
SFTN7422SMP-HAF

N-Channel Enhancement Mode MOSFET

Features

- · Low Gate Charge
- Very Low R_{DS(on)}
- Halogen and Antimony Free(HAF), RoHS compliant

Gate Source

 Source 2. Source 3. Source 4. Gate
 Drain 6. Drain 7. Drain 8. Drain DFN3030 Plastic Package

Application

• DC/DC Converters

Key Parameters

Parameter	Value	Unit						
BV _{DSS}	30	V						
D May	4 @ V _{GS} = 10 V	mΩ						
R _{DS(ON)} Max	6.8 @ V _{GS} = 4.5 V	mΩ						
V _{GS(th)} typ	1.7	V						
Qg typ	62	nC						

Absolute Maximum Ratings(at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage		V_{DS}	30	V
Drain-Gate Voltage		V_{GS}	± 20	V
Drain Current-Continuous	$T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	I _D	34 27	А
Peak Drain Current, Pulsed 3)		I _{DM}	136	А
Drain Current-Continuous	$T_a = 25^{\circ}C$ $T_a = 70^{\circ}C$	I _{DSM}	21 17	А
Power Dissipation ²⁾	$T_{c} = 25^{\circ}C$ $T_{c} = 100^{\circ}C$	P _D	31 12	W
Power Dissipation 1)	$T_a = 25$ °C $T_a = 70$ °C	P _{DSM}	3.1 2	W
Avalanche Current	L = 0.1 mH	I _{AS}	38	А
Avalanche Energy	L = 0.1 mH	E _{AS}	72.2	mJ
Operating Junction and Storage Temper	T_{j},T_{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance-Junction to Ambient ¹⁾ t ≤ 10 s	$R_{\theta JA}$	40	°C/W
Thermal Resistance-Junction to Ambient 1)4)	$R_{\theta JA}$	75	°C/W
Thermal Resistance-Junction to Case	$R_{ heta JC}$	4	°C/W

¹⁾ The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_a = 25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ t \leq 10 s value and the maximum allowed junction temperature of 150°C.

²⁾ The power dissipation P_D is based on T_{J(MAX)} = 150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

 $^{^{3)}}$ Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

 $^{^{4)}} The \; R_{\theta JA} is the sum of the thermal impedence from junction to case <math display="inline">R_{\theta JC}$ and case to ambient.

SFTN7422SMP-HAF

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	- 1		•	•	
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	30	-	-	V
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1.2	-	2.2	V
Drain-Source Leakage Current at $V_{DS} = 30 \text{ V}$	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage Current at V_{GS} = ± 16 V	I _{GSS}	-	-	± 100	nA
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 20 A at V_{GS} = 4.5 V, I_D = 16 A	R _{DS(on)}	-		4 6.8	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 20 \text{ A}$	g FS	-	40	-	S
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{MHz}$	R_g	-	1	3	Ω
Input Capacitance at $V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V}, f = 1 \text{ MHz}$	C _{iss}	-	3520	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 15 \text{ V}$, $f = 1 \text{ MHz}$	C _{oss}	-	459	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 15 \text{ V}$, $f = 1 \text{ MHz}$	C _{rss}	-	420	-	pF
Gate Charge Total at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 4.5 V	Qg	- -	62 31	- -	nC
Gate to Source Gate Charge at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V	Q_{gs}	-	9	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V	Q_{gd}	-	13	-	nC
Turn-On Delay Time at V_{GS} = 10 V, V_{DS} = 15 V, R_L = 0.75 Ω , R_{GEN} = 3 Ω	t _{d(on)}	-	7	-	ns
Turn-On Rise Time at V_{GS} = 10 V, V_{DS} = 15 V, R_L = 0.75 Ω , R_{GEN} = 3 Ω	t _r	-	8.3	-	ns
Turn-Off Delay Time at V_{GS} = 10 V, V_{DS} = 15 V, R_L = 0.75 Ω , R_{GEN} = 3 Ω	t _{off}	-	24	-	ns
Turn-Off Fall Time at V_{GS} = 10 V, V_{DS} = 15 V, R_L = 0.75 Ω , R_{GEN} = 3 Ω	t _f	-	10	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at V _{GS} = 0 V, I _S = 1 A	V _{SD}	-	-	1	V

Ratings and Electrical Characteristics Curves

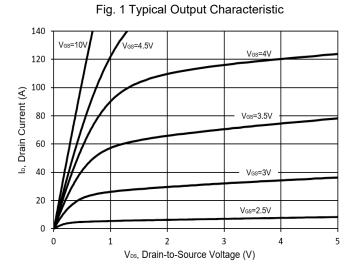


Fig. 2 Typical Transfer Characteristic

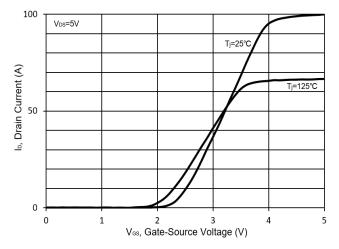


Fig. 3 on-Resistance vs. Gate Voltage

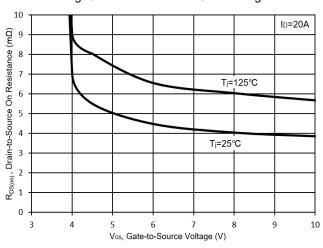


Fig. 4 on-Resistance vs.Ti

Fig. 5 Drain Source vs. on-Resistance

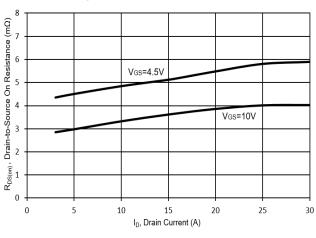
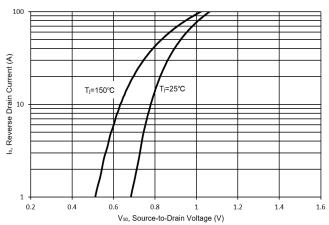



Fig. 6 Typical Forward Characteristic

Ratings and Electrical Characteristics Curves

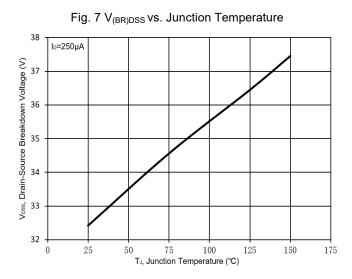


Fig. 8 Gate Threshold Variation vs. T_j

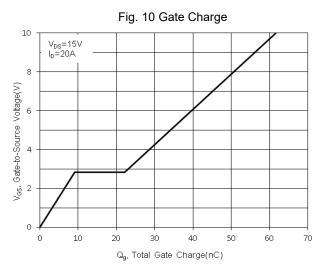
2

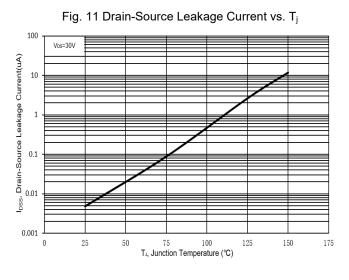
1.5

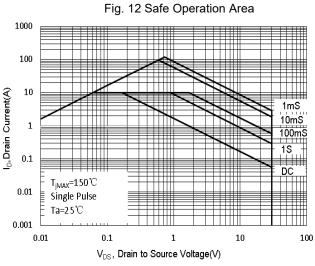
0.5

0 25

50


75


100


125

150

175

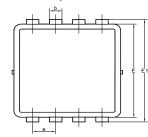
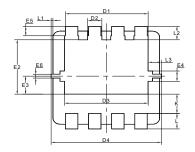
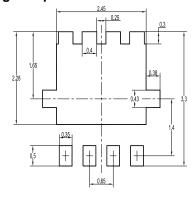

Test Circuits

Fig.1-2 Switching Waveform Fig.1-1 Switching times test circuit RL Vds Vds > 90% Vdd Vgs 10% Rg ___ Vgs Fig.2-1 Gate charge test circuit Fig.2-2 Gate charge waveform Qg Qgs Qgd Vds (VDC DUT lg _ Charge Fig.3-2 Avalanche waveform Fig.3-1 Avalanche test circuit E_{AR}= 1/2 LI_{AR} BV_{DSS} Vds ld TAR ld Rg ____Vgs Vgs



Package Outline Dimensions (Units: mm)

DFN3030

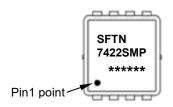


UNIT	Α	A1	b	С	D	D1	D2	D3	D4	E	E1	E2	E3
	0.9	0.05	0.35	0.25	3.1	2.45	0.5	2.7	3.2	3.1	3.3	1.85	0.68
mm	0.7	0	0.24	0.1	2.9	2.25	0.3	2.5	3	2.9	3.1	1.65	0.48

UNI	Г Е 4	E5	E6	е	K	L	L1	L2	L3	θ1
	0.43	0.4	0.175	0.7	0.72	0.5	0.1	0.53	0.475	12°
mm	0.23	0.2	0.075	0.6	0.52	0.3	0	0.33	0.275	0°

Recommended Soldering Footprint

Packing information


i doning iiiic	mination						
Packago	Package Tape Width		ch	Reel	Size	D D ID II 0 III	
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
DFN3030	8	4 ± 0.1	0.157 ± 0.004	330	13	5,000	

Marking information

"SFTN7422SMP" = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

