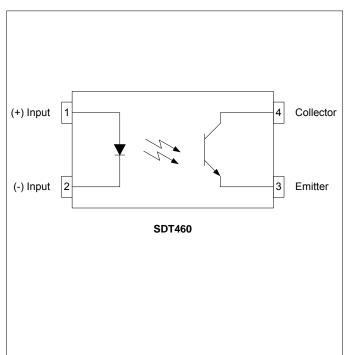


SDT460

DC Input 70V

Wide Body Photo-Transistor Optocoupler

Description


The SDT460 consists of a phototransistor optically coupled to a light emitting diode. Optical coupling between the input IR LED and output phototransistor allows for high isolation levels while maintaining low-level DC signal control capability. The SDT460 circuitry is contained in a wide body (7.5mm) body, giving the device creepage distances over 8mm. The SDT460 provides an exceptionally isolated method of controlling many interface applications such as telecommunications, industrial control and instrumentation circuitry.

The SDT460 comes standard in a 4 pin SOP, wide body package.

Applications

- Home Appliances
- Office Automation Equipment
- Vending Machines
- Digital Logic Inputs
- Power Supplies

Schematic Diagram

Features

- 7.5mm Width 4-Pin Small Outline Package
- Creepage > 8mm
- High Input-to-Output Isolation (5kV_{RMS} MIN)
- CTR Range: 50% 600%
- High Collector-Emitter Voltage (V_{CE} = 70V MIN)
- Long Life / High Reliability
- RoHS / Pb-Free / REACH Compliant

Agency Approvals

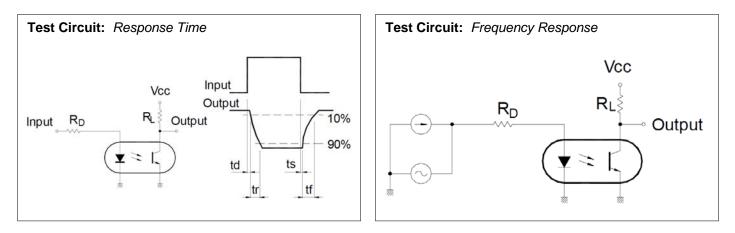
UL / C-UL:	File # E201932
VDE:	File # 40035191 (EN 60747-5-2)

Absolute Maximum Ratings

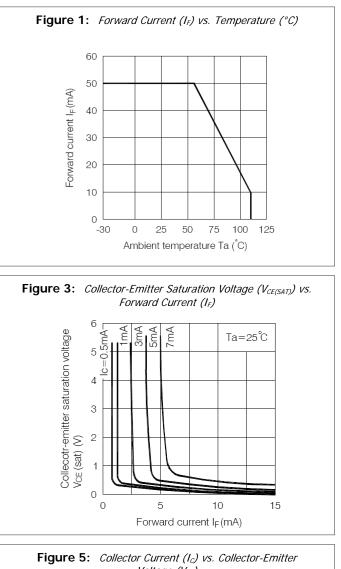
The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to absolute Maximum Ratings may cause permanent damage to the device and may adversely affect reliability.

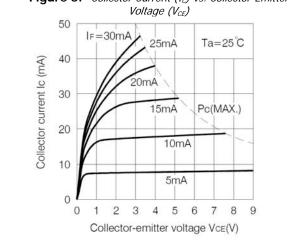
Storage Temperature	55 to +110°C
Operating Temperature	55 to +150°C
Continuous Input Current	50mA
Transient Input Current	500mA
Reverse Input Control Voltage	6V
Input Power Dissipation	70mW
Total Power Dissipation	250mW
Solder Temperature – Wave (10sec)	260°C
Solder Temperature – IR Reflow (10sec)	260°C

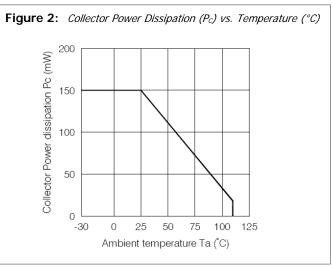
Ordering Information

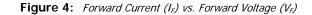

Part Number	Description
SDT460	4 pin SOP, (100/Tube)
SDT460-TR	4 pin SOP. Tape and Reel (3000/Reel)

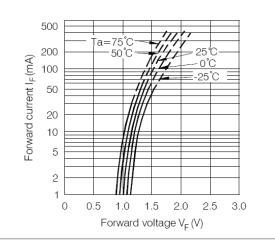
NOTES: Suffixes listed above are not included in marking on device for part number identification

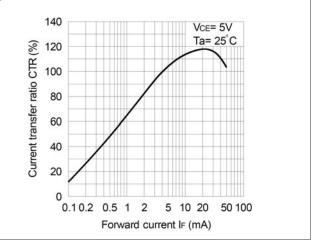

Electrical Characteristics, T_A = 25°C (unless otherwise specified)

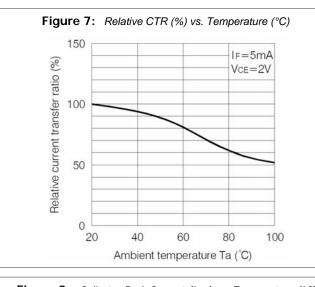

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input Specifications						
LED Forward Voltage	VF	-	1.25	1.6	V	I _F = 50mA
Terminal Capacitance	Ct	-	50	-	pF	V=0, f=1MHz
Reverse Current	I _R	-	-	10	μA	V _R =4V
Output Specifications	•					
Collector-Emitter Voltage	V _{CEO}	70	-	-	V	I _c =100μA
Emitter-Collector Voltage	V _{COE}	7	-	-	V	I _E =10μA
Collector Dark Current	I _{CEO}	-	10	100	nA	V _{CE} =20V, I _F =0mA
Floating Capacitance	C _f	-	0.3	-	pF	V=0, f=1MHz
Cut-Off Frequency	f _C	-	80	-	kHz	V_{CE} =5V, I _C =2mA, R _L =100 Ω , -3dB
Saturation Voltage	V _{CE(sat)}	-	-	0.3	V	I _F =10mA, I _C =1mA
Coupled Specifications						
Rise Time	T _R	-	3	18	μS	I_{C} =2mA, V_{CC} =5V, R_{L} =100 Ω
Fall Time	T _F	-	4	18	μS	I_c =2mA, V_{cc} =5V, R_L =100 Ω
Current Transfer Ratio (Open Bin / No Suffix)	CTR	50	-	600	%	I _F =5mA, V _{CE} =5V
(-A Binning)	CTR	63	-	125	%	I _F =10mA, V _{CE} =5V
(-B Binning)	CTR	100	-	200	%	I _F =10mA, V _{CE} =5V
(-C Binning)	CTR	50	-	150	%	I _F =5mA, V _{CE} =5V
(-D Binning)	CTR	100	-	300	%	I _F =5mA, V _{CE} =5V
(-E Binning)	CTR	80	-	160	%	I _F =5mA, V _{CE} =5V
(-F Binning)	CTR	130	-	260	%	I _F =5mA, V _{CE} =5V
(-G Binning)	CTR	200	-	400	%	I _F =5mA, V _{CE} =5V
Isolation Specifications	Isolation Specifications					
Isolation Voltage	V _{ISO}	5000	-	-	V _{RMS}	RH ≤ 50%, t=1min
Input-Output Resistance	RI-0	-	10 ¹²	-	Ω	$V_{I-O} = 500 V_{DC}$
	1	1	1	1	4	

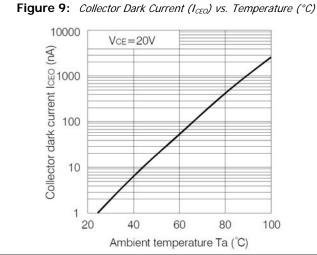


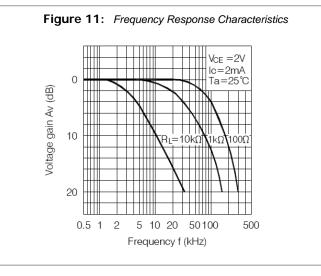


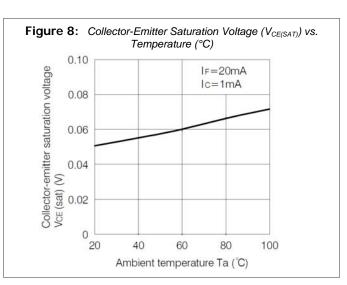

SDT460 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)






Figure 6: Current Transfer Ratio (CTR) vs. Forward Current (I_F)





SDT460 Performance & Characteristics Plots, T_A = 25°C (unless otherwise specified)

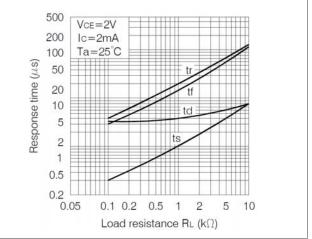
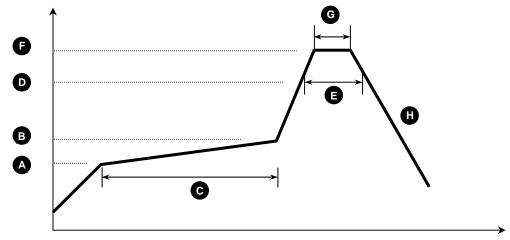


Figure 10: Response Times vs. Load Resistance (R_L)



SDT460 Solder Reflow Temperature Profile Recommendations

(1) Infrared Reflow:

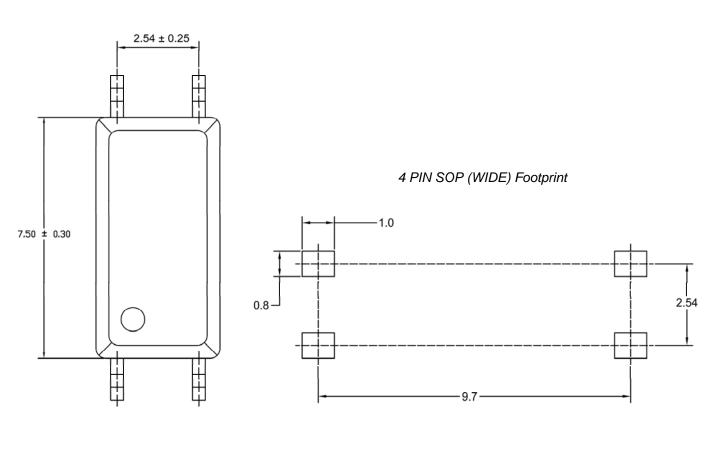
Refer to the following figure as an example of an optimal temperature profile for single occurrence infrared reflow. Soldering process should not exceed temperature or time limits expressed herein. Surface temperature of device package should not exceed 250°C:

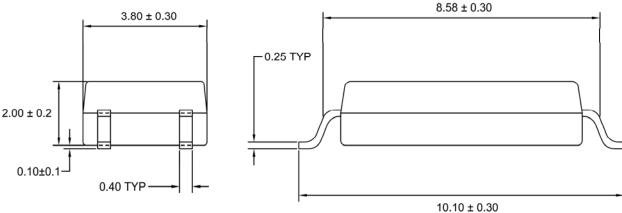
Process Step	Description	Parameter
Α	Preheat Start Temperature (°C)	150°C
В	Preheat Finish Temperature (°C)	180°C
С	Preheat Time (s)	90 - 120s
D	Melting Temperature (°C)	230°C
E	Time above Melting Temperature (s)	30s
F	Peak Temperature, at Terminal (°C)	260°C
G	Dwell Time at Peak Temperature (s)	10s
i i	Cool-down (°C/s)	<6°C/s

(2) Wave Solder:

Maximum Temperature:	260°C (at terminal)
Maximum Time:	10s
Pre-heating:	100 - 150°C (30 - 90s)
Single Occurrence	

(3) Hand Solder:

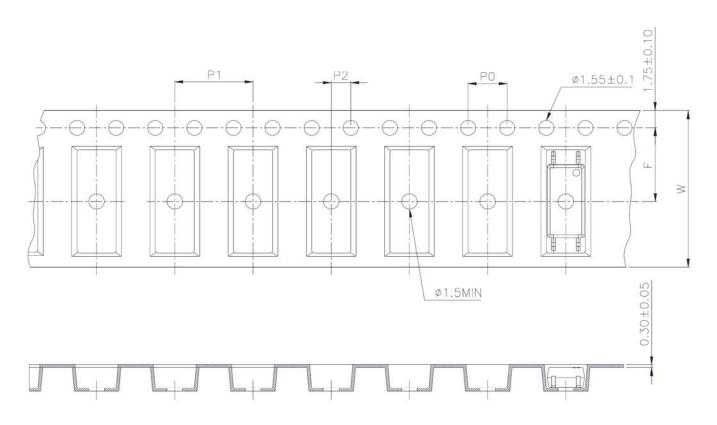

Maximum Temperature:	350°C	(at tip of soldering iron)
Maximum Time:	3s	
Sinale Occurrence		



SDT460 Package Dimensions

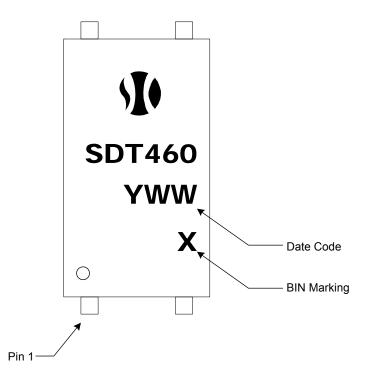
4 PIN SOP (WIDE) Package

Note: All dimensions in millimeters [mm]



SDT460 Packaging Specifications

Tape & Reel Specifications (T&R)


Note: All dimensions in millimeters [mm]

Specification	Symbol	Dimensions, mm (inches)
Tape Width	W	16 ± 0.3 (0.63)
Sprocket Hole Pitch	P0	4 ± 0.1 (0.15)
Compartment Location	F P2	7.5 ± 0.1 (0.295) 2 ± 0.1 (0.079)
Compartment Pitch	P1	8 ± 0.1 (0.315)

SDT460 Package Marking

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notices.

SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.