

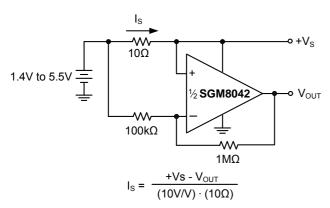
SGM8042 670nA, Rail-to-Rail I/O Operational Amplifier

PRODUCT DESCRIPTION

The SGM8042 is guaranteed to operate with a single supply voltage as low as 1.4V, while drawing less than 670nA (TYP) of quiescent current per amplifier. This device is also designed to support rail-to-rail input and output operation. This combination of features supports battery-powered and portable applications.

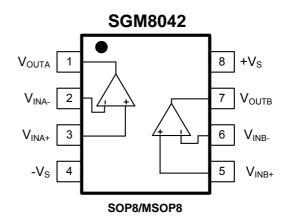
The SGM8042 has a gain bandwidth product of 14.5kHz (TYP) and is unity gain stable. These specifications make this operational amplifier appropriate for low frequency applications, such as battery current monitoring and sensor conditioning.

The SGM8042 is offered in dual configuration. It is specified for the extended industrial (-40°C to +85°C) temperature range. The SGM8042 is available in the Green SOP8 and MSOP8 packages.


FEATURES

- Low Quiescent Current: 670nA/Amplifier (TYP)
- Rail-to-Rail Input and Output
- Gain Bandwidth Product: 14.5kHz at V_S = 5V (TYP)
- Wide Supply Voltage Range: 1.4V to 5.5V
- Unity Gain Stable
- -40°C to +85°C Operating Temperature Range
- Available in Green SOP8 and MSOP8 Packages

APPLICATIONS


Toll Booth Tags
Wearable Products
Temperature Measurement
Battery Powered system

TYPICAL APPLICATION

High Side Battery Current Sensor

PIN CONFIGURATIONS (Top View)

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM8042	SGM8042YS8G/TR	SOP8	Tape and Reel, 2500	SGM8042YS8
	SGM8042YMS8G/TR	MSOP8	Tape and Reel, 3000	SGM8042YMS8

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	/ to (+V _S) + 0.1V . (-V _S) – (+V _S)
Storage Temperature Range	-65°C to +150°C
Junction Temperature	150°C
Operating Temperature Range	40°C to +85°C
Lead Temperature Range (Soldering 10 sec)	
	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

NOTE:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGM8042

ELECTRICAL CHARACTERISTICS

+V_S = +1.4V to +5.0V, -V_S = GND, T_A = +25°C, V_{CM} = +V_S / 2, V_{OUT} ≈ +V_S / 2 and R_L = 1M Ω to +V_S / 2⁽¹⁾, unless otherwise noted.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
DC ELECTRICAL CHARAC	TERISTICS	•					
Input Offset Voltage (Vos)		$V_{CM} = +V_S/2$		0.4	2.5	mV	
Input Offset Voltage Drift (Δ'	V _{OS} /Δ _T)	$V_{CM} = +V_S/2, -40^{\circ}C \le T_A \le +85^{\circ}C$		2.5		μV/°C	
Power Supply Rejection Ra	tio (PSRR)	+V _S = 1.4V to 5.5V		80		dB	
Common-Mode Input Range	e (V _{CMR})		-Vs - 0.1		+Vs + 0.1	V	
Common-Mode Rejection Ratio (CMRR)		+V _S = 5.0V, V _{CM} = -0.1V to 5.1V		84		dB	
		+V _S = 5.0V, V _{CM} = 2.5V to 5.1V		83		dB	
		$+V_S = 5.0V$, $V_{CM} = -0.1V$ to 2.5V		78		dB	
Large Signal Voltage Gain (A _{VO})		$+V_{S} = 1.4V$, $R_{L} = 50k\Omega$, $V_{OUT} = +V_{S} - 0.1V$		80			
		$+V_S = 2.5V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$		88		dB	
		$+V_S = 5.0V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$		93			
Input Bias Current (I _B)				1		pA	
Input Offset Current (Ios)				1		pA	
	V _{OH}	$+V_S$ = 1.4V, R_L = 50kΩ		1.395		V	
		$+V_S$ = 2.5V, R_L = 50kΩ		2.497			
Maximum Output		$+V_S = 5.0V$, $R_L = 50$ kΩ		4.997			
Voltage Swing	V _{OL}	$+V_S$ = 1.4V, R_L = 50kΩ		4.5		mV	
		$+V_S$ = 2.5V, R_L = 50kΩ		3.1			
		$+V_S$ = 5.0V, R_L = 50kΩ		3.5			
Ob at 0' a '10 a a t (1)	•	+V _S = 2.5V		5.5			
Short Circuit Current (I _{SC})		+V _S = 5.0V		24		- mA	
Supply Voltage			1.4		5.5	V	
Quiescent Current / per Amplifier (I _Q)		+V _S = 1.4V		570		nA	
		+V _S = 2.5V		620			
		+V _S = 5.0V		670	1500		

Specifications subject to changes without notice.

ELECTRICAL CHARACTERISTICS

 $+V_S$ = +1.4V to +5.0V, $-V_S$ = GND, T_A = +25°C, V_{CM} = + V_S / 2, V_{OUT} ≈ + V_S / 2 and R_L = 1M Ω to + V_S / 2, C_L = 60pF ⁽¹⁾, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
AC ELECTRICAL CHARACTERISTIC	S	•				
	+V _S = 1.4V		12		kHz	
Gain-Bandwidth Product (GBP)	+V _S = 2.5V		13.5			
	+V _S = 5.0V		14.5			
	+V _S = 1.4V, V _{OUT} = 1V Step		3.8			
Slew Rate (SR)	+V _S = 2.5V, V _{OUT} = 1V Step		4.0		V/ms	
	+V _S = 5.0V, V _{OUT} = 2V Step		4.2			
Phase Margin (PM)	+V _S = 1.4V to 5.5V		60		٥	
	+V _S = 1.4V, f = 0.1Hz to 10Hz		3.7			
Input Voltage Noise (en p-p)	+V _S = 2.5V, f = 0.1Hz to 10Hz		3.2		μV_{P-P}	
	+V _S = 5.0V, f = 0.1Hz to 10Hz		3.2			
	+V _S = 1.4V, f = 1kHz		190			
Input Voltage Noise Density (en)	+V _S = 2.5V, f = 1kHz	$+V_S = 2.5V, f = 1kHz$ 180			nV/ √HZ	
	+V _S = 5.0V, f = 1kHz		180			

NOTE1: Refer to Figure 1 and Figure 2.

Specifications subject to changes without notice.

TEST CIRCUITS

The test circuits used for the DC and AC tests are shown in Figure 1 and Figure 2. The bypass capacitors are laid out according to the rules discussed in "Supply Bypass".

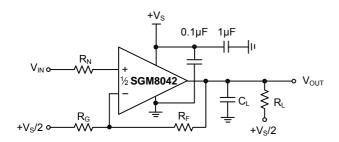
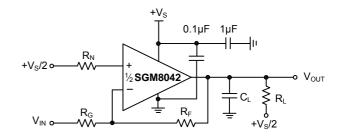
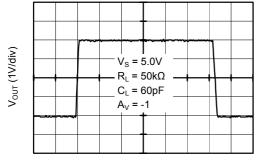


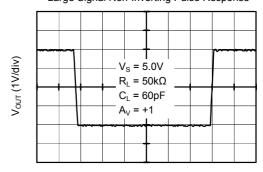
Figure 1. AC and DC Test Circuit for Most Non-Inverting Gain Conditions.



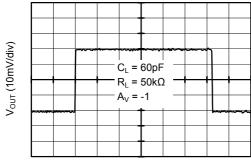

Figure 2. AC and DC Test Circuit for Most Inverting Gain Conditions.

SGM8042

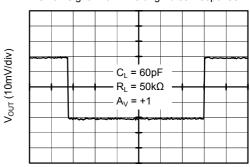
TYPICAL PERFORMANCE CHARACTERISTICS


 T_A = +25°C, +V_S = +1.4V to +5.0V, -V_S = GND, V_{CM} = +V_S / 2, V_{OUT} ≈ +V_S / 2 and R_L = 1M Ω to +V_S / 2, C_L = 60pF, unless otherwise noted

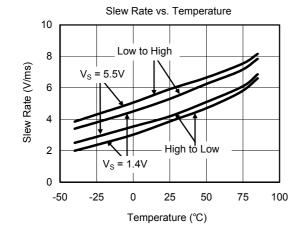
Large Signal Inverting Pulse Response

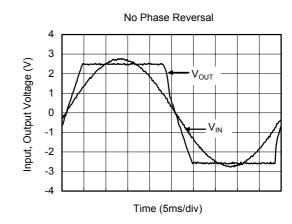

Time (5ms/div)

Large Signal Non-Inverting Pulse Response

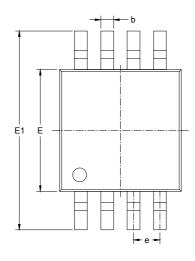

Time (5ms/div)

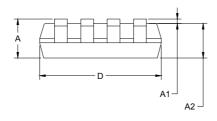
Small Signal Inverting Pulse Response




Time (5ms/div)

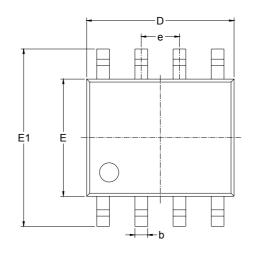
Small Signal Non-Inverting Pulse Response

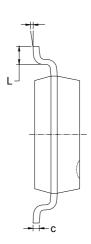

Time (5ms/div)

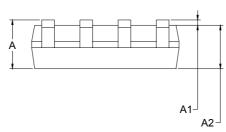


PACKAGE OUTLINE DIMENSIONS

MSOP8






Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650 BSC		0.026 BSC		
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

PACKAGE OUTLINE DIMENSIONS

SOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For more information regarding SGMICRO Corporation and its products, please visit $\underline{www.sg-micro.com}$