

计量 SOC

特点

- 高精度 ADC, 24 位输出, 20bit 有效位数, 最多可选择差分 3 通道或单端 6 通道
- 低噪声高输入阻抗前置放大器,1、12.5、50、100、200 倍增益可选;选择 200 倍增益,ADC 8SPS 输出速率时等效输入噪声为 40nVrms
- 8 位 RISC 超低功耗 MCU,在 2MHz 工作时钟,3V 工作电压下电流典型值为 300uA;低频 32kHz 工作时的待机电流 1.5uA,休眠电流小于 1uA
- 16k Bytes OTP, 512 Bytes SRAM
- 可以直接测量交流信号
- 抗干扰能力强, EFT 试验大于 4kV
- 集成多种时钟振荡器,灵活多样的时钟选择,选择 外部晶振时,支持停振检测功能,当外部晶振停振 时会自动唤醒内部 4MHz RC 振荡,并将其二分频 切换成工作时钟
- ADC 输出速率可选择范围: 8SPS-2kSPS
- 20SEG×4COM 液晶驱动电路,超低功耗和大驱动能力设计;内含程控升压模块,可以在低压条件下维持高亮显示,并支持灰度调节
- 内有硅温度传感器,可单点校准
- 输出 1.2V 低温漂基准
- 输出四种可选择稳压源: 2.4V/2.6V/2.9V/3.3V
- 灵活的电池检测功能,检测范围 2.0V-3.3V
- ADC 外部基准与内部基准可选,内部集成多种基准 选项
- RTC 模块,可以计算年、月、星期、日、时、分、 秒,可以自动进行闰年计算,时间精度可以调节
- 丰富的外围资源: UART, PWM/PDM, PFD, CAPTURE, TIMER
- 掉电检测电路和上电复位电路
- 工作电压范围: 2.4V-3.6V
- 工作温度范围: -40℃到 85℃

描述

本芯片是一个CMOS 带高精度 24 位 ADC 的单芯片,特有的交流测量功能,无须对信号

进行 AC/DC 转换,可以直接将交流信号接到芯片的 ADC 通道进行测量。支持低压烧录。

该芯片有丰富的资源: RTC 模块可以计算 年、月、日、时、分、秒,可以自动进行闰年计 算,时间精度可以通过软件修改寄存器调节。

有外部晶振和内部 RC 振荡时钟可以选择, 32.768kHz 晶振可以使用内部集成电容; UART 模块可以方便用户跟计算机等设备通讯;

多种可选择的输出电源可以给外部器件提供稳定的电压; ADC 最大可以选择 6 个通道,输出频率可以选择,可以满足多通道的使用需要,也可以在速度和精度之间做合理的选择。

16k 字节的 OTP,可以当 EERPOM 使用;频率可设置的 BUZ 输出;可编程脉冲输出的TIMER 模块等。在各种仪表测量应用中本芯片能极大地简化外围器件。

超低功耗设计,在 2MHz 工作时钟,3V 工作电压下 MCU 工作电流只有 300uA,在 ADC 等进行测量过程中,整个芯片的工作电流也只有750uA,可以满足测量领域各种仪表的应用,尤其是需要低功耗的应用。提供三种工作模式让用户可以在功耗与速度之间做最优选择,三种模式分别为:正常工作模式、待机模式、休眠模式。

抗干扰能力强,具有停振检测功能,当外部晶振受到干扰停振时会自动唤醒内部 4MHz RC振荡,并切换成内部 RC振荡除以 2 的时钟工作。在无须额外的保护电路下 EFT 超过 4kV,适合各种恶劣环境的应用。

应用领域

电流表、电压表等测量仪表

订购信息

LQFP48 封装

管脚图和管脚描述

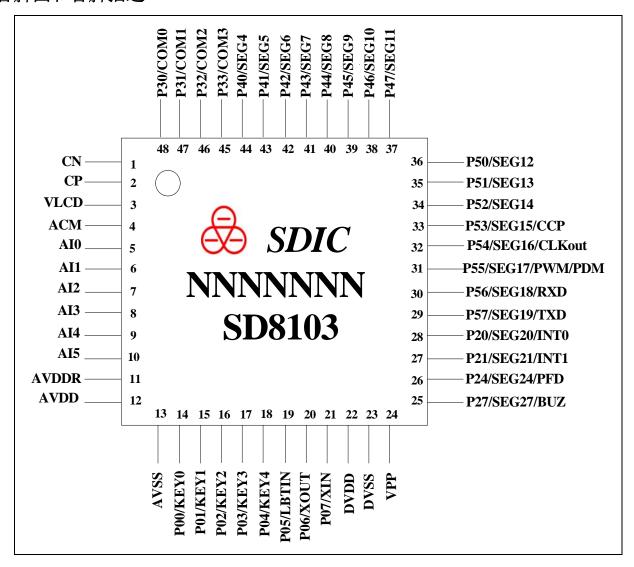


图1. 管脚图

晶华微电子 版本 0.1d 2016/5 第 2 页 共 9 页

表 1. 管脚描述

序号	PAD 名称	属性	PAD 描述		
1-2	CN , CP	模拟	升压电路需要一个外接电容,CP、CN 引脚用于连接这个外接电容的两端。当升压电路选择使用高频 RC 时钟时,该电容可以不接		
3	VLCD	模拟	LCD driver 的供电电源,可通过寄存器选择内部与 DVDD 连接或与升压电路的输出连接,外部只需接一个滤波电容		
4	ACM	模拟	1.2V 基准输出。当 ACM 模块被关闭时此引脚为悬空状态。外接 0.1uF 电容		
5-10	AIOAI5	模拟输入	AI0-5 为模拟信号输入端口。每个端口都有由寄存器控制的独立下拉电阻 P15-P10(默认关闭)。当不使用这些端口的时候,可以将其下拉为低电平; AI0-1、AI2-3、AI4-5 可以作为三组差分输入对或六路单端输入;		
11	AVDDR	模拟	内部 LDO 输出,供内部模拟模块使用,也可以对外部传感器提供电源激励。外接 0.1uF-10uF 滤波电容		
12	AVDD	电源	模拟电源。在 AVDD 与 AVSS 之间外接 0. 1uF 电容		
13	AVSS	地	模拟地		
14-18	P00/KEY0 P04/KEY4	I/0	数字 I/O P00-04,可作为外部按键 KEY0-KEY4 输入		
19	P05/LBTIN	模拟, I/0	数字 I/O P05,可作为电压检测信号输入(LBTIN)使用		
20-21	P06/XOUT P07/XIN	模拟, I/0	数字 I/O P06-07, 可作为晶振的外接引脚 XIN、XOUT。根据内部寄存器的选择可以外接 32.768kHz、1MHz-4MHz 的晶振。XIN 也可以作为外部时钟输入口		
22	DVDD	电源	数字电源。在 DVDD 与 DVSS 之间外接 0.1uF 电容		
23	DVSS	地	数字地		
24	VPP	Ι	OTP 烧录的高压引脚		
25	P27/SEG27/BUZ	I/0	数字 I/O P27,可以作为 SEG27 复用,也可以作为蜂鸣器输出使用		
26	P24/SEG24/PFD	I/0	数字 I/O P24,可以作为 SEG24 复用,也可以作为可编程分频器 PFD 输出使用		
27	P21/SEG21/INT1	I/0	数字 I/O P21,可以作为 SEG21 使用,也可以作为外部中断 1 使用		
28	P20/SEG20/INTO	I/0	数字 I/O P20,可以作为 SEG20 使用,也可以作为外部中断 0 使用		
29-30	P57/SEG19/TXD P56/SEG18/RXD	I/0	数字 I/O P57-56,可以作为 SEG19-18 使用 P57 复用 UART TXD, P56 复用 UART RXD		
31	P55/SEG17/ PWM/PDM	I/0	数字 I/O P55,可以作为 SEG17 使用,也可以作为 PWM/PDM 使用		
32	P54/SEG16/CLKout	I/0	数字 I/O P54,可以作为 SEG16 使用, 也可以作为可选时钟输出使用		
33	P53/SEG15/CCP	I/0	数字 I/O P53,可以作为 SEG15 使用,也可以作为比较捕捉 CCP 使用		
34-44	P52/SEG14 P40/SEG4	I/0	数字 I/O P52-50,数字 I/O P47-40,可以作为 SEG14-SEG4 使用		
45-48	P33/COM3 P30/COM0	I/0	液晶 COM3-0, 也可以作为 P33-30 使用, COM3-0 分别复用为串行烧录的数据输出, 2MHz 时钟输入,数据输入和数据通信时钟		

注:

1. 所有数字端口 Pnn 皆有上拉选择(默认关闭),并有输入迟滞功能,转换点分别为 0.3VDD 与 0.7VDD

晶华微电子 http://www.SDICmicro.cn 版本 0.1d 2016/5 第3页共9页

功能框图

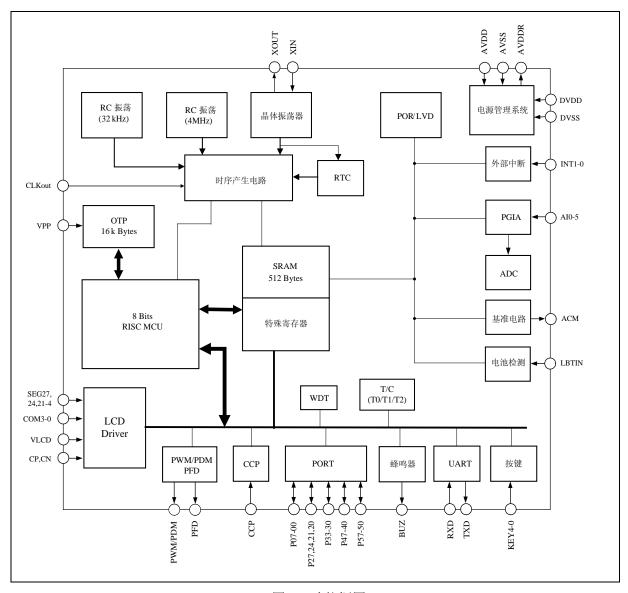


图 2. 功能框图

晶华微电子 版本 0.1d 2016/5 第 4 页 共 9 页

典型应用图

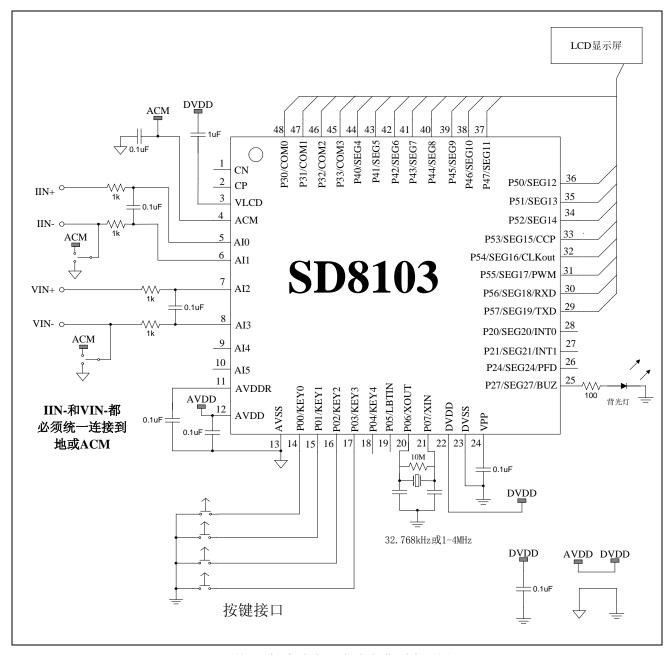


图 3. 交/直流电压电流表典型应用图

晶华微电子 版本 0.1d 2016/5 第 5 页 共 9 页

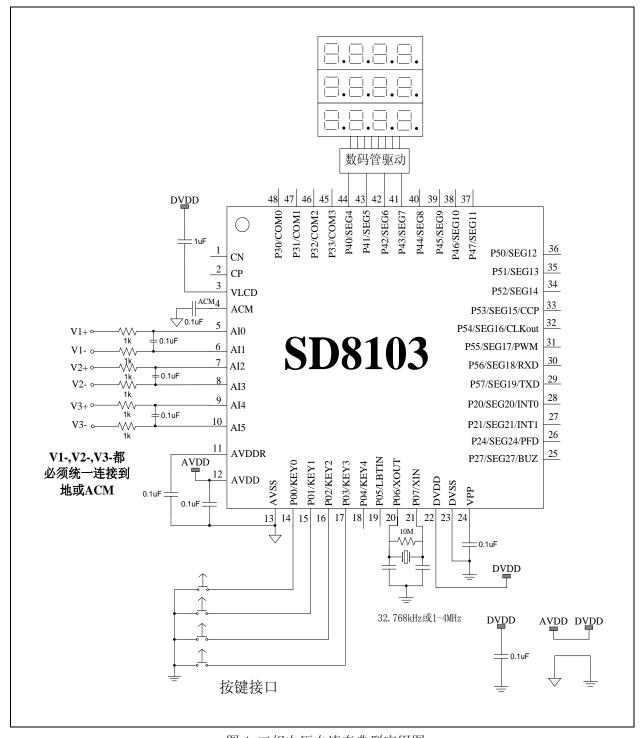


图 4. 三相电压电流表典型应用图

晶华微电子 版本 0.1d 2016/5 第 6 页 共 9 页

电气特性

表 2. 最大极限值

标识	参数	最小值	最大值	单位
T_{A}	环境温度	-40	+85	°C
T_{S}	储存温度	-55	+150	°C
V_{DD}	供电电压	-0.2	+4.0	V
Vpp	烧录电压	-0.2	+7.5	V
V_{IN}, V_{OUT}	直流输入、输出	-0.2	$V_{DD}+0.3$	V
$T_{\rm L}$	回流焊温度曲线	Per IPC	°C	

注:

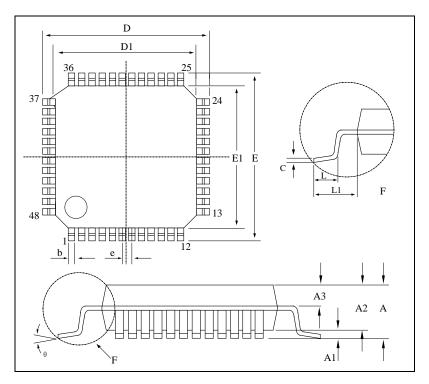
- 1. CMOS 器件易被高能静电损坏,设备必须储存在导电泡沫中,注意避免工作电压超出范围。
- 2. 在插拔电路前请关闭电源。

表 3. 电气参数(电源电压 3V,工作温度 25℃)

标识	参数名称	最小值	典型值	最大值	单位	条件
VDD	工作中区	2.4	3.0	3.6	3.7	模拟模块工作电压
VDD	VDD 工作电压		3.0	3.6	V	数字模块和 MCU 工作电压
FORG	工作时钟	16k	2M	4M	Hz	在运行读表和写表指令时只能工作在
FOSC						2MHz
IHRC	内部高频 RC 振荡频率		4		MHz	
ILRC	内部低频 RC 振荡频率	28		36	kHz	
HXT	外部高频晶振	1		4	MHz	
LXT	外部低频晶振	16			kHz	
IDD1	工作电流 1	ł	850	1	uA	MCU采用外部 4MHz 晶振二分频工作 数字模块用 DVDD 供电 模拟模块都工作
IDD2	工作电流 2	1	7		uA	MCU 采用内部 32kHz RC 振荡工作 数字模块用 DVDD 供电 模拟模块不工作
		-	9	-1		MCU 采用外部 32.768kHz 晶振工作 数字模块用 DVDD 供电 模拟模块不工作
IDD3	工作电流 3	-	1.5		uA	MCU 采用内部 32kHz RC 振荡工作 MCU 进待机模式,模拟模块不工作
IDD3			3			MCU 采用外部 32.768kHz 晶振工作 MCU 进待机模式,模拟模块不工作
IDD4	工作电流 4		0.2	1	uA	MCU 进休眠模式,模拟模块不工作
Fsam	ADC 采样频率	128		256	kHz	
OSR	过采样率	128		16384		
NFbit	Noise free bits ¹		16		bits	Gain=200, input FSR= ± 4 mV
NMbit	无失码输出			24	bits	
INL	积分非线性			0.01	%FSR	
VINdif	PGIA 差分信号输入范			1800	mV	1 倍增益

晶华微电子 http://www.SDICmicro.cn 版本 0.1d 2016/5 第7页 共9页

	围	-Vref/12.5		Vref/12.5		12.5 倍增益
		-Vref/50		Vref/50		50 倍增益
		-Vref/100		Vref/100		100 倍增益
		-Vref/200		Vref/200		200 倍增益
VIDI	PGIA 电压输入范围 ²	-0.3		AVDDR	V	增益为 1 且输入 buffer 关闭
VIN		0.3		AVDDR-0.7		增益为1但输入buffer开启或增益非1
Nrms	RMSnoise		40		nVrms	增益为 200 倍时
Vacm	ACM 输出电压		1.2		V	
IacmSour	ACM source 电流	1	1		mA	
IacmSink	ACM sink 电流	1	1		mA	
PSRacm	ACM PSR	-	100		uV/V	
Tgain	增益温漂		±5		ppm/℃	-10℃到 40℃
			2.4			avddrx[1:0]=00
Vavddr	AVDDD 絵山由圧		2.6		V	avddrx[1:0]=01
vavuui	AVDDR 输出电压		2.9			avddrx[1:0]=10
			3.3			avddrx[1:0]=11
Iavddr	AVDDR 电流能力		10		mA	
POR	上电复位电压		2.0		V	
LVD	低压检测复位电压		1.9		V	
THlbt	低压检测迟滞	1	200		mV	
	LCD 电荷泵输出电压		2.1		V	vlcdx[2:0]=000
		1	2.3			vlcdx[2:0]=001
			2.5			vlcdx[2:0]=010
Vlcd			2.7			vlcdx[2:0]=011
Vicu		1	2.9			vlcdx[2:0]=100
			3.1			vlcdx[2:0]=101
			3.3			vlcdx[2:0]=110
		1	3.5			vlcdx[2:0]=111
Ilcd	LCD 电荷泵驱动能力 3	1	1	500	uA	
管脚电气参数						
			2		mA	VOL=0.3V,PTxSR 设置为"0"
IOL	低电平 Sink 电流		10			VOL=0.3V, PTxSR 设置为"1"
ЮН	高电平 Source 电流		2		mA	VOH=VDD-0.3V,PTxSR 设置为"0"
			10			VOH=VDD-0.3V, PTxSR 设置为"1"
VIH	输入高电平	0.7VDD			V	
VIL	输入低电平			0.3VDD	V	
VOH	输出高电平	VDD-0.3			V	
VOL	输出低电平			VSS+0.3	V	


注:

- 1. Noise free bits,有效位数都与信号的满量程范围有关系,真正起决定性作用的是 Vpp noise 或 rms noise。
- 2. 对于 ADC 或 PGIA,输入信号的范围要区分差分信号输入范围和输入端的绝对电压范围,前者是真正的信号输入范围,是两个输入绝对电压之差,其不仅受到单个输入端的电压范围影响,还受增益和基准选择的影响;后者为包含了差分信号和共模输入范围的影响,主要受电路的限制。
- 3. 电荷泵的驱动能力与选择的电容和工作频率有关。

晶华微电子 版本 0.1d 2016/5 第 8 页 共 9 页

封装规格

Dimensions:mm

Symbol	Min.	Nom.	Max.			
A			1.60			
A1	0.05		0.20			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.19		0.27			
С	0.13		0.14			
D	8.80	9.00	9.20			
D1	6.90	7.00	7.10			
Е	8.80	9.00	9.20			
E1	6.90	7.00	7.10			
e	0.50BSC					
L	0.40		0.65			
L1	1.00BSC					
θ	0		7			

图 5. LQFP48 封装外形图

晶华微电子 http://www.SDICmicro.cn 版本 0.1d 2016/5 第9页 共9页