SGM9121 8MHz, 5th-Order Video Driver with 6dB Gain #### PRODUCT DESCRIPTION The SGM9121 is a single rail-to-rail 5th-order output reconstruction filter with a -3dB bandwidth of 8MHz and 34.8V/µs slew rate. Operating from single power supply ranging from 3.0V to 5.5V and sinking an ultra-low 7mA quiescent current, the SGM9121 is ideally suited for low power, battery-operated applications. SGM9121 employs an internal level shift circuit that avoids sync-pulse clipping and allows DC-coupled output. If AC coupling is preferred, the SGM9121 offers a sag-correction feature that significantly reduces the size of the output coupling capacitor. SGM9121 has a power-down disable feature that reduces the supply current to 0.72µA, dramatically reducing power consumption and prolonging battery life. It is specified over the extended -40°C to +85°C temperature range. #### **BLOCK DIAGRAM** #### NOTES - 1. A $10k\Omega$ resistor must be serially connected to $\overline{\text{DISABLE}}$ pin. - 2. Power supply V_{CC} must be sequenced on first before input video signals. #### **FEATURES** - Excellent Video Performance - 5th-Order Reconstruction Filter - Internal Gain: 6dB - Rail-to-Rail Output - SAG Correction Reduces AC Coupling Capacitor Size - Input Voltage Range Includes Ground - AC-Coupled Input - Single Power Supply: 3.0V to 5.5V - Low Power - 7mA Typical Supply Current 0.72µA Supply Current when Disabled - Available in Green SC70-6 Package #### **APPLICATIONS** Video Amplifiers Cable and Satellite Set-Top Boxes Communication Devices Video on Demand Portable and Handheld Products Personal Video Recorders DVD Players HDTV ## PACKAGE/ORDERING INFORMATION | ORDER NUMBER | PACKAGE | TEMPERATURE | PACKAGE | MARKING | |----------------|-------------|--------------|---------------------|-------------| | | DESCRIPTION | RANGE | OPTION | INFORMATION | | SGM9121YC6G/TR | SC70-6 | -40℃ to +85℃ | Tape and Reel, 3000 | SOAXX | NOTE: Order number and package marking are defined as the follow: #### MARKING INFORMATION #### **ABSOLUTE MAXIMUM RATINGS** | Supply Voltage, V _{CC} to GND | 6V | |--|--------------------------------------| | Input Voltage | GND - 0.3V to V_{CC} + 0.3V | | Storage Temperature Range | 65°C to +150°C | | Junction Temperature | 150°C | | Operating Temperature Range | 40°C to +85°C | | Lead Temperature Range (Soldering | 10 sec) 260°C | | ESD Susceptibility | | | HBM | 8000V | | MM | 400V | #### NOTE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **CAUTION** This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet. # PIN CONFIGURATION (TOP VIEW) # **PIN DESCRIPTION** | PIN | NAME | FUNCTION | |-----|-----------------|-----------------| | 1 | IN | Signal Input. | | 2 | GND | Ground. | | 3 | SAG | SAG Correction. | | 4 | OUT | Signal Output. | | 5 | DISABLE | Shutdown Input. | | 6 | V _{CC} | Power Supply. | **ELECTRICAL CHARACTERISTICS:** $V_{CC} = 5.0V$ (At R_L = 150 Ω connected to GND, V_{IN} = 1 V_{PP} and C_{IN} = 0.1 μ F, all outputs AC-coupled, referenced to 400kHz, unless otherwise noted.) | PARAMETER | CONDITIONS | TEMP | MIN | TYP | MAX | UNITS | | |---|--|----------------|------|------|------|-------|--| | INPUT CHARACTERISTICS | | | | | | | | | Output Level Shift Voltage (V _{OLS}) | V _{IN} = 0V, No load | +25°C | | 344 | 480 | mV | | | Output Level Stillt Voltage (Vols) | VIN - UV, NO IOAU | -40°C to +85°C | | | 587 | | | | Input Voltage Clamp (V _{CLAMP}) | I _{IN} = - 3.5mA | +25°C | -180 | -111 | | mV | | | | 1 N 3.311 A | -40°C to +85°C | -269 | | | | | | Clamp Charge Current | V _{IN} = V _{CLAMP} - 100mV | +25°C | -6.0 | -4.8 | | - mA | | | olamp ollarge outrent | VIN VCLAMP TOOTHV | -40°C to +85°C | -6.4 | | | | | | Clamp Discharge Current | V _{IN} = 500mV | +25°C | | 1.9 | 3 | μA | | | Olding Bloomings Current | VIN COOMV | -40°C to +85°C | | | 7 | μ/ | | | Voltage Gain (A _V) | $R_L = 150\Omega$ | +25°C | 5.6 | 6 | 6.4 | dB | | | vollago calli (7.17) | 1001 | -40°C to +85°C | 5.5 | | 6.5 | u.b | | | OUTPUT CHARACTERISTICS | | | | | | | | | Output Voltage High Swing | $V_{IN} = 3.0V, R_{L} = 150\Omega$ to GND | +25°C | 4.60 | 4.79 | | V | | | | VIIV G.GV, I'L TOOLE TO GIVE | -40°C to +85°C | 4.57 | | | , , | | | | V_{IN} = 0.5V, Out shorted to GND through 10 Ω | +25°C | 90 | 122 | | mA | | | Output Short-Circuit Current (I _{SC}) | The oter, eat enerted to ette among. Total | -40°C to +85°C | 80 | | | ША | | | | V_{IN} = 1.5V, Out shorted to V_{CC} through 10 Ω | +25°C | | -131 | -100 | mA | | | VIN 1.5V, Sat Shorted to VCC unc | | -40°C to +85°C | | | -89 | | | | POWER SUPPLY | | 1 | | | | 1 | | | Operating Voltage Range (V _{CC}) | | +25°C | 3.0 | | 5.5 | V | | | Power Supply Rejection Ratio (PSRR) | V _{CC} = 3.5V to 5.0V | +25°C | 45 | 52 | | - dB | | | | 100 010 10 010 1 | -40°C to +85°C | 44 | | | | | | Quiescent Current (I _Q) | $V_{IN} = 0.5V$, $\overline{DISABLE} = V_{CC}$, $R_L = 0$ | +25°C | | 7.0 | 9.5 | mA | | | | 110 515 1, 516, 152 1 166, 112 | -40°C to +85°C | | | 11 | | | | Supply Current when Disabled | DISABLE = 0V | +25°C | | 0.72 | 10 | μΑ | | | , | | -40°C to +85°C | | | 13 | μ, τ | | | DYNAMIC PERFORMANCE | | | | | | 1 | | | -0.1dB Bandwidth | | +25°C | | 5.56 | | MHz | | | -3dB Bandwidth | | +25°C | | 7.76 | | MHz | | | Filter Response (Normalized Gain) | f _{IN} = 27MHz | +25°C | | 42.4 | | dB | | | Slew Rate | 2V Output step, 80% to 20% | +25°C | | 34.8 | | V/µs | | | Differential Gain Error (DG) | PAL DC-coupled | +25°C | | 0.53 | | % | | | | PAL AC-coupled | +25°C | | 0.27 | | % | | | Differential Phase Error (DP) | PAL DC-coupled | +25°C | | 1.30 | | ۰ | | | | PAL AC-coupled | +25°C | | 1.09 | | ۰ | | | Group Delay Variation (D/DT) | Difference between 400kHz and 6.5MHz | +25°C | | 30.3 | 1 | ns | | | Fall Time | 2V Output step, 80% to 20% | +25°C | | 34.5 | 1 | ns | | | Rise Time | 2V Output step, 80% to 20% | +25°C | | 35.7 | | ns | | | POWER-DOWN DISABLE | T | T | ī | | | | | | DISABLE (Logic-Low Threshold) | V _{CC} = 5V | +25°C | | | 0.4 | V | | | DISABLE (Logic-High Threshold) | $V_{CC} = 5V$ | +25°C | 1.2 | | | V | | # TYPICAL PERFORMANCE CHARACTERISTICS At V_{CC} = 5V, T_A = +25°C, R_L = 150 Ω , all outputs AC-coupled, unless otherwise noted. # TYPICAL PERFORMANCE CHARACTERISTICS At V_{CC} = 5V, T_A = +25°C, R_L = 150 Ω , all outputs AC-coupled, unless otherwise noted. ## APPLICATION INFORMATION The SGM9121 low cost, integrated, 5th-order video filter is intended to replace passive LC filters and drivers in low voltage portable video applications. The SGM9121 input must be AC-coupled because the input capacitor stores the clamp voltage. It needs a typical value of $0.1\mu F$ for the input clamp to meet the Line Droop specification. The SGM9121 output can drive an AC- or DC-coupled doubly terminated coax (150Ω) load (see Figure 1). DC coupling the output removes the need for an expensive and large output coupling capacitor (see Figure 2). If an AC-coupled output is needed, the SAG correction circuit can be used to reduce the AC output coupling capacitor value. Offering SAG correction, fixed gain of 6dB, and a 5thorder low pass filter in a tiny space saving package makes the SGM9121 well suited for space sensitive applications such as digital cameras, cellular phones and other portable devices. #### Enable/Shutdown The SGM9121 has a shutdown feature that disables the output and reduces the quiescent current to $0.72\mu A$. This feature is particularly useful in portable applications, such as video cameras, hand held gaming devices and cellular phones, where video filtering and driving capability are required. #### Internal Sync Clamp The typical embedded video DAC operates from a ground referenced single supply. This becomes an issue because the lower level of the sync pulse output may be at a 0V reference level to some positive level. The problem is that presenting a 0V input to most single supply driven amplifiers will saturate the output stage of the amplifier, resulting in a clipped sync tip and degrading the video image. A larger positive reference may offset the input above its positive range. The SGM9121 features an internal sync clamp and offset function to level shift the entire video signal to the best level before it reaches the input of the amplifier stage. These features are also helpful to avoid saturation of the output stage of the amplifier by setting the signal closer to the optimal voltage range. The Typical Application Diagram of the SGM9121 in Figure 1 is divided into four sections. The first, Section A is the Sync Clamp. The AC-coupled video sync signal is pulled negative by a current source at the input of the comparator amplifier. When the sync tip goes below the comparator threshold, the comparator output is driven negative, and the PMOS device turns on, clamping sync tip to near ground level. The network triggers on the sync tip of video signal. Figure 1. AC-Coupled Input/AC-Coupled Output ## APPLICATION INFORMATION Figure 2. AC-Coupled Input/DC-Coupled Output #### **SAG Correction** The SGM9121 can use the SAG configuration if an AC-coupled output video signal is needed. SAG correction refers to the low-frequency compensation for the high pass filter formed by the 150Ω load and the output capacitor. In video applications, the cutoff frequency must be low enough to pass the vertical sync interval to avoid field tilt. This cutoff frequency should be less than 5Hz, and the coupling capacitor must be very large in normal configuration, typically 220 μF . In SAG configuration, the SGM9121 removes the need for large coupling capacitors, and instead only requires one $22\mu F$ and one $47\mu F$ capacitors (Figure 1) to achieve the same performance as the large capacitor. ## The Sallen Key Low Pass Filter The Sallen Key in a classic low pass configuration is illustrated in Figure 1. The filter provides a very stable low pass function, and in the case of the SGM9121, a 5th-order roll-off at around 8MHz. The 5th-order function is accomplished with an RC low pass network placed in series with and before the Sallen Key. One pole provided by the RC network and poles two and three provided by the Sallen Key produce a nice 5th-order roll-off at around 8MHz. #### Layout and Power-Supply Bypassing The SGM9121 operates from single 3.0V to 5.5V supply. Bypass the supply with a $0.1\mu\text{F}$ capacitor as close to the pin as possible. It is recommended to use microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the device's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design quidelines: - Do not use IC sockets; they increase parasitic capacitance and inductance. - Do not use wire-wrap boards; they are too inductive. - Use surface-mount instead of through-hole components for better, high-frequency performance. - Use a PC board with at least two layers; it should be as free from voids as possible. - Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners. # PACKAGE OUTLINE DIMENSIONS # SC70-6 RECOMMENDED LAND PATTERN (Unit: mm) | Symbol | _ | nsions
imeters | Dimensions
In Inches | | | |--------|-----------|-------------------|-------------------------|-------|--| | | MIN MAX | | MIN | MAX | | | Α | 0.900 | 1.100 | 0.035 | 0.043 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | A2 | 0.900 | 1.000 | 0.035 | 0.039 | | | b | 0.150 | 0.350 | 0.006 | 0.014 | | | С | 0.080 | 0.150 | 0.003 | 0.006 | | | D | 2.000 | 2.200 | 0.079 | 0.087 | | | Е | 1.150 | 1.350 | 0.045 | 0.053 | | | E1 | 2.150 | 2.450 | 0.085 | 0.096 | | | е | 0.65 | TYP | 0.026 TYP | | | | e1 | 1.300 | BSC | 0.051 BSC | | | | L | 0.525 REF | | 0.021 | REF | | | L1 | 0.260 | 0.460 | 0.010 | 0.018 | | | θ | 0° | 8° | 0° 8° | | | # TAPE AND REEL INFORMATION ## **REEL DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. ## **KEY PARAMETER LIST OF TAPE AND REEL** | Package Type | Reel Diameter | Reel Width
W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |--------------|---------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | SC70-6 | 7" | 9.5 | 2.4 | 2.5 | 1.2 | 4.0 | 4.0 | 2.0 | 8.0 | Q3 | ## **CARTON BOX DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. ## **KEY PARAMETER LIST OF CARTON BOX** | Reel Type | Length
(mm) | Width
(mm) | Height
(mm) | Pizza/Carton | |-------------|----------------|---------------|----------------|--------------| | 7" (Option) | 368 | 227 | 224 | 8 | | 7" | 442 | 410 | 224 | 18 |