO.,LTD

http://www.silan.com.cn Page 12 of 12