

SINGLE STAGE PRIMARY SIDE REGULATION PFC CONTROLLER FOR LED DRIVER

DESCRIPTION

The SD6800 is a single stage primary side regulation (PSR) power factor correction (PFC) controller, specially designed for LED driver.

The Device adopts constant on time operation to achieve high power factor.

The SD6800 provides accurate constant current control and operates in boundary conduction mode (BCM) with high efficiency.

The Device adopts primary side regulation eliminating the opto-couple, secondary feedback control and loop compensation for reducing design and cost.

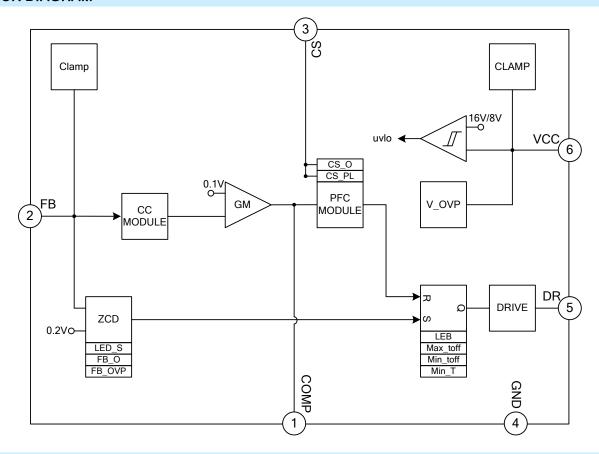
The SD6800 provides completed protections such as short LED protection, open LED protection and over temperature protection, etc.

FEATURES

- PSR Flyback topology
- Boundary Conduction Mode
- Low start current
- Leading edge blanking
- Constant on-time control
- VCC over voltage protection
- VCC under voltage lockout
- Over temperature protection
- Cycle by cycle current limiting
- Peak current compensation
- Short LED protection and Open LED protection

APPLICATIONS

- LED lamp
- LED illumination with AC input


ORDERING INFORMATION

Part No.	Package	Material	Packing
SD6800	SOP-8-225-1.27	Halogen free	Tube
SD6800TR	SOP-8-225-1.27	Halogen free	Tape & reel

Rev.:1.3 Page 1 of 8

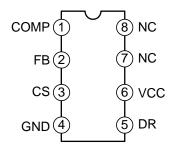
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	-0.3 ~ 23	V
Analog pin voltage	-	-0.3 ~ 5.5	V
Junction temperature	Tj	-40~+150	°C
Storage temperature Range	T _{stg}	-55~+150	°C

ELECTRICAL CHARACTERISTICS (unless otherwise specified, Vcc=18V, Tamb=25°C)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Supply voltage						
Operating voltage	V _{CC}	After IC starts	9		18	V
Turn-on threshold	V_{CCON}		14.4	16	17.6	V
Turn-off voltage	V _{CCOFF}		6.9	8.0	9.0	V
Clamp voltage	Vz	I _{CC} =10mA		30		V
VCC over voltage threshold	V _{CCOVP}		21.4	23	24.6	V
Start-up current	I _{start}	V _{CC} =14V	0	3	10	μA
Operating current	lop		300	500	800	μA
FB Feedback						


Rev.:1.3

SD6800_Datasheet

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
OVP threshold value	V _{FBOVP}		1.38	1.46	1.54	V
Short-circuit detect voltage	V _{SHT}			0.29	1	V
Short-circuit detect timing	T _{SHT}	After 768 switching periods		768		
Zero-crossing detection	V_{zcs}			0.2		V
FB open loop switching times	N			768		
Dynamitic characteristic						
Leading-edge blanking time	T _{LEB}		0.53	0.68	0.83	μs
Max. on time	T _{onmax}	COMP connected to 4V via 20K	24	33	42	μs
Max. off time	T _{offmax}		25	34	43	μs
Min. off time	T_{offmin}		3.2	4.2	5.2	μs
Min. period	T _{min}		6.3	8.3	10.3	μs
Current limit		_				
CS peak limit	V _{CSPL}		0.49	0.60	0.71	V
Gm amplifier						
CS CC compare point	Vcscc		0.097	0.100	0.103	V
Drive						
DR rising time	T_R	C=1nF	100	200	400	ns
DR falling time	T _F	C=1nF	40	60	80	ns
DR high clamp voltage	V_{DRC}		16	17.5	19	V
Peak drive source current	I _{srcpk}	C=1nF	0.2			А
Peak drive sink current	I _{snkpk}	C=1nF	0.7			А
DR high level	V_{DRH}	Isource=25mA	14	15.6	1	V
DR low level	V_{DRL}	Isink=20mA		0.3	0.5	V
Over Temperature Protection	1					
Over temperature detection	T _{sd}			150		°C
Over temperature hysteresis	T _{sdhys}			20		°C

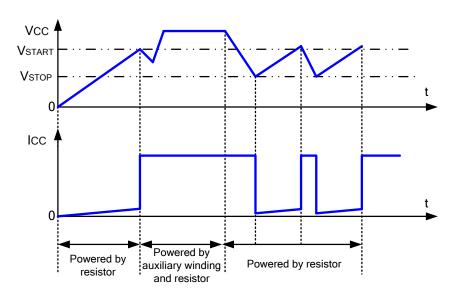
PIN CONFIGURATION

Rev.:1.3

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Function description	
1	COMP	I/O	RC loop compensation pin, output of transconductance amplifier	
2	FB	I	Feedback voltage input pin	
3	CS	I	Current sense pin	
4	GND	I/O	Ground	
5	DR	0	Drive pin	
6	VCC	I/O	Power supply	
7	NC		NC	
8	NC		NC	

FUNCTION DESCRIPTION


The SD6800 is a single stage primary side regulation (PSR) power factor correction (PFC) controller, specially designed for LED driver. The device adopts constant on time operation to achieve high power factor.

The SD6800 provides accurate constant current control and operates in boundary conduction mode (BCM) with high efficiency. The device adopts primary side regulation eliminating the opto-couple, secondary feedback control and loop compensation for reducing design and cost.

The SD6800 provides completed protections such as short LED protection, open LED protection and over temperature protection, etc.

1. Start-up and under voltage lockout

After AC supply is powered on, the capacitor connected to pin VCC is charged by AC supply through a start resistor. Once VCC voltage rises up to 16V, the circuit starts to work. VCC voltage will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain VCC voltage above 8V. If the protection occurs, the output of circuit is off, VCC voltage starts to decrease. If VCC voltage is decreased to 8V, the capacitor connected to pin VCC is recharged through start resistor.

Rev.:1.3

http://www.silan.com.cn

2. Drive circuit

Drive circuit is power by VCC. When DR=1, MOSFET is on; When DR=0, MOSFET is off. T_{LEB} =0.75 μ s is set to avoid the burr which will cause error at the turn-on transient of MOSFET.

3. Peak current detection and sample holding

When MOSFET is on, the primary current, which is detected by sense resistor, increases linearly. If this current exceeds the threshold value 0.6V, the current limit comparator acts to turn off MOSFET and DR=0.

When it is normal, primary peak current is I_{pk} , and the secondary diode on time is T_{off1} , hence, the output current is given by:

$$I_{out} = 0.5 \cdot n \cdot I_{pk} \cdot T_{off1} / T$$

Where, n is the primary/secondary turns ratio.

 $I_{pk} \cdot T_{off1}/T$ is calculated in integral mode, and $I_{pk} \cdot T_{off1}/T = V_{cscc}/R_{sen}$ is realized through loop control.

Where, R_{sen} is the sense resistor.

That is,

$$I_{out} = 0.5 \cdot n \cdot V_{cscc} / R_{sen}$$

The output of error amplifier COMP is used for control switch on time. When the on time is up, DR=0, MOSFET is off.

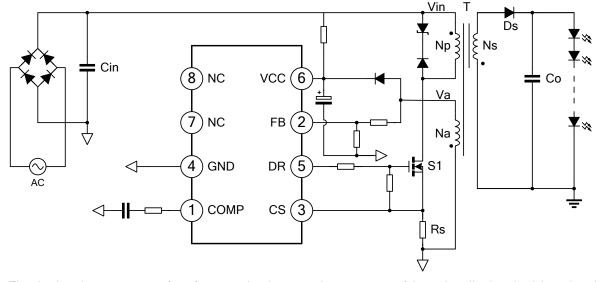
4. Boundary Conduction Mode

The pin FB detects the voltage across the auxiliary winding by a resistor divider. When the secondary current turns to zero, FB voltage starts to decrease. If FB voltage is decreased to 0.2V, the MOSFET would be turned on.

5. VCC over voltage protection and Open LED protection

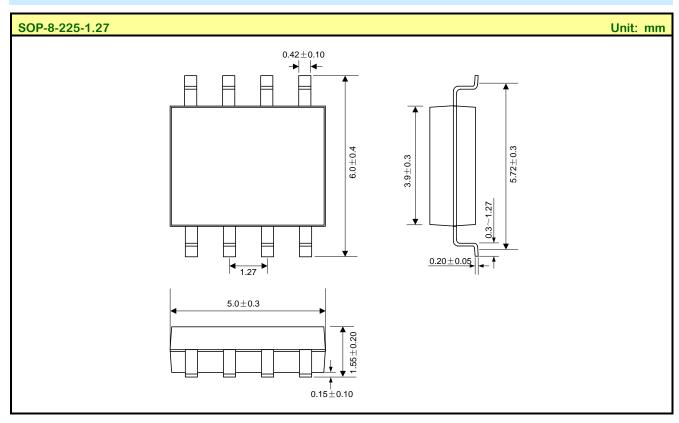
The output voltage is reflected by the auxiliary winding voltage of the Flyback transformer, and both pin FB and pin VCC provide over voltage protection function. When VCC voltage exceeds 23V, or FB voltage exceeds 1.46V, the over voltage protection is triggered and the IC will discharge, VCC voltage start to decrease. If VCC voltage is decreased to 8V, the capacitor connected to pin VCC is recharged through start resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

6. Over Temperature Protection


If the circuit is over temperature, the output is shut down to prevent the circuit from damage. The over temperature protection has the hysteresis characteristic. The temperature should be decreased lower than the threshold temperature by 20°C for normal operation. This is adopted to avoid frequently change between normal and protection modes.

7. LED Short-circuit protection

When LED is short-circuit and held for 768 periods, the protection acts and the circuit restarts after the protection.



TYPICAL APPLICATION CIRCUIT

Note: The circuit and parameters are for reference only; please set the parameters of the real application circuit based on the real test.

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!

SD6800_Datasheet

Part No.	.: SD6800	Document Type:	Datasheet	
Copyrigl	ht: HANGZHOU SILAN MICROELECTRONICS CO.,LTD	Website:	http://www.silan.com.cn	
Rev.:	1.3	Author:	Tang Xianming	
Revision	n History:			
1.	Modify the electrical characteristics			
Rev.:	1.2	Author:	Tang Xianming	
Revision	n History:			
1.	Modify the ordering information			
Rev.:	1.1	Author:	Tang Xianming	
Revision	n History:			
1.	Modify the function description			
Rev.:	1.0	Author:	Tang Xianming	
Revision	n History:			
1.	First Release			

Rev.:1.3 http://www.silan.com.cn Page 8 of 8