

SGM11103S High Isolation SP3T Switch

GENERAL DESCRIPTION

The SGM11103S is a 2-bit control single-pole/three-throw (SP3T) switch, which supports from 0.1GHz to 5.8GHz. The device features low control voltage and high isolation.

The SGM11103S has the ability to integrate the ESD protection circuits to achieve high ESD tolerance.

No external DC blocking capacitors are required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM11103S is available in a Green ULGA-1.15× 1.55-10L package.

APPLICATIONS

Multi-Mode 2G/3G/4G/5G and Receive System Applications Pre PA Switching, Reception Bands Switching Applications General Purpose Switching Applications Feedback RX Applications

FEATURES

High Isolation:

 f_0 = 1.0GHz, P_{IN} = 0dBm: 55dB (TYP) f_0 = 2.0GHz, P_{IN} = 0dBm: 52dB (TYP) f_0 = 2.7GHz, P_{IN} = 0dBm: 50dB (TYP)

 $f_0 = 3.8GHz, P_{IN} = 0dBm: 48dB (TYP)$

 $f_0 = 5.8GHz, P_{IN} = 0dBm: 34dB (TYP)$

Low Insertion Loss:

 $f_0 = 1.0 \text{GHz}, P_{\text{IN}} = 0 \text{dBm}: 0.49 \text{dB (TYP)}$ $f_0 = 2.0 \text{GHz}, P_{\text{IN}} = 0 \text{dBm}: 0.52 \text{dB (TYP)}$ $f_0 = 2.7 \text{GHz}, P_{\text{IN}} = 0 \text{dBm}: 0.56 \text{dB (TYP)}$ $f_0 = 3.8 \text{GHz}, P_{\text{IN}} = 0 \text{dBm}: 0.60 \text{dB (TYP)}$ $f_0 = 5.8 \text{GHz}, P_{\text{IN}} = 0 \text{dBm}: 1.07 \text{dB (TYP)}$

Available in a Green ULGA-1.15×1.55-10L Package

BLOCK DIAGRAM

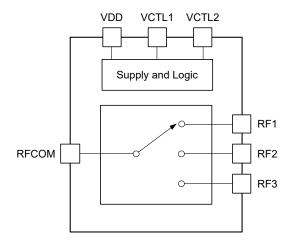


Figure 1. SGM11103S Block Diagram

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM11103S	ULGA-1.15×1.55-10L	-40°C to +85°C	SGM11103SYULJ10G/TR	ZX XX	Tape and Reel, 5000	

MARKING INFORMATION

NOTE: XX = Date Code.

YY — Serial Number

X X

Date Code - Week

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

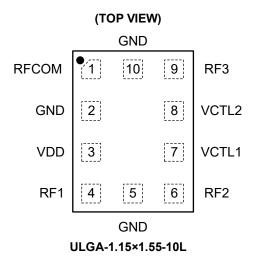
Supply Voltage, V _{DD}	3.6V
Control Voltage, V _{CTL}	
RF Input Power, P _{IN} (f ₀ = 2.7GHz)	30dBm
Junction Temperature	+150°C
Storage Temperature Range	-55°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
Operating Frequency Range, f ₀	
Supply Voltage, V _{DD}	
Control High Voltage, V _{CTL} H	
Control Low Voltage, Vota	

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	RFCOM	RF Common Port.
2, 5, 10	GND	Ground Terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	VDD	DC Power Supply. Please connect a bypass capacitor with GND terminal for excellent RF performance.
4	RF1	RF I/O Port 1.
6	RF2	RF I/O Port 2.
7	VCTL1	DC Control Voltage 1. Please connect a bypass capacitor with GND terminal for excellent RF performance.
8	VCTL2	DC Control Voltage 2. Please connect a bypass capacitor with GND terminal for excellent RF performance.
9	RF3	RF I/O Port 3.

LOGIC TRUTH TABLE

VCTL1	VCTL2	ON PATH
High	Low	RFCOM-RF1
Low	High	RFCOM-RF2
High	High	RFCOM-RF3
Low	Low	X

X = Don't care.

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{DD} = 2.5V \text{ to } 3.3V, \text{ typical values are at } V_{DD} = 2.8V, P_{IN} = 0 \text{dBm}, \text{ input and output resistance} = 50\Omega, V_{CTL_L} = 0V, V_{CTL_H} = 1.8V, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics			<u> </u>			•
Supply Voltage	V_{DD}		2.5	2.8	3.3	V
Supply Current	I _{VDD}			20	45	μA
Control Voltage	V _{CTL_L}		0	0	0.3	V
Control Voltage	V _{CTL_H}		1.35	1.8	3.3	V
Control Current	I _{CTL}	V _{CTL_H} = 1.8V		2	8	μA
Switching Time	t _{SW}	50% V _{CTL} to 10/90% RF		1	2	μs
RF Characteristics						
	IL	$f_0 = 1.0GHz$, $P_{IN} = 0dBm$		0.49	0.79	dB
		$f_0 = 2.0GHz$, $P_{IN} = 0dBm$		0.52	0.82	
Insertion Loss		$f_0 = 2.7GHz$, $P_{IN} = 0dBm$		0.56	0.86	
		$f_0 = 3.8GHz, P_{IN} = 0dBm$		0.60	0.97	
		$f_0 = 5.8GHz, P_{IN} = 0dBm$		1.07	1.45	
	ISO	$f_0 = 1.0GHz, P_{IN} = 0dBm$	47	55		
		$f_0 = 2.0GHz$, $P_{IN} = 0dBm$	44	52		
Isolation (RFCOM to All RF Ports)		$f_0 = 2.7GHz$, $P_{IN} = 0dBm$	38	50		dB
($f_0 = 3.8GHz, P_{IN} = 0dBm$	35	48		
		$f_0 = 5.8GHz$, $P_{IN} = 0dBm$	26	34		
Input Power at 0.1dB	Б	f ₀ = 0.1GHz to 3.0GHz		30		dD
Compression Point	P _{0.1dB}	f ₀ = 3.0GHz to 5.8GHz		28		dBm
Voltana Chandina NA ava Datia	VCM/D	f ₀ = 0.1GHz to 3.0GHz		1.2		
Voltage Standing Wave Ratio	VSWR	f ₀ = 3.0GHz to 5.8GHz		1.6		1

TYPICAL APPLICATION CIRCUIT

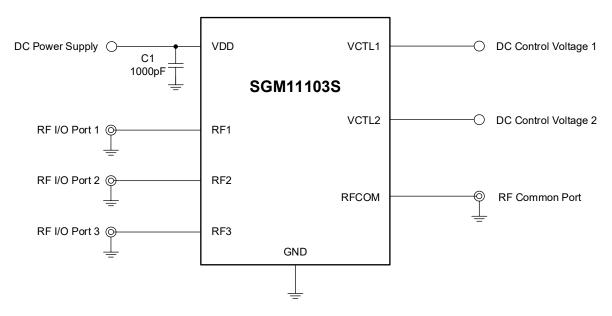


Figure 2. SGM11103S Typical Application Circuit

EVALUATION BOARD LAYOUT

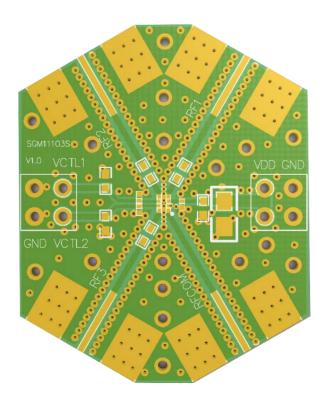
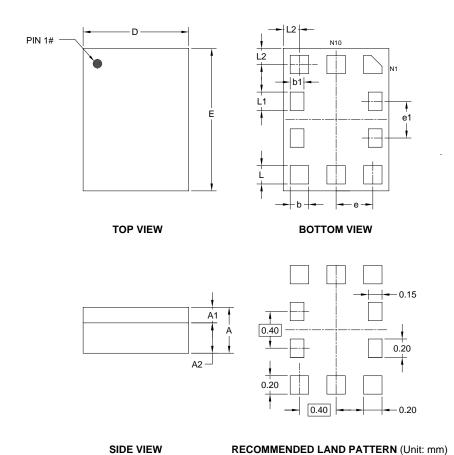
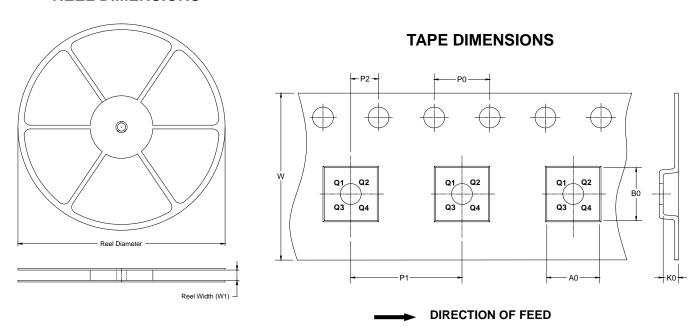



Figure 3. SGM11103S Evaluation Board Layout

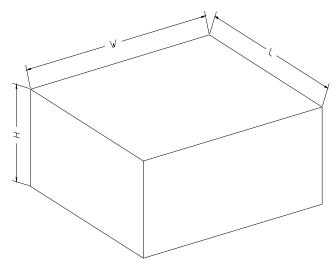
PACKAGE OUTLINE DIMENSIONS ULGA-1.15×1.55-10L


Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
Α	0.460	0.500	0.540				
A1		0.170 REF					
A2		0.330 REF					
b	0.150	0.150 0.200					
b1	0.100	0.150	0.200				
D	1.100	1.150	1.200				
E	1.500	1.550	1.600				
е	0.400 BSC						
e1		0.400 BSC					
L	0.150	0.200	0.250				
L1	0.150	0.200	0.250				
L2	- 0.175 -						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
ULGA-1.15×1.55-10L	7"	9.5	1.30	1.70	0.60	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18