
CD1284
IEEE 1284-Compatible Parallel Interface Controller
with Two High-Speed Asynchronous Serial Ports

 Datasheet

Product Features

Parallel Port (Peripheral-side)

High-speed, bidirectional, multi-protocol
parallel port:

■ Hardware implementation of all modes of
the IEEE STD (Standard) 1284
specification (including automatic
negotiation)
—Centronics -compatible mode

—Reverse Byte mode

—Reverse Nibble mode

—ECP (extended capabilities port) mode
with run-length encoding/decoding

—EPP (enhanced parallel port) mode

—Up to 2-Mbytes/sec. transfer rate in ECP
and EPP modes

■ 64-byte parallel FIFO with DMA interface

Two Serial UARTs
■ Serial channel asynchronous protocol

support to 115.2 kbps (register-set-
compatible and functionally identical to
CD1400)
—Twelve-byte FIFOs for each transmitter

and receiver with programmable
threshold for receive FIFO interrupt
generation

—Improved interrupt schemes: Good
Data interrupts eliminate the need for
character status check

—User-programmable and automatic flow
control for serial channels

—Special character recognition and
generation.

—Special character processing,
particularly useful for UNIX
environments, optionally handled
automatically by the serial channels.

—Six modem control signals per channel
(DTR, DSR, RTS, CTS, CD, and RI)
As of May 2001, this document replaces the Basis
Communications Corp. document. May 2001
CL-CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Information in this d
property rights is gr
whatsoever, and Int
fitness for a particu
intended for use in

Intel may make cha

Designers must not
future definition and

The CD1284 may c
characterized errata

Contact your local I

Copies of documen
548-4725 or by visi

Copyright © Intel C

*Third-party brands
 Datasheet

ocument is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
anted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
el disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
lar purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
medical, life saving, or life sustaining applications.

nges to specifications and product descriptions at any time, without notice.

 rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
 shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

ontain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
 are available on request.

ntel sales office or your distributor to obtain the latest specifications and before placing your product order.

ts which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
ting Intel’s website at http://www.intel.com.

orporation, 2001

 and names are the property of their respective owners.

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Contents
1.0 Overview ..12

2.0 Conventions ...15

2.1 Abbreviations...15
2.2 Acronyms ..15

3.0 Pin Information..17

3.1 Pin Diagram...17
3.2 Pin List...18

4.0 Register Summary ...24

4.1 Register Summary Tables...24
4.2 Register Usage..27

5.0 Functional Description...31

5.1 Device Architecture ...31
5.2 CPU Interface..33

5.2.1 Read Cycles ...33
5.2.2 Write Cycles ...34
5.2.3 Service-Acknowledge Cycles ...34
5.2.4 DMA Cycles..34

5.3 Serial Port Service Requests ..35
5.3.1 Interrupts ..36
5.3.2 DMAREQ* as Parallel Interrupt Source..36
5.3.3 Serial Service Request Polling ...40
5.3.4 Daisy-Chaining Service Requests with CD1400s41

5.4 Parallel Port Service Requests..43
5.4.1 Hardware-Activated Context Switch, Parallel ...48
5.4.2 Software-Activated Context Switch, Parallel ..49

5.5 Serial Data Reception and Transmission ..49
5.5.1 Receiver Operation ..50
5.5.2 Receiver Timer Operations ..51
5.5.3 Receive Exceptions..52
5.5.4 Transmitter Operation ..54

5.6 Flow Control ..55
5.6.1 In-Band Flow Control..55
5.6.2 Receiver In-Band Flow Control ..55
5.6.3 Out-of-Band Flow Control...58
5.6.4 Modem Signals and General-Purpose I/O ...59

5.7 Receive Special Character Processing ...61
5.7.1 UNIX‚ Character Processing ..61
5.7.2 Non-UNIX‚ Receive Special Character Processing................................63

5.8 Transmit Special Character Processing ..67
5.8.1 Line Terminating Characters ..67
5.8.2 Embedded Transmit Commands..67
5.8.3 Send Special Character Command..68

5.9 Baud Rate Generation...72
Datasheet 3

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.10 Serial Diagnostic Facilities — Loopback ... 73
5.11 Parallel Port FIFO and Data Pipeline Overview .. 73

5.11.1 IEEE STD 1284 Protocols.. 73
5.11.2 Bus Interface .. 74
5.11.3 Parallel Port FIFO .. 74
5.11.4 Receive Direction ... 75
5.11.5 Receiving Compressed Data..75
5.11.6 Stale Data (Stale, OneChar, and Timeout Status Bits) 76
5.11.7 Transmit Direction .. 76

5.12 CD1284 Parallel Port Overview .. 77
5.12.1 Terminology ... 77
5.12.2 Signal Names... 77
5.12.3 State Machine .. 78
5.12.4 Configuration.. 78
5.12.5 Interrupts .. 79
5.12.6 Manual Mode ... 79
5.12.7 Control Signals... 79
5.12.8 Parallel Port Interface to the FIFO ... 80
5.12.9 1284 Negotiations .. 80
5.12.10 Data Transfers ... 81
5.12.11 Compatible Mode Status.. 81

5.13 1284 Parallel Protocol Support ... 82
5.13.1 Compatibility Mode... 82
5.13.2 Reverse-Nibble and Reverse-Byte Modes... 82
5.13.3 ID Request ... 82
5.13.4 ECP Mode.. 82
5.13.5 EPP Mode .. 83

5.14 Protocol Timing ...83
5.15 General-Purpose I/O Port ... 83
5.16 Parallel Port Interface.. 84
5.17 Hardware Configurations .. 86

5.17.1 Interfacing to an Intel‚ Microprocessor-Based System........................... 86
5.17.2 Interfacing to a Motorola‚ Microprocessor-Based System...................... 86
5.17.3 Interfacing to a National Semiconductor‚

Microprocessor-Based System86

6.0 Programming ... 90

6.1 Overview ... 90
6.2 Initialization ...90

6.2.1 Device Reset.. 90
6.2.2 Global Function Initialization ..93
6.2.3 Serial Channel Initialization.. 93

6.3 Serial Poll Mode Examples ... 94
6.3.1 Polling Routine Examples .. 94

6.4 Hardware-Activated Service Examples... 97
6.4.1 Serial Receive Service ... 97
6.4.2 Serial Transmit Service .. 98
6.4.3 Modem Service ..99

6.5 Parallel Channel Service Routines.. 99
6.5.1 Software-Activated Service Examples (Poll) .. 100
4 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
6.5.2 Hardware-Activated Service Examples ..102
6.6 Baud Rate Derivation ..102
6.7 Baud Rate Tables..103
6.8 ASCII Code Tables..106

6.8.1 Hexadecimal — Character ...106
6.8.2 Decimal — Character ...107

7.0 Detailed Register Descriptions...108

7.1 Global Registers..108
7.1.1 Channel Access Register ...108
7.1.2 Global Firmware Revision Code Register ..108
7.1.3 General-Purpose I/O Direction Register...109
7.1.4 General-Purpose I/O Register..109
7.1.5 Modem Interrupting Channel Register ...109
7.1.6 Modem Interrupt Register...110
7.1.7 Parallel Interrupt Register...111
7.1.8 Prescaler Period Register ..111
7.1.9 Receive Interrupting Channel Register ..112
7.1.10 Receive Interrupt Register..112
7.1.11 Service Request Register...112
7.1.12 Transmit Interrupting Channel Register ...113
7.1.13 Transmit Interrupt Register...113

7.2 Virtual Registers ..113
7.2.1 Modem Interrupt Status Register ...114
7.2.2 Modem Interrupt Vector Register ...114
7.2.3 Parallel Interrupt Vector Register ...115
7.2.4 Receive Data/Status Registers ..115
7.2.5 Receive Interrupt Vector Register ..116
7.2.6 Transmit Data Register ..117
7.2.7 Transmit Interrupt Vector Register ...117
7.2.8 End of Service Request Register ...118

7.3 Channel Registers...118
7.3.1 Channel Command Register ..118
7.3.2 Channel Control Status Register..122

7.4 Channel Registers — Parallel Pipeline ...123
7.4.1 Channel Option Register 1 ...123
7.4.2 Channel Option Register 2 ...124
7.4.3 Channel Option Register 3 ...125
7.4.4 Channel Option Register 4 ...126
7.4.5 Channel Option Register 5 ...128
7.4.6 Local Interrupt Vector Register...128
7.4.7 LNext Character Register...129

7.5 Modem Change Option Registers ...129
7.5.1 Modem Change Option Register 1...129
7.5.2 Modem Change Option Register 2...130
7.5.3 Modem Signal Value Register 1...130
7.5.4 Modem Signal Value Register 2...131
7.5.5 Receive Baud Rate Period Register...131
7.5.6 Receive Clock Option Register ..131
7.5.7 Received Data Count Register...132
Datasheet 5

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.5.8 Receive Timeout Period Register... 133
7.6 Special Character Registers ...133

7.6.1 Special Character Register 1 ... 133
7.6.2 Special Character Register 2 ... 133
7.6.3 Special Character Register 3 ... 134
7.6.4 Special Character Register 4 ... 134
7.6.5 Received Character Range Detection.. 134
7.6.6 Special Character Range — High .. 134
7.6.7 Special Character Range — Low... 134
7.6.8 Serial Service Request Enable Register .. 135
7.6.9 Transmit Baud Rate Period Register.. 135
7.6.10 Transmit Clock Option Register ... 136

7.7 Channel Registers — Parallel Pipeline ... 136
7.7.1 Data Error Register .. 136
7.7.2 DMA Buffer Data Register — High... 137
7.7.3 DMA Buffer Data Register — Low.. 137
7.7.4 Firmware Revision Code Holding Register Status Register................. 138
7.7.5 Local Interrupt Vector Register .. 138
7.7.6 Parallel Auxiliary Control Register.. 139
7.7.7 Parallel Channel Reset Register ..140
7.7.8 Parallel FIFO Control Register ... 140
7.7.9 Parallel FIFO Empty Pointer Register .. 141
7.7.10 Parallel FIFO Fill Pointer Register.. 142
7.7.11 Parallel FIFO Holding Register 1..142
7.7.12 Parallel FIFO Holding Register 2..142
7.7.13 Parallel FIFO Quantity Register ... 143
7.7.14 Parallel FIFO Status Register... 143
7.7.15 Parallel FIFO Threshold Register... 144
7.7.16 Run Length Count Register.. 144
7.7.17 Stale Data Timer Count Register ... 145
7.7.18 Stale Data Timer Period Register... 145

7.8 Channel Registers — Parallel Port ... 146
7.8.1 EPP Address Register ... 146
7.8.2 Host Timeout Value Register ... 146
7.8.3 Input Value Register...147
7.8.4 Manual Data Register .. 148
7.8.5 Negotiation Enable Register ..148
7.8.6 Negotiation Status Register ... 148
7.8.7 Ones Detect Register... 149
7.8.8 Output Value Register.. 150
7.8.9 Parallel Channel Interrupt Enable Register.. 150
7.8.10 Parallel Channel Interrupt Status Register... 150
7.8.11 Parallel Configuration Register... 151
7.8.12 Special Command Register.. 152
7.8.13 Short Pulse Register .. 153

7.9 Pin Control Registers .. 154
7.9.1 Signal Status Register.. 154
7.9.2 Zeros Detect Register .. 154
6 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
8.0 Electrical Specifications..155

8.1 Absolute Maximum Ratings...155
8.2 Recommended Operating Conditions ...155
8.3 AC Characteristics...157

8.3.1 Asynchronous Timing...157
8.3.2 Synchronous Timing...163

9.0 Package Dimensions ..169

10.0 Ordering Information ..170

11.0 Appendix A ...171

11.1 Commonly Asked Questions ...171

12.0 Appendix B ...172

Index ...173
Datasheet 7

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figures
1 Functional Block Diagram ... 11
2 CD1284 Sample System Block Diagram ..14
3 CD1284 Functional Block Diagram ... 32
4 Internal Address Generation ...32
5 Control Signal Generation... 38
6 CD1284 Daisy-Chain Connections ... 42
7 Interrupt Generation Logic .. 45
8 FIFO Timer Processing ... 53
9 CD1284 Receive Character Processing ... 64
10 CD1284 Transmit Character Processing ..70
11 FIFO Data Path Functional Diagram — Receive .. 78
12 FIFO Data Path Functional Diagram — Transmit ...80
13 Cable Connection.. 85
14 External Buffer Control.. 86
15 Intel‚ 80x86 Family Interface ...87
16 Motorola‚ 68020 Interface ... 88
17 National Semiconductor‚ 32000 Interface ... 89
18 Flow Diagram of CD1284 Master Initialization Sequence................................... 92
19 Polling Flow Chart ... 100
20 Reset Timing ... 158
21 Clock Timing ... 159
22 Asynchronous Read Cycle Timing .. 159
23 Asynchronous Write Cycle Timing .. 160
24 Asynchronous Service Acknowledge Cycle Timing .. 161
25 Asynchronous DMA Read Cycle Timing ... 162
26 Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)162
27 Asynchronous DMA Write Cycle Timing ... 163
28 Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)....... 163
29 Synchronous Read Cycle Timing.. 165
30 Synchronous Write Cycle Timing .. 166
31 Synchronous Service Acknowledge Cycle Timing .. 167
32 Synchronous DMA Write Cycle Timing

(Two Back-to-Back 3-Cycle DMA Writes) ... 168
33 Synchronous DMA Read Cycle Timing

(Two Back-to-Back 3-Cycle DMA Reads) ... 168
34 UART to RS232 and IR Port Interface Motherboard Example Schematic 172
8 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Tables
1 Pin Descriptions ..20
2 Global Registers..24
3 Virtual Registers — Serial ...24
4 Virtual Registers — Serial and Parallel ...24
5 Channel Registers — Serial ..25
6 Channel Registers — Parallel Pipeline

(Selected by Channel 0 in CAR) ...26
7 Channel Registers — Parallel Port

(Selected by Channel 0 in CAR) ...26
8 Global Registers..27
9 Virtual Registers ..27
10 Virtual Registers — Serial and Parallel ...28
11 Channel Registers — Serial ..28
12 Channel Registers — Parallel Pipeline

(Selected by Channel 0 in CAR) ...29
13 Channel Registers — Parallel Port

(Selected by Channel 0 in CAR) ...29
14 Request-Type Bit Assignments ...38
15 CCSR[6:5] Encoding ...56
16 CCSR[2:1] Encoding ...57
17 COR Control Bits...58
18 Out-of-Band Pin Connections..59
19 Modem Control Pin Functions ...60
20 Signal Names ..77
21 System Clock Settings ..83
22 Baud Rate Constants — CLK = 25 MHz ...103
23 Baud Rate Constants — CLK = 20.2752 MHz ..104
24 Baud Rate Constants — CLK = 20.00 MHz ..104
25 Baud Rate Constants — CLK = 18.432 MHz ..105
26 Baud Rate Constants — CLK = 16 MHz ...105
27 Asynchronous Timing Reference Parameters...157
28 Synchronous Timing Reference Parameters ..164
Datasheet 9

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Revision History

Revision Date Description

1.0 May 2001 Initial release.
10 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 1. Functional Block Diagram

Control
State

Machine

MODIFIED CD1400 CORE

MPU

LO
C

A
L

C
P

U

IN
T

E
R

FA
C

E

REGISTERS
AND FIFO

RAM

SERIAL
PORT #1

SERIAL
PORT #2

GENERAL-
PURPOSE I/

O PORT

Compression/
Decompression

DATA Mover

DATA PIPELINE

DMA
CONTROL

FIFO IEEE1284 PERIPHERAL
PARALLEL PORT

Level-2
Electrical
Interface

64 Bytes
 Datasheet 11

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
1.0 Overview

Ideal for printers, scanners, tape drives, set-top boxes, and data acquisition applications, the
CD1284 is a multi-function interface controller that implements a high-speed, multi-protocol
parallel port and two asynchronous serial ports. The device has both programmed I/O and DMA
operation (parallel port only), providing flexibility in local CPU interface design and high-speed
data transfers between the device and main memory.

The parallel port implements all modes of the IEEE STD 1284 Standard Signaling Method for
Bidirectional Parallel Peripheral Interface for Personal Computers specification, including EPP,
ECP, Reverse Byte, Reverse Nibble, and Compatible. Data transfer rates (up to 2 Mbytes/sec.) are
achievable on the parallel port when the device operates with a 25-MHz clock. The parallel port
data and control signals implement the IEEE STD 1284-defined Level-2 interface in drive type
(symmetrical), current capability (±14 mA), slew rate (0.4 V/ns), and 0.8 V hysteresis (2.0 V to
+7.0 V protection is not implemented).

The two serial ports implement the standard asynchronous protocol. Functionally, the serial ports
are identical and register-set-compatible with the CD1400. The table below, shows the differences
between the CD1283 and CD1284.

Also included is a general-purpose port that provides eight bits of individual direction
programmable I/O that can be used for status and control of external functions.

Theory of Operation

The CD1284 is an efficient high-performance communications controller using an on-chip RISC
processor, which off-loads much of the work of sending and receiving data from the CPU.
Specifically for data communications applications, the RISC processor employs a high-
performance architecture developed by Intel. This internal CPU executes all instructions in one
clock cycle, and uses a windowed architecture to ensure zero-overhead context switching for each
type of internal interrupt. The processor is transparent to the user and does not require any
programming. It manages all serial data movement between the CPU and the two serial channels
and provides a flexible interrupt interface for the parallel channel. The parallel channel, being
separate and having its own intelligence, implements a very high-speed, peripheral-side parallel
data interface.

Each of the serial channels consist of separate 12- byte receive and transmit FIFOs. The parallel
channel has a single 64-byte FIFO to support the higher speeds obtainable on the parallel data port.
The serial receive FIFOs all have programmable thresholds to minimize interrupt latency
requirements. The parallel port FIFO has a programmable DMA threshold in both the receive and
transmit directions. The deep FIFOs reduce both the number of interrupt requests made of the CPU
and the time required to service them. The time required to service the requests is reduced by four
unique vectors that provide internal interrupt conditions. Whether it is receive, transmit, modem
signal change, or parallel port, the system spends less time determining the source of the
interrupt.The serial receive interrupt service time is further reduced by providing two types of
receive vectors: one for ‘good’ data and the other for ‘exception’ data. The CPU does not spend

Device Number of
Serial Channels

Number of
Parallel Channels

CD1283 0 1

CD1284 2 1
12 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
time determining the status of every character. When the receive vector signifies good data, the
CPU removes the data from the FIFO. Checking status is not necessary. Exception data (framing
error, overrun, break, etc.) causes an interrupt with a vector that the CPU can immediately identify
and manage.

The RISC processor is assisted in the process of sending and receiving serial data by specialized
hardware called ‘bit engines’. These logic blocks perform the actual task of sending and receiving
the individual bits of a character, thus removing the task of timing the bit duration from the on-chip
processor. The processor assembles the bits into characters and tests various parameters (for
example, parity, framing, etc.) then places the characters in the FIFO. Since it is managing every
character, special character processing is possible such as looking for and responding to flow-
control characters (XON/XOFF) and performing UNIX -style character substitutions and range
checking. This reduces interrupt overhead by automatically performing many of the operations that
the CPU normally does. Flow-control, for example, can be performed without CPU involvement.
Those operations can be completely removed from its responsibility.

The CD1284 can be daisy-chained with other CD1284 or CD1400 devices to implement larger and
more complex systems. The Fair Share feature assures equal access for service requests across
multiple devices (Fair Share is not implemented on a parallel port interrupt request).

The parallel channel within the CD1284 implements all protocols defined for the peripheral side by
the IEEE STD 1284. This specification defines four bidirectional protocols that allow a peripheral
device to communicate with a host system (IBM PC or equivalent) through the parallel printer
channel. The modes include Reverse Nibble, Reverse Byte (IBM PS/2 style), ECP, and EPP (as
implemented on the Intel 80386SL processor). ECP and EPP both operate at data rates as high as
2 Mbytes/sec.

The IEEE 1284 port is implemented as two functional blocks: a data pipeline, which includes the
64-byte FIFO and the DMA interface, and a high-speed state-machine, which controls the parallel
port and implements the slave-side IEEE 1284 protocols. The internal RISC processor assists the
parallel channel by providing interrupt generation, acknowledgment functions, and a data interface
to the Parallel Port registers.

As defined in the IEEE 1284 specification, the CD1284 in ECP mode, provides RLE (run length
encoded) data compression in both directions. This data compression is performed automatically
(if enabled) and is capable of compressing long strings (up to 128 bytes) of identical data into a
two-byte sequence (command/count and data). Since it is common for bit patterns to have large
amounts of identical data, the CD1284 greatly reduces data transmission times in printer
applications.

EPP mode defines a means of sending address and data over the parallel channel much like a
processor address and data interface. This has found widespread use in LAN and SCSI interface
adapters that provide these services on laptop computers.

The following figure shows a possible configuration for a CD1284 in a laser-printer application. In
this example, the CD1284 provides a parallel and serial data interface to a host system or server. It
also provides a serial channel for control communication with the printer console, as well as
general-purpose I/O for static control/status.
 Datasheet 13

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 2. CD1284 Sample System Block Diagram

CD1284

ROM RAM

ADDRESS BUS

DATA BUS

LASER
PRINTER

CONSOLE

CONTROL
PROCESSOR

IEEE 1284
PARALLEL CHANNEL

HIGH-SPEED
SERIAL CHANNEL #1
(RS-232, INFRARED)

HIGH-SPEED
SERIAL CHANNEL #2

GP I/O:
INTERNAL STATUS

AND CONTROL
14 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
2.0 Conventions

2.1 Abbreviations

The use of ‘tbd’ indicates values that are ‘to be determined’, ‘n/a’ designates ‘not available’, and
‘N/C’ indicates a pin that is a ‘no connect’.

2.2 Acronyms

Symbol Units of Measure

°C degree Celsius

Hz hertz (cycles per second)

Kbyte kilobyte (1,024 bytes)

kHz kilohertz

kΩ kilohm

Mbyte megabyte (1,048,576 bytes)

MHz megahertz (1,000 kilohertz)

µF microfarad

µs microsecond (1,000 nanoseconds)

mA milliampere

ms millisecond (1,000 microseconds)

ns nanosecond

pV picovolt

Acronym Definition

 (Sheet 1 of 2)

AC alternating current

BIOS basic input/output system

CISC complex instruction set computer

CMOS complementary metal-oxide semiconductor

DC direct current

DMA direct-memory access

DRAM dynamic random-access memory

ECP extended capibilities port

EPP enhanced parallel port

FIFO first in/first out

GPIO general-purpose IO
 Datasheet 15

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
HCMOS high-performance complementary metal-oxide
semiconductor

HDLC high-level data link control

IC integrated circuit

IDC instruction and data cache

ISA industry standard architecture

LSB least-significant bit

MPU microprocessing unit

MSB most-significant bit

PIO programmed I/O

PPP point-to-point protocol

MQFP metric quad flat pack

RAM random-access memory

RLE run-length encoded

R/W read/write

SDLC synchronous data link control

SRAM static random-access memory

SWI software interrupt instruction

TLB translation look-aside buffer

TTB translation table base

TTL transitor-transitor logic

VRAM video random-access memory

WB write buffer

Acronym Definition

 (Sheet 2 of 2)
16 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
3.0 Pin Information

3.1 Pin Diagram

CD1284

100-Pin MQFP
VCC

G
N

D

X
fla

g

P
er

C
lk

P
er

B
sy

A
kD

aR
q

nI
ni

t

H
st

C
lk

H
st

B
sy

A
_1

28
4

PDBEN

GND

GP[7]

GP[6]

GP[5]

DS*

R/W*

DTACK*

CS*

RESET*

GP[4]

SVCREQR*

SVCREQM*

DPASS*

DGRANT*

GP[3]

SVCACKR*

SVCACKM*

GND

D
B

[1
5]

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1

2

3

4

5

6

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

80

79

78

77

76

73

72

74

75

71

70

68

67

65

63

62

61

60

59

58

57

55

53

52

51

69

66

64

56

54

G
N

D

CLK/2

V
C

C

D
B

[8
]

D
B

[9
]

D
B

[1
0]

D
B

[1
1]

D
B

[1
2]

D
B

[1
3]

D
B

[1
4]

VCC

DMAACK*

RI3*

RI2*

TXD3

RXD3

TXD2

RXD2

DB[5]

DB[4]

DB[2]

DTR3*

RTS3*

CTS3*

DSR3*

CD3*

DTR2*

RTS2*

CTS2*

DSR2*

CD2*

GND

V
C

C

E
B

D
IR

P
D

[0
]

P
D

[1
]

P
D

[2
]

P
D

[7
]

DB[1]

DB[6]

P
D

[6
]

P
D

[5
]

P
D

[4
]

P
D

[3
]

DMAREQ*

GP[0]

DB[0]

GND

A
[1

]

nD
at

A
v

GP[2]

SVCREQT*

SVCREQP*

CLK

GP[1]

SVCACKT*

SVCACKP*

N/C

DB[3]
A

[0
]

B
Y

T
E

S
W

A
P

V
C

C

DB[7]

GND

A
[6

]

O
U

T
E

N

A
[5

]

A
[4

]

A
[2

]

A
[3

]

NOTE: (*) Denotes negative-true signal.
‘N/C’ indicates no connection;
make no connection to these pins. (See table on next page.)
 Datasheet 17

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
3.2 Pin List

The following conventions are used in the pin-description tables:

• (*) after a name indicates that the signal is active-low

• ‘I’ indicates the pin is input-only

• ‘O’ indicates the pin is output-only

• ‘I/O’ indicates the pin is bidirectional

• ‘OD’ indicates an open-drain output that the user must tie to VCC through a pull-up resistor
(usually about 1 kΩ)

• ‘AR’ indicates active release (pin drives to ‘1’ and releases to ‘OD’)

• ‘TS’ indicates tristate

• a ‘–’ indicates ascending pin numbers

• a ‘:’ indicates descending pin numbers

Pin
Names

Compati-
bility

Reverse
Nibble
Mode

Reverse
Byte
Mode

ECP Mode EPP
Mode

Inputs

A_128
4 SLCTIN* A_1284 A_1284 A_1284 nAStrb

HstBsy AUTOFD* HstBsy HstBsy HstAck nDStrb

HstClk STROBE* HstClk HstClk HstClk nWrite

nInit INIT* nInit nInit nRevReq nInit

Outputs

AkDaR
q PError AkDaRq AkDaRq nAkRev USER1

PerBsy BUSY PerBsy PerBsy PerAck nWait

PerClk ACK* PerClk PerClk PerClk Intr

nDatAv FAULT* nDatAv nDatAv nPerReq USER2

XFlag SELECT XFlag XFlag XFlag USER3

Pin Name Type Number
of Pins

Pin
Number

Reset
State

 (Sheet 1 of 3)

5V – 5 11, 50, 65,
81, 100

GND – 7
1,10, 30,

40, 52, 72,
91

RESET* I 1 79
18 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
OUTEN I 1 83

CLK I 1 73

CLK/2 O 1 80 n/a

DB[15:0] I/O 16 92–99, 2–
9 TS

A[6:0] I 7 84–90

R/W* I 1 76

CS* I 1 78

DS* I 1 77

BYTESWAP I 1 82

DTACK* AR 1 75

DMAREQ* O 1 13 High

DMAACK* I 1 12

SVCREQR* OD 1 61

SVCACKR* I 1 62

SVCREQT* OD 1 63

SVCACKT* I 1 64

SVCREQP* OD 1 68

SVCACKP* I 1 69 High

SVCREQM* OD 1 66

SVCACKM* I 1 67

DGRANT* I 1 70

DPASS* O 1 71 High

PD[7:0] I/O 8 41–48 TS

GP[7:0] I/O 8 53–60 TS

A_1284 I 1 31

HstBsy I 1 32

HstClk I 1 33

nInit I 1 34

AkDaRq O 1 35

PerBsy O 1 36 Low

PerClk O 1 37 High

nDatAv O 1 38 High

Xflag O 1 39 Low

EBDIR O 1 49 High

PDBEN O 1 51 Low

TXD3 O 1 16 High

Pin Name Type Number
of Pins

Pin
Number

Reset
State

 (Sheet 2 of 3)
 Datasheet 19

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

RXD3 I 1 17

TXD2 O 1 18 High

RXD2 I 1 19

RTS2* O 1 26 High

RTS3* O 1 21 High

DTR2* O 1 25 High

DTR3* O 1 20 High

CTS2* I 1 27

CTS3* I 1 22

DSR2* I 1 28

DSR3* I 1 23

CD2* I 1 29

CD3* I 1 24

RI2* I 1 15

RI3* I 1 14

N/C – 1 74

Table 1. Pin Descriptions (Sheet 1 of 4)

Symbol Pin No. Type Description

RESET* 79 I
ACTIVE-LOW RESET: This input initializes the device to the default condition. All
internal registers are set to their reset condition and all transfer operations are set to
the default state.

OUTEN 83 I
OUTPUT ENABLE: This pin must be ‘1’ to enable output pin functions. When OUTEN
is ‘0’, it forces all output pins to remain in a tristate condition. Typically, OUTEN is used
only for test purposes. User designs must tie this pin to VCC through a pull-up resistor.

CLK 73 I SYSTEM CLOCK: This input has a 25-MHz maximum; 16 MHz is the recommended
minimum for satisfactory device performance.

CLK/2 80 O SYSTEM CLOCK DIVIDED BY TWO OUTPUT: This signal is equivalent to the
internal operating clock of the device.

DB[15:0] 92–99, 2–9 I/O

BIDIRECTIONAL DATA BUS: Only DMA transfers and writes to the DMA Buffer
register are true 16-bit operations. During all register writes other than to the DMA
Buffer register, bits [7:0] are written to the addressed register. Register reads duplicate
the register contents on both the lower byte [7:0] and upper byte [15:8].

A[6:0] 84–90 I
ADDRESS BUS: Together with CS* or one of the SVCACK* inputs and DS*, this input
selects an On-Chip register for a read or write operation or an acknowledgment to an
service request.

R/W* 76 I READ/WRITE*: This input must be ‘1’ for a register read operation, and must be ‘0’ for
a register write. R/W* is ignored for DMA operations.

CS* 78 I
ACTIVE-LOW CHIP SELECT: When active, the input CS* combines with DS*,
initiates an I/O cycle with the CD1284. CS* must be ‘1’ during DMA read/write
operations.

Pin Name Type Number
of Pins

Pin
Number

Reset
State

 (Sheet 3 of 3)
20 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
DS* 77 I
ACTIVE-LOW DATA STROBE: During an active I/O cycle, the input DS* strobes data
into On-Chip registers on write cycles or enables data onto the data bus during read
cycles. DS* is ignored during DMA operations.

BYTESWAP 82 I

BYTESWAP: This input determines the byte order for 2-byte DMA transfers and for
writes to the DMA Buffer register. When BYTESWAP is ‘1’, then Data Bus bits [15:8]
are driven with the byte transferred first on the parallel port bus. Data Bus bits [7:0] are
driven with the byte transferred second on the parallel port bus. When BYTESWAP is
‘0’, the data order is reversed, bits [7:0] are driven with the byte transferred first and
bits [15:8] are driven with the byte transferred second.

DTACK* 75 AR

ACTIVE-LOW DATA TRANSFER ACKNOWLEDGE: This output indicates: 1) when
the device completes the requested I/O operation, and, 2) when the current cycle can
finish. This signal can implement wait-state insertion for the local CPU. DTACK* does
not activate on DMA cycles.It is an active-release output, driving to a logic ‘1’ then
releasing to OD. DTACK* must be ties to external Vcc through a pull-up resistor.

DMAREQ* 13 O

ACTIVE-LOW DMA REQUEST: When the internal control bit DMAen is set, the output
DMAREQ* is asserted if internal FIFO conditions warrant a DMA transfer. DMAREQ*
is deasserted on the falling edge of DMAACK* when DMA transfers cannot continue
past the current transfer.

DMAACK* 12 I

ACTIVE-LOW DMA ACKNOWLEDGE: This input is never asserted unless in
response to a DMAREQ* from the chip. DMAACK* is the only bus handshake signal
recognized during a DMA transfer. (CS* must be high whenever DMAACK* is
asserted). The direction of DMA transfer is determined by internal control bit DMAdir.

SVCREQR* 61 OD

ACTIVE-LOW SERVICE REQUEST RECEIVE: This is an open-drain output and must
be tied to external VCC through a pull-up resistor. When active, the device serial-
receive FIFO has either reached the programmed threshold or an exception condition
exists that requires CPU attention.

SVCACKR* 62 I

ACTIVE-LOW SERVICE ACKNOWLEDGE RECEIVE: This input is driven low during
service acknowledge cycles to begin servicing a receive-service request. It must not
be driven active except in response to a receive-service request presented by the
device.

SVCREQT* 63 OD
ACTIVE-LOW SERVICE REQUEST TRANSMIT: This is an open-drain output and
must be tied to external VCC through a pull-up resistor. When active, the device serial
transmit FIFO or serial transmitter is empty and requires CPU attention.

SVCACKT* 64 I

ACTIVE-LOW SERVICE ACKNOWLEDGE TRANSMIT INPUT: This input is driven
low during service acknowledge cycles to begin servicing a transmit-service request. It
must not be driven active except in response to a transmit-service request presented
by the device.

SVCREQP* 68 OD
ACTIVE-LOW SERVICE REQUEST PARALLEL: This is an open-drain output and
must be tied to external VCC through a pull-up resistor. SVCREQP* is not activated by
FIFO threshold or FIFO full/empty conditions.

SVCACKP* 69 I ACTIVE-LOW SERVICE ACKNOWLEDGE PARALLEL: This input cannot be driven
active except in response to a parallel service request presented by the device.

SVCREQM* 66 OD
ACTIVE-LOW SERVICE REQUEST STATUS (Modem): This is an open-drain output
that must be tied to external VCC through a pull-up resistor. When active, a
programmed modem signal change occurs and requires CPU attention.

SVCACKM* 67 I

ACTIVE-LOW SERVICE ACKNOWLEDGE STATUS (Modem): This input is driven
low during service acknowledge cycles to begin servicing a modem-service request. It
must not be driven active except in response to a modem-service request presented
by the device.

DGRANT* 70 I

ACTIVE-LOW DAISY GRANT: This input is driven active during service acknowledge
cycles to enable the daisy-chain function. This input, when qualified with DS* and a
valid service acknowledge (SVCACKR*, SVCACKT*, SVCACKM*, or SVCACKP*),
activates the CD1284 service-acknowledge cycle.

Table 1. Pin Descriptions (Sheet 2 of 4)

Symbol Pin No. Type Description
 Datasheet 21

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
DPASS* 71 O

ACTIVE-LOW DAISY PASS: This output is driven active during service acknowledge
cycles to enable the next device in the daisy chain. It is driven active when no valid
service request exists for the type of service acknowledge input active. In multiple
CD1284 designs, this signal is normally connected to the DGRANT* input of the next
device in the chain.

PD[7:0] 41–48 I/O
PARALLEL PORT DATA LINES [7:0]: Bidirectional (depending on the protocol being
used), these signals are used to transfer data through the interface between the
master and slave.

GP[7:0] 53–60 I/O

GENERAL PURPOSE I/O [7:0]: General-purpose input/output port data lines. These
signals are individually direction programmable and act as inputs or outputs. The
corresponding bit in the GPDIR register controls the direction of each signal. The
GPIO register provides the control/status of the actual signals.

A_1284 31 I 1284 ACTIVE INPUT: (SLCTIN* in Compatibility mode). Active-high.

nInit 34 I INIT SIGNAL: (INIT* in Compatibility mode). Active-low.

HstBsy 32 I HOST BUSY: (AUTOFD* in Compatibility mode). Active-high.

HstClk 33 I HOST CLOCK: (STROBE* in Compatibility mode). Active-low.

The above four parallel handshake signals are driven by the master in an IEEE STD 1284 interface, and as such are inputs to
the CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol
functions.

PerClk 37 O PERIPHERAL CLOCK: (ACK* in Compatibility mode). Active-low.

PerBsy 36 O PERIPHERAL BUSY: (BUSY in Compatibility mode). Active-high.

AkDaRq 35 O ACKNOWLEDGE DATA REQUEST: (PError in Compatibility mode).

Xflag 39 O EXTENSIBILITY FLAG: (SELECT in Compatibility mode).

nDatAv 38 O DATA AVAILABLE: (FAULT* in Compatibility mode). Active-low.

The above five parallel handshake signals are driven by the slave in an IEEE STD 1284 interface and are outputs from the
CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol functions.

EBDIR 49 O

EXTERNAL BUFFER DIRECTION: This signal is controlled by the internal parallel-
port-control state machine and is used to control the direction of an external buffer
connected to the parallel-port data bus. An external buffer could be desirable in
applications that require higher drive capacity than those provided by the CD1284.
EBDIR can be used in conjunction with PDBEN to control this buffer. EBDIR is a logic
‘0’ when the parallel data bus is in an output mode and a logic ‘1’ when in an input
mode. It can be connected directly to the direction control input of a 74245-type
device.

PDBEN 51 O

PARALLEL DATA BUS ENABLE: This signal can be used to control a buffer on the
parallel port data lines in applications requiring more signal drive capability than that
provided by the CD1284. The signal is controlled by the internal parallel port control
state-machine. When low, the parallel port data bus is off (not driving); when high, the
port is in an output mode and is actively driving. The signal toggles between on and off
states during output modes and is active (high) only when the data bus pins are in the
active driving state. This signal can be logically connected to the enable control of
74245 (or equivalent) bidirectional buffers.

TXD[3,2] 16, 18 O TRANSMIT DATA: TXD[3,2] are outputs of serial channel numbers two and three.

RXD[3,2] 17, 19 I RECEIVE DATA: RXD[3, 2] are outputs of serial channel numbers two and three.

RTS[3,2]* 21, 26 O REQUEST TO SEND: These are active-low outputs of serial channel numbers two
and three.

DTR[3,2]* 20, 25 O DATA TERMINAL READY: These are active-low outputs of serial channels two and
three.

CTS[3,2]* 22, 27 I CLEAR TO SEND: These are active-low inputs for serial channels two and three.

Table 1. Pin Descriptions (Sheet 3 of 4)

Symbol Pin No. Type Description
22 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
DSR[3,2]* 23, 28 I DATA SET READY: These are active-low inputs for serial channels two and three.

CD[3,2] 24, 29 I CARRIER DETECT: These are active-low inputs for serial chanels two and three.

RI[3,2] 14, 15 I RING INDICATOR: These are active-low inputs for chanels two and three.

Table 1. Pin Descriptions (Sheet 4 of 4)

Symbol Pin No. Type Description
 Datasheet 23

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
4.0 Register Summary

4.1 Register Summary Tables

Table 2. Global Registers

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

CAR 68 Poll Poll Poll Poll Poll 0 C1 C0 108

GFRCR 4F Firmware Revision Code 108

GPDIR 71 Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0 109

GPIO 70 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 109

MICR 45 X X X X C1 C0 X X 109

MIR 69 MdIreq Mdbusy Mdunfair 0 1 0 ch[1] ch[0] 110

PIR 61 PPIreq PPort Pipeline 0 0 0 0 0 111

PPR 7E 8-Bit Binary Value 111

RICR 44 X X X X C1 C0 X X 112

RIR 6B RxIreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0] 112

SVRR 67 DMAREQ ExtM ExtT ExtR SRP SRM SRT SRR 112

TICR 45 X X X X C1 C0 X X 113

TIR 6A TxIreq Txbusy Txunfair 1 0 0 ch[1] ch[0] 113

Table 3. Virtual Registers — Serial

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

MISR 4C DSRch CTSch RIch CDch 0 0 0 0 114

MIVR 41 X X X X X IT2 IT1 IT0 114

PIVR 40 X X X X X IT2 IT1 IT0 115

RDSR
(data)

62 Received Character 115

RDSR
(status) 62 Timeout SC Det2 SC Det1 SC Det0 Break PE FE OE 115

RIVR 43 X X X X X IT2 IT1 IT0 116

TDR 63 Transmit Character 117

TIVR 42 X X X X X IT2 IT1 IT0 117

Table 4. Virtual Registers — Serial and Parallel

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

EOSRR 60 X X X X X X X X 118
24 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Table 5. Channel Registers — Serial

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

CCR1 05 Res Chan COR Chg Send SC Chan Ctl D3 D2 D1 D0 118

CCSR 0B RxEN RxFloff RxFlon 0 TxEN TxFloff TxFlon 0 122

COR1 08 Parity ParM1 ParM0 Ignore Stop1 Stop0 ChL1 ChL0 123

COR2 09 IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE 124

COR3 0A SCDRNG SCD34 FCT SCD12 RxTh3 RxTh2 RxTh1 RxTh0 125

COR4 1E IGNCR ICRNL INLCR IGNBRK −BRKINT PEH[2] PEH[1] PEH[0] 126

COR5 1F ISTRIP LNE CMOE 0 0 EBD ONLCR OCRNL 128

LIVR 18 X X X X X IT2 IT1 IT0 128

LNC 24 LNext Character 129

MCOR1 15 DSRzd CTSzd RIzd CDzd DTRth3 DTRth2 DTRth1 DTRth0 129

MCOR2 16 DSRod CTSod RIod CDod 0 0 0 0 130

MSVR1 6C DSR CTS RI CD 0 0 0 RTS 130

MSVR2 6D DSR CTS RI CD 0 0 DTR 0 131

RBPR 78 Binary Divisor Value 131

RCOR 7C 0 0 0 0 0 ClkSel2 ClkSel1 ClkSel0 131

RDCR 0E 0 0 0 0 CT3 CT2 CT1 CT0 132

RTPR 21 Binary Count Value 133

SCHR1 1A Special Character 1 133

SCHR2 1B Special Character 2 133

SCHR3 1C Special Character 3 134

SCHR4 1D Special Character 4 134

SCRH 23 Character Range — high 134

SCRL 22 Character Range — low 134

SRER 06 MdmChg 0 0 RxData 0 TxRdy TxEmpty NNDT 135

TBPR 72 Binary Divisor Value 135

TCOR 76 0 0 0 0 0 ClkSel2 ClkSel1 ClkSel0 136

NOTE:
1. The CCR contents and offsets apply to any of the channels; the channel being access at any given time is controlled by the

CAR. See Section 7.3.1.1 through Section 7.3.1.4 for channel-specific bit settings.
 Datasheet 25

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Table 6. Channel Registers — Parallel Pipeline
(Selected by Channel 0 in CAR)

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

DER 33 DMAwrerr DMArderr Bufwrerr Bufrderr HR1wrerr HR1rderr HR2wrerr HR2rderr 136

DMABUF

(H)
30 15 14 13 12 11 10 9 8 137

DMABUF

(L)
30 7 6 5 4 3 2 1 0 137

HRSR 34 HR1full HR1tag HR2full HR2tag DMAfull DMAmpty DMAact Ctnot0 138

LIVR 18 User-Defined Bits IT2 IT1 IT0 138

PACR 3F ShrtTen ShrtStal StaleOff FIFOlock ClearTO 0 AsyncDMA Unfair 139

PCRR 6C 0 0 0 0 0 0 0 PChReset 140

PFCR 31 FIFOres DMAen DMAdir IntEn RLEen setTAG ErrEn DMAbufWe 140

PFEP 39 0 0 6-Bit Binary FIFO Pointer Value 141

PFFP 38 0 0 6-Bit Binary FIFO Pointer Value 142

PFHR1 35 8-Bit Character Data 142

PFHR2 36 8-Bit Character Data 142

PFQR 3A Data or Space Available in FIFO — Max 0x’40 143

PFSR 32 FFfull FFempty Timeout HRtag HRdata Stale OneChar DataErr 143

PFTR 3B 0 DMA Transfer Threshold 144

RLCR 37 0 7-Bit Unsigned Binary Count 144

SDTCR 3D 8-Bit Stale Data Timer Count 145

SDTPR 3C 8-Bit Stale Data Timeout Value 145

Table 7. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 1 of 2)

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

EAR 25 8-Bit Binary Value 146

HTVR 24 HTVR[7] HTVR[6] HTVR[5] HTVR[4] HTVR[3] HTVR[2] HTVR[1] HTVR[0] 146

IVR 2E 0 0 0 0 A1284 nInit HstBsy HstClk 147

MDR 21 8-Bit Binary Data 148

NER 28 0 RID 0 EPP RLE ECP RVB RVN 148

NSR 29 NegOK NegFl HostTO ImedTerm 4-Bit Negotiation Result Code 148

ODR 2D 0 0 0 0 A1284 nInit HstBsy HstClk 149

OVR 2B PerBsy PerClk AkDaRq xFlag nDatAv 0 0 0 150

PCIER 22 0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT 150

PCISR 23 0 TimeOvr NegCh SigCh EPPAW DirCh IDReq nINIT 150

PCR 20 ManMd E1284 ETxfr Ig_SEL HTmrTst[1:0] MMDir ManOE 151

SCR 2A 0 0 0 TstMux ClrPs SetPs EPIrq RevRq 152
26 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
4.2 Register Usage

Table 8 through Table 13 present register tunctionality.

SPR 26 8-Bit Binary Value 153

SSR 2F 0 0 0 0 A1284 nInit HstBsy HstClk 154

ZDR 2C 0 0 0 0 A1284 nInit HstBsy HstClk 154

Table 7. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 2 of 2)

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Table 8. Global Registers

Name Reset Parallel Init Parallel Tx Parallel Rx Serial Init Serial Tx Serial Rx GPIO Pin
Control

CAR √ √ √ √ √ √ √

GFRCR √
GPDIR √

GPIO √

MICR √ √ √

MIR √ √

PIR √ √

PPR √

RICR √ √ √

RIR

SVRR √

TICR √ √ √

TIR √

Table 9. Virtual Registers

Name Reset Parallel Init Parallel Tx Parallel Rx Serial Init Serial Tx Serial Rx

MISR √ √

MIVR √ √

PIVR √ √

RDSR (data) √

RDSR
(status) √

RIVR √

TDR √

TIVR √
 Datasheet 27

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Table 10. Virtual Registers — Serial and Parallel

Name Reset Parallel Init Parallel Tx Parallel Rx Serial Init Serial Tx Serial Rx

EOSRR √ √ √ √

Table 11. Channel Registers — Serial

Name Reset Parallel Init Parallel Tx Parallel Rx Serial Init Serial Tx Serial Rx

CCR √ √ √

CCSR √ √

COR1 √

COR2 √

COR3 √

COR4 √

COR5 √

LIVR √ √

LNC √

MCOR1 √

MCOR2 √

MSVR1 √ √

MSVR2 √ √

RBPR √

RCOR √

RDCR √

RTPR √

SCHR1 √

SCHR2 ÷

SCHR3 ÷

SCHR4 ÷

SCRH ÷

SCRL ÷

SRER ÷

TBPR ÷

TCOR ÷
28 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Table 12. Channel Registers — Parallel Pipeline
(Selected by Channel 0 in CAR)

Name Reset Parallel Init Parallel Tx Parallel Rx Parallel Error Parallel Status Serial Init

DER √

DMABUF(H) √ √

DMABUF(L) √ √

HRSR √

HTVR √

LIVR √

PACR √

PCRR √

PFCR √

PFEP

PFFP

PFHR1 √

PFHR2 √ √

PFQR √ √

PFSR √ √

PFTR √

RLCR √

SDTCR √ √

SDTPR √

Table 13. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 1 of 2)

Name Reset Parallel Init Parallel Tx Parallel Rx Parallel Error Parallel Status

EAR
√

(EPP)1

IVR √ √

MDR √ √

NER √

NSR √ √

ODR √

OVR
√

(Manual)

√
(Manual)

PCIER √

PCISR √ √

PCR √
 Datasheet 29

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
SCR
√

(RevRequest)

SPR √

SSR √ √

ZDR √

NOTE:
1. Items in parentheses () denote Operational mode.

Table 13. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 2 of 2)

Name Reset Parallel Init Parallel Tx Parallel Rx Parallel Error Parallel Status
30 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.0 Functional Description

5.1 Device Architecture

The CD1284 can be described as a small computer system designed for the purpose of sending and
receiving both serial and parallel data. It comprises a RISC processor (Multi-Channel Processing
Unit or MPU), RAM, ROM, local CPU bus interface logic, two serial data channels, and one IEEE
1284-compliant parallel port with a specialized data pipeline designed for high-speed transfers.

Architecturally, the CD1284 is two devices merged into a single unit. One part is a modified, two-
channel version of the Intel CD1400. The other part is a specialized parallel interface port
supported by its own deep FIFO and DMA interface logic. The interrupt structure of the CD1400
has been enhanced to include the interrupt requirements of the parallel port. This section describes
the modified CD1400 core and overall device architecture. Further sections provide details specific
to the parallel channel. Chapter 7.0 provides detailed bit descriptions and encoding for the registers
discussed in this chapter.

The MPU is a true RISC processor. In addition to having compact and efficient instructions, the
MPU has a ‘windowed’ architecture that allows it to handle one channel and its registers at a time.
Before beginning operations on a given channel, it loads an internal Index register that forces all
accesses to the appropriate set of registers. The Index register becomes part of the internal address
and allows direct addressing of the register bank and all hardware resources of the selected
channel. No address computation is required to select the proper channel.

This same windowed scheme is carried through to the CPU interface as well (Figure 4). For all
channel-specific accesses, the CPU first loads the CAR (Channel Access register) with a pointer to
the channel to be accessed. Thereafter, all read and write operations occur with the proper channel.
The software defines the register address once and this is valid for all channels because the CAR is
part of the internal addressing.
 Datasheet 31

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
The serial data channels are made of ‘bit engines’ that off-load the task of receiving and
transmitting each bit from the MPU. When receiving data and after processing a complete bit, the
bit engines interrupt the MPU so that it can perform the next required task. For example, the MPU
takes the bit and adds it to a character being assembled. When transmitting, it sends the bit engine
the next bit of the character being transmitted. The MPU is not concerned with basic bit timing; this
task is handled by the bit engines, leaving the MPU free to perform higher-level processing, such as
detecting special characters.

Figure 3. CD1284 Functional Block Diagram

BUS
INTERFACE
AND DMA

LOGIC

PARALLEL
PORT FIFO

PARALLEL
PORT LOGIC

CONTROL STATE
MACHINE

INTERRUPT
LOGIC

MPU

ROM

RAM

CHANNEL 2
LOGIC AND BIT

TIMING

CHANNEL 3
LOGIC AND BIT

TIMING

Figure 4. Internal Address Generation

CHANNEL 2 REGISTERS

CHANNEL 3 REGISTERS

CPU
ADDRESS ADDRESS

GENERATION

CAR

RAM REGISTER
ARRAY

PARALLEL PORT
REGISTERS
(CHANNEL 0)
32 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
As described above, Channel 0 is a separate entity comprised of its own FIFO and DMA data
interface, as well as a high-speed state machine that handles all of the modes defined in the IEEE
STD 1284 specification. Channel 0 performs the slave, or peripheral, function of the IEEE STD
1284 interface and can be programmed to accept negotiations into any or all of the defined modes.
The MPU aids the parallel port by providing the local access (through the CAR) and provides
interrupt support (generation and response). However, this is the only action where the MPU is
involved in parallel port service-request activities.

5.2 CPU Interface

The CPU interface comprises an 8-bit bidirectional data bus, a 7-bit address bus, a 16-bit DMA
port and control inputs to identify the type of I/O cycle occurring. Although the strobe names and
basic timing match that of the Motorola 68000 family, the CD1284 fits easily into any CPU
environment.

In most cases, when the CPU reads or writes an internal CD1284 location, it actually accesses a
location in a RAM array to serve as a bank of registers. Some locations however, are mapped to
actual hardware resources for example, when a hard output signal is required (such as a service-
request output in the SVRR) or when it is necessary to read the actual state of an input (such as a
modem input).

The CD1284 is a synchronous device. All internal operations occur on edges and levels (phases) of
the internal clock. The internal clock is generated by dividing the external (system) clock by two.
When the CPU performs an I/O cycle with the CD1284, it strobes; address, and data are sampled
on the rising edges of the internal clock. As illustrated in Chapter 8.0, the external control signals
must meet setup times with respect to system clock edges. Once a cycle starts, the sequence of
events is locked to the clock of the CD1284. With events (address setup, write data setup, and read
data available) occurring at predictable times.

It is not necessary to design a synchronous interface to the CD1284. In an asynchronous design, the
DTACK* (Data Transfer Acknowledge) signal indicates that the CD1284 has completed the
requested data transfer for all I/O cycles except DMA. DTACK* can be an input to wait-state
generation logic that pauses the CPU until the operation is complete. If the CS* and DS* strobes
(Chip Select and Data Strobe) do not meet the minimum setup time with respect to the system
clock edge, the CD1284 does not detect the I/O request, and the cycle delays for two full-system
clock cycles, meeting the setup time. The I/O cycle commences and follows the predictable timing
with DTACK* signaling the end.

5.2.1 Read Cycles

Read cycles are initiated when both the CS* and DS* inputs are activated and the R/W* (read/
write) input is high. All strobes and address inputs must meet the setup times as specified in
Chapter 8.0. Both the CS* and DS* signals must be valid for a cycle to start. Cycle times are
measured from whichever of the two signals goes active last. The CD1284 signals the completion
of the read cycle (placing the data from the addressed register on the data bus pins) by activating
DTACK*. The read cycle terminates when the CPU removes CS* and DS*.
 Datasheet 33

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.2.2 Write Cycles

Write cycle timing and strobe activity is nearly identical to read cycles except that the R/W* signal
must be held low. Write data, strobes, and address inputs must meet setup and hold times as
specified in Chapter 8.0. DTACK* indicates that the cycle is complete and the CD1284 has
accepted the data. Removing both CS* and DS* terminates the cycle.

5.2.3 Service-Acknowledge Cycles

Service-acknowledge cycles are a special-case read cycle. Timing is basically the same as a normal
read cycle, but one of the SVCACK* inputs is activated instead of the CS* input (a slightly longer
setup time is required on the SVCACK* input than on the CS* input). The data that the CD1284
provides during the read cycle is the contents of the Interrupt Vector register associated with the
type of request being acknowledged (RIVR for receive, TIVR for transmit, MIVR for modem, and
PIVR for parallel port) of the channel requesting service (see Section 5.3.1 for more information).
As with read and write cycles, DTACK* indicates the end of the cycle. When the CPU removes
DS* and SVCACK* the cycle terminates.

When the CPU has completed the service routine and writes to the EOSRR, a subsequent I/O cycle,
if started immediately, is delayed by approximately 1 µs. This is due to the time required by the
internal processor to complete activities associated with the switch out of the service-acknowledge
context. These activities involve FIFO pointer updates and restoration of the environment prior to
the service-request/service-acknowledge procedure. These must be completed before any internal
registers are modified by the CPU.

If the situation occurs that the CPU attempts an access before the internal procedures are complete,
the CD1284 holds off the cycle until it is ready. This does not cause a problem in system designs
that monitor DTACK*; the cycle is extended until DTACK* becomes active and the delay is
automatically met. If a system design does not monitor DTACK*, a mechanism must be provided
to introduce the required delay.

Warning: Failure to observe the delay requirement can cause a device malfunction.

5.2.4 DMA Cycles

The CD1284 provides a bidirectional 16-bit DMA interface to the parallel port. This is the only
direct data interface to the port; other 8-bit register accesses use of the normal CPU interface, as
described above.

The handshake between the CD1284 and the DMA circuitry uses two signals: the DMAREQ*
(DMA Request) and the DMAACK* (DMA Acknowledge). The address bus is ignored during
DMA transfers. When internal conditions warrant a DMA transfer (as when the FIFO falls below
the programmed threshold in the forward direction or rises above the threshold in the reverse
direction) and DMA transfers are enabled by the PFCR, the device requests a DMA service by
driving the DMAREQ* signal low. DMAREQ* remains active until the FIFO has less than two
empty locations remaining (forward direction) or until the FIFO has less than 2 bytes remaining
(reverse direction).

In the forward direction, the DMA controller logic responds by placing data on the 16-bit data bus
and driving DMAACK* low. This cycle is repeated until the FIFO has less than two empty
locations remaining or there is no more data to send. In the reverse direction, the CD1284 responds
to the active DMAACK* signal by driving the contents of the DMABUF register onto the data bus.
34 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Odd-byte transfers in the reverse direction are handled on an interrupt basis. When the number of
bytes in the FIFO is odd, all bytes, except the last, are transferred by a number of 16-bit DMA
cycles (two bytes per cycle). The odd byte remaining is held in the PFHR1 and an interrupt
generated when the stale data timer expires. Status indicating that PFHR1 has data is shown in the
PFSR. The CPU interrupt service routine must manually remove the remaining byte from the
interface. In the forward direction, an odd remaining byte can be directly written to the PFHR1
once the last DMA cycle is complete.

One additional input signal determines the endian format (whether the least-significant byte is on
data bits 7:0 or 15:8) of the 16-bit DMA buffer. BYTESWAP selects whether the lower or upper
byte of the DMA buffer moves into the FIFO data pipeline first in the forward direction or from the
FIFO data pipeline to the DMA buffer first in the reverse direction. If BYTESWAP is low, the
least-significant byte (DB[7:0]) immediately moves into or out of the data pipeline. If BYTESWAP
is high, the opposite occurs (DB[15:8] move into or out of the pipeline first).

The effective duration of the DMA transfer block (burst) is determined by the threshold value in
the PFTR. Regardless of where the port is moving data, when this threshold is reached (exceeded in
receive; less than in transmit) a DMA cycle begins and remains active until the FIFO has less than
2 bytes remaining (receive) or less than two empty locations remaining (transmit).

The SVRR provides a way to determine if a DMA cycle is being requested. SVRR[7] is true if a
DMA cycle is currently being requested. This status indication is provided as a general system
status.

Refer to Chapter 8.0 for detailed information on DMA cycle options and timing values.

5.3 Serial Port Service Requests

This section describes the service-request structure of the serial ports in the CD1284. Refer to
Section 5.4 for a detailed description of the parallel port service-request architecture.

From the CPU point of view, the CD1284 operates in one of three modes: normal operation,
service request/acknowledge, and DMA. Normal mode allows the CPU to make changes and
obtain current operating status on a global and per-channel basis. Service-request/acknowledge
mode determines when a particular channel requires service, for example, when a serial receive
FIFO has reached its programmed threshold and requires emptying.

A unique behavior of the CD1284 is that a service request can only be responded to after the device
is placed in a service-acknowledge ‘context’. This context switch occurs when the request is
acknowledged, either by activating the appropriate SVCACK* input pin or by proper manipulation
of two internal registers (software-activated mode).

When the MPU detects a condition on a channel that requires CPU attention, it posts a service
request internally and externally. The external request is the activation of one of the SVCREQ*
output pins, depending on whether the type of service needed is for receive, transmit, or modem
signal change. Included with the internal request is a channel pointer to the channel requiring
service. When the service acknowledge begins, this pointer is loaded into the CAR, thus the request
automatically services the proper channel. This is the purpose of the context switch, it prepares the
CD1284 for servicing of the proper channel.
 Datasheet 35

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
At the completion of the acknowledge procedure, the CD1284 must be taken out of the
acknowledge context by informing it that the procedure is complete. This restores the original
internal state before the context change. This operation occurs after the CPU performs a ‘dummy’
write to the EOSRR.

Several registers within the serial channel portion of the CD1284 can only be accessed when the
context switch has been made. These are the Virtual registers. For example, the CPU cannot place
data directly in the serial transmit FIFO at an arbitrary time. It must wait for a transmit service
request indicating that the FIFO is empty, then acknowledge it. Once the acknowledge procedure
begins, the transmit FIFO is available for loading.

The CD1284 makes requests for service when an enabled need exists. The two basic ways that the
CPU can be made aware of these service requests is through hardware (interrupt) or software
(polling internal CD1284 registers). Which method is dependent on the hardware/software design
of the system; the CD1284 functions well in either environment. The following section discusses
the trade-offs of either basic method and how to combine the two for maximum performance.

5.3.1 Interrupts

The term interrupt is a generalized description of the method where the CD1284 gains the attention
of the CPU. Interrupt is used interchangeably with ‘service request’ as the two are the same
function. Interrupt often describes an unconditional response on the part of the CPU. Whether or
not this is the case, the source is still the same — a service request from the CD1284. Hardware
signals generated by the CD1284 (SVCREQR*, SVCREQT*, and SVCREQM*) can be connected
to the CPU interrupt input to start an interrupt service routine. The service routine can then begin
servicing the request from the CD1284 by starting an acknowledge sequence.

The SVCREQ* outputs can be connected to the interrupt circuitry individually using three unique
interrupt-level inputs or they can be logically OR’ed together (not wire-OR’ed) into a single
interrupt and applied to one interrupt-level input. In the latter case, the CPU can examine the
SVRR to determine which service requests are active. The method (single or multiple interrupts)
chosen by the designer is dependent on the system requirements and hardware and/or board-space
limitations. The CD1284 has no restrictions. It is likely that interrupt latency is slightly shorter with
the first method since the individual interrupt levels can cause a software vector directly to the
correct service routine without first checking for the source of the interrupt.

No matter which interrupt method is used, the end result is the same. Once the CPU has recognized
that a service request is active, a service-acknowledge routine must be executed to process the
request. There are two ways to start the acknowledge and force the context switch: by four
hardware input pins or by making specific reads/writes to internal registers.

5.3.2 DMAREQ* as Parallel Interrupt Source

Interrupts are not generated by FIFO threshold conditions; therefore, if the system design requires
data to move through interrupts, connect DMAREQ* directly to a CPU interrupt input or logically
OR it into the same CPU interrupt input as SVCREQP*. If DMAREQ* is used to generate
interrupts, the following are required:

• A 16-bit data interface must be implemented to support 16-bit reads of the DMABUF register.

• The DMA threshold value in the PFTR must be initialized.

• DMAREQ* remains active until the FIFO is nearly empty (Rx) or nearly full (Tx), followed
by the toggling of DMAen if data is moved to/from FIFO through PIO (refer to Section 5.2.4).
36 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
However, software can easily change this by clearing the DMAen bit (PFCR[6]) at the start of
the interrupt service routine and resetting it at the end.

• If SVCREQP* and DMAREQ* are logically OR’ed together, the service routine must start by
checking the SVRR to determine which signal is active.

• SVCACKP* must not be activated in response to DMAREQ* and likewise, DMAACK* must
not be activated in response to SVCREQ*.

• The DMAdir bit (PFCR[5]) can determine whether to write or read to/from the DMABUF
register.

• The PFQR can determine how many reads of the 16-bit DMABUF register are necessary to
empty the pipeline. Note however, four must be added to the PFQR value, that number must
then be divided by two and truncated to the nearest integer (to account for the extra four bytes
in the two holding registers and the 16-bit DMABUF register, as well as 16-bit reads instead of
8-bit reads).

5.3.2.1 Hardware-Activated Context Switch — Serial Channels

The internal register manipulation involved in a context switch can be forced by SVCACK*
(Service Acknowledge input pins on the CD1284). There is one SVCACK* for each service
request type: SVCACKR* for receive service requests, SVCACKT* for transmit service requests,
and SVCACKM* for modem signal-change service requests. Each of these inputs is a special-case
chip select. These cause the MPU to set up the CD1284 for servicing that particular service request
type for the requesting channel.

Note that the CS* input is not activated on service-acknowledge cycles. Instead, the appropriate
SVCACK* input and the DGRANT* inputs are used. Later in this section, DGRANT* is discussed
in a description about daisy-chaining the CD1284 with one or more CD1400s. Figure 5 shows a
generalized logic diagram of the hardware interface to the SVCACK* inputs. For a service
acknowledge, one of the SVCACK* address locations is accessed instead of the CS* location.

To the CPU, the service-acknowledge cycle is a read cycle. The data that the CD1284 places on the
bus for an SVCACK* during the read cycle are the contents of the appropriate Interrupt Vector
register (RIVR, TIVR or MIVR). These IVRs are associated with the active service-acknowledge
input (SVCACKR*, SVCACKT*, or SVCACKM*). The upper five bits of the IVR are whatever
was previously loaded into the LIVR by the CPU. The lower three bits are supplied by the CD1284
and indicate the type of interrupt (vector).

When the CD1284 is ready to post a service request for a serial channel, it copies the upper five bits
of the LIVR into the appropriate vector register (RIVR, TIVR, MIVR), then places the request type
vector in the lower three bits. Table 14 shows the assignment of the request type bits.
 Datasheet 37

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
For transmit and modem service-acknowledge cycles, the data in the lower three bits is redundant
to the software because the corresponding acknowledge has occurred. These bits are important in
the case of a serial receive-data service acknowledge because they provide an indication of whether
the request is for ‘good’ data or exception data. They are important to the parallel port because they
indicate if the state-machine or data pipeline (or both) are requesting service.

The value contained in the upper five bits of the LIVR can be used for a number of purposes. The
primary purpose of the LIVR is as a source of a software vector used by the system as an index into
a interrupt dispatch table. However, systems that cannot use this or do not need it can use these bits
for any purpose. In multiple–CD1284 designs that use daisy-chaining, a logical value to place in
these bits is a chip identification number. This is detailed in the daisy-chaining description in
Section 5.3.4.

Figure 5. Control Signal Generation

Table 14. Request-Type Bit Assignments

Bit 2 Bit 1 Bit 0 Request Type

 0 0 0 Not used

 0 0 1 Group 1: Modem signal change service request

 0 1 0 Group 2: Transmit data service request

 0 1 1 Group 3: Received good data service request

 1 0 0 Parallel port state-machine requests service (refer to Section 5.4)

 1 0 1 Parallel port data pipeline request service (refer to Section 5.4)

 1 1 0 Both the parallel port state-machine and data pipeline request service (refer to
Section 5.4)

 1 1 1 Group 3: Received exception data service request

SVCACKR*

SVCACKT*

SVCACKM*

DGRANT*

CD1284

CS*

R/W*

DS*

AD[6:0]

DB[7:0]

SVCACKP*

CPU
ADDRESS

CPU I/O
CONTROL

ADDRESS
DECODE

LOGIC

CPU
DATA
38 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Another use for these bits is channel encoding. This is applicable in a single-CD1284 design and
any design not using daisy-chaining (requiring a unique address range for each device). This
applies where the value in the LIVR as a vector for a hardware interrupt response is not necessary.
Since each channel has its own LIVR, these five bits have a unique value identifying the channel.
There is no need to read the RICR, TICR, or MICR to find the channel number; in a single I/O
operation, the CPU determines both the type of interrupt and the number of the channel requesting
service. With five bits available, systems with small numbers of CD1284s are able to encode both
the channel number and chip identification number in the LIVR.

Once the acknowledge procedure is complete, the CD1284 is ready to be serviced for the type of
interrupt acknowledged. For example, if the interrupt was for receive good data, the CPU would
read the RDCR to determine the number of characters available in the receive FIFO. It then reads
the same number of characters, by successive reads, from the RDSR. Other tasks, such as disabling
future interrupts or changing channel parameters, could also be performed at this time.

Once all tasks involved in servicing the interrupt are complete, one more operation is performed.
To inform the CD1284 that the service acknowledge is complete, the CPU writes a dummy value to
the EOSRR. Although the data written does not matter, the write operation is important. This write
forces the internal context switch back to normal operating mode.

5.3.2.2 Summary of Interrupt Driven Service Requests, Serial Channels

The actions that occur during an interrupt request/service are:

• The CPU senses service request from one of the CD1284 service-request outputs through its
interrupt request input.

• The CPU responds by performing a read cycle to activate the appropriate SVCACK* input
pin.

• The CPU decodes the value read from the vector register during step 2, and decides on the type
of service request (if necessary).

• The CPU reads the R/T/M/ICR to determine the channel number.

• The CPU services the request (load transmit FIFO, read receive FIFO, and so on).

• The CPU writes a dummy value to the EOSRR to terminate the service routine.

5.3.2.3 Common Service Acknowledge

One method of hardware-activated, service-acknowledge request is the common service
acknowledge. In this method, all SVCACKx* inputs are tied together and are driven from the same
source. In this configuration, the CD1284 internally prioritizes the acknowledge as receive,
transmit, parallel, and modem. If a device has both a receive and a parallel request pending, the
common acknowledge causes it to respond with the vector for the receiver. Then a subsequent
service acknowledge allows the parallel channel request to be serviced.

5.3.2.4 Software-Activated Context Switch — Serial Channels

It is possible, by CPU manipulation of some internal registers, to cause the context switch without
activating any of the SVCACK* hardware inputs. The method is the same used in the poll-mode–
CD1284 design. Once the CPU has detected the service request through its interrupt response
circuitry, it follows the same procedures that a polling method uses when it detects an active
service request. Refer to the context switching description in the following section.
 Datasheet 39

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
One reason a design might make use of this method is that limited board space is available for the
additional hardware address decoding required to generate the four SVCACK* and DGRANT*
control signals. The advantage is that the system need not constantly poll the CD1284 for active
service requests. It is interrupted when a request is posted, then examines internal CD1284
registers to determine the source and channel number generating the request. For this method, tie
the four SVCACK* and DGRANT* input pins inactive (logic ‘1’). This prevents possible false
activation of a service-acknowledge cycle that occurs due to noise. Terminate these pins with a
resistor (approximately 1 kΩ) not hardwired to VCC.

5.3.3 Serial Service Request Polling

In Poll mode, the CPU periodically checks the CD1284 to see if there are any active service
requests. If it detects any, it proceeds to service them by a software-driven technique. There are
several registers within the CD1284 specifically provided to facilitate Poll-mode service-request
detection and acknowledgment. These are the SVRR, RIR, TIR, PIR, MIR, RIVR, TIVR, and
MIVR. Chapter 7.0 provides detailed bit definitions for these registers.

The SVRR is the master service-request register. The least-significant three bits (bits 2:0 — SRM,
SRT, and SRR) reflect the inverse of the state of the three service-request output pins
(SVCREQM*, SVCREQT*, and SVCREQR*). For example, if SRR[0] is ‘1’, it indicates that
there is a pending active serial receive data service request, and that the SVCREQR* output pin is
active (low). The CPU now can determine with a single read if the CD1284 requires any service
and which pins are active.

Each service request type has an interrupt request register: RIR for receive, TIR for transmit, and
MIR for modem. These are the special purpose registers used with the CAR to force the context
switch and start a service-acknowledge procedure. When a service request of a particular type is
pending, the corresponding Interrupt Request register is set by the MPU with the appropriate data
to cause the context switch to the requested type and the requesting channel.

When the CPU is ready to service the request, it reads the contents of the request register and
copies it into the CAR. This write into the CAR forces the context switch and the CD1284 is ready
to be serviced. The result is the same as performing a service-acknowledge cycle with the
SVCACK* pin.

Each of the Interrupt Request registers provide the channel number by requesting service in the
least-significant two bits. The most-significant three bits provide status and control over internal
interrupt sequencing. The middle three bits contain a code used by the MPU at the end of a
hardware service-acknowledge cycle (write to the EOSRR) to indicate the type of acknowledge
cycle that is ending. Each of the three registers has a unique code in these three bits to select the
proper service-acknowledge type, but these are meaningless in Poll-mode operation.

At the end of a service-request operation, the CPU must inform the CD1284 that the request is
satisfied and to take it out of the service-request context. This is done by rewriting the value that
was in the interrupt request register after clearing the upper two bits.

As with the hardware-driven request/acknowledge procedure, the Virtual registers should only be
accessed after the context switch is made. Their contents are undefined until this time.
40 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.3.3.1 Summary of Serial Poll-Mode Service Requests

The major steps involved in a Poll-mode service-request/service-acknowledge sequence are:

1. The CPU scans the SVRR periodically, checking the three least-significant bits. If any of them
are true (‘1’), a service request is active.

2. Depending on which of the service-request bits is active, reads the appropriate interrupt
request register (RIR, TIR, or MIR) and copies the contents into the CAR.

3. Performs a service routine.

4. Writes the original contents of the interrupt request register back with the most-significant two
bits cleared.

5.3.4 Daisy-Chaining Service Requests with CD1400s

The CD1284 can be combined with other CD1284 or CD1400 devices to form systems with more
than two serial channels and one parallel channel. There are a number of ways that these can be
connected, but one way provides a more efficient service-request/service-acknowledge sequence.
This method allows the CD1284s and/or CD1400s to arbitrate between themselves. This mode
only works if hardware-activated service acknowledges are being utilized. The Fair Share
mechanism is not functional on the parallel channel service-request (SVCREQP*) outputs.
Therefore, two CD1284s can be daisy-chained if SVCREQP* and SVCACKP* are kept separate.
The serial channel requests and acknowledges are identical to those on the CD1400 so they can be
connected to the equivalent requests and acknowledges on the CD1284.

The CD1284 provides a means of daisy-chaining the service request and service acknowledgments
of two or more devices. This allows them to arbitrate and set priorities between themselves
regarding which one can post a particular type of service request. This is the Fair Share interrupt
scheme. Figure 6 on page 42 illustrates the connection for two CD1284s to enable the Fair Share
function.

All request outputs of a particular type from the two CD1284s (SVCREQR*, SVCREQT*, and
SVCREQM*) are wire-OR’ed together to form one combined request for each type; the
SVCREQP* of each is kept separate. This allows both devices to monitor the state of the others
output. All of the ser ia l se rvice-acknowledge inputs (SVCACKR*, SVCACKT*, and
SVCACKM*) are connected together to form one acknowledge of each type. Note, the
SVCACKP* are driven individually. The DGRANT* input of the first CD1284 is connected to
ground; the DPASS* output of the first CD1284 drives the DGRANT* input of the second.
 Datasheet 41

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Before a serial request for service of a particular type is posted, the MPU checks the current state of
the request output for that type. If it is inactive, indicating that no other CD1284 is driving that
level, a request can be posted; otherwise it waits. This guarantees that each CD1284 has an
opportunity to have a request type serviced when required. When the CPU acknowledges the
request, both CD1284s receive the acknowledge through SVCACK*. However, only the first
receives DGRANT*. If there is an active request of this type pending, the CD1284 takes the
acknowledge and drives its vector register (RIVR, TIVR, MIVR) onto the data bus.

If the first device does not have a request pending, it passes the DGRANT* input to the second
CD1284 through the DPASS* output. Assuming that the second device has an active request
pending, it takes the acknowledge and drives its Vector register onto the data bus.

As previously mentioned, the upper five bits of the LIVR reflects what the CPU loaded into them
during its initialization of the CD1284s. These bits are used as a unique chip identification number
so the CPU can determine which CD1284 responded to the service acknowledge. These five bits
can be set to binary ‘0’ in the LIVRs of the first CD1284, and to binary ‘1’ in those of the second.
The CPU is able to test the bit to determine which device responded. Some examples of service-
acknowledge software routines that show one way of performing this task are provided in Chapter
6.0.

The common service acknowledge described in Section 5.3.2.3 on page 39 is also usable in daisy-
chained environments. In this case, the common acknowledge is applied to all service-
acknowledge inputs in all devices of the chain. The daisy-grant ripples down the chain until the
requesting device receives the acknowledge.

Note: If a CD1284 further down the chain is requesting service for a receiver and one up the chain is
requesting service for a transmitter, the transmit request is serviced first since it precedes the
receive requester. Thus, the Fair Share mechanism is not functional in this configuration.

Figure 6. CD1284 Daisy-Chain Connections

DPASS*

SVCACKR*

SVCACKT*

SVCACKM*

DGRANT* DPASS*

SVCACKR*

SVCACKT*

SVCACKM*

DGRANT*

SVCREQR*

SVCREQT*

SVCREQM*

SVCREQR*

SVCREQT*

SVCREQM*

SVCACKP* SVCACKP*

SVCREQP*SVCREQP*

ADDRESS
DECODE
LOGIC

CYCLE
ERROR
42 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The CD1284 has a fairness override, the Unfair bit (PACR[0]). If this bit is set, the Fair Share
function of the device is defeated and the MPU posts requests for service regardless of the state of
the external service-request signal. Even when a device in the chain is asserting a request of a
particular type, if another device needs to post a request, it proceeds to do so regardless of the
current state of the request pin because its fair bits are forced true. If it is upstream from the device
already posting the request and if the CPU pipeline has not yet responded to the previous request
from the downstream device, then the upstream device accepts the acknowledge on arrival and
overrides the priority normally given to the device that made the first request. This is useful in
system designs that wire-OR the request signals together, rather than using an external gate, since
in these cases, without overriding fairness a request of one type within a device holds off a request
of a different type. For example, an existing transmit request prevents the device from posting a
receive request.

Note: (IMPORTANT) If no CD1284 in the chain has a pending request, the daisy-grant passes by the last
and none respond. This causes the bus cycle to hang (no DTACK* is generated). The only time this
happens is when an error condition outside the CD1284s cause the CPU to respond to a request that
is not made. A mechanism can be provided to terminate or abort the bus cycle if this error occurs.
This is accomplished with timeout circuitry. Otherwise the DPASS* output of the last CD1284
activates an abort condition. Other devices, such as the CD1400, can share the daisy-chain
mechanism and can be connected to the DPASS* output of the last CD1284 in the chain. The actual
implementation is system-dependent, but it is important to provide some way for the CPU to know
that the cycle did not complete normally if no device responds to the acknowledge cycle.

5.4 Parallel Port Service Requests

The parallel port service-request structure of the CD1284 is slightly different from that of the serial
ports. These differences are highlighted in this section.

Service requests can derive from two internal sources: the data pipeline or the parallel port state
machine (see Figure 7 on page 45). If the data pipeline internal service request becomes active, the
Pipeline bit (PIR[5]) is set; likewise, if the parallel port state machine internal service request
becomes active, the PPort bit (PIR[6]) is set. Internal service requests from these sources are
monitored through the Pipeline and PPort bits by microcode running in the internal MPU. When
either (or both) of these bits are detected active, the microcode sets the PPireq bit (PIR[7]). The
PPireq bit is also mirrored by the SRP bit (SVRR[3]). The SVRR is useful in polled systems
because it allows the detection of DMA service requests, as well as parallel port service requests
with a single register read operation.

Both internal sources of service requests within the parallel channel have their own enable
functions. Interrupts from the data pipeline are enabled through the PFCR; interrupts from the
parallel port state machine are enabled through the PCIER.

The PFCR has two enable bits: one for normal interrupts (such as tagged data being received), and
one for data errors (such as a CPU write to a holding register that already holds data). The first type
of interrupt is enabled through the IntEn bit (PFCR[4]). The second type of interrupt is enabled
through the ErrEn bit (PFCR[1]). Note that IntEn must be set for ErrEn to generate an interrupt;
however, the CPU need not enable error interrupts if it does not require notification of these types
of errors. The error interrupt is generated if the DataErr bit (PFSR[0]) is a non-zero. In this case,
the DER indicates the cause of the error interrupt.

The parallel channel-control state machine can generate six types of interrupts. Each of these has
its own enable bit in the PCIER:
 Datasheet 43

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
• NegCh for negotiation changes

• SigCh for signal changes on the port status inputs (Manual mode only)

• EPPAW for EPP protocol address writes

• DirCh for direction changes on the parallel channel

• IDReq for slave ID requests from the remote master.

• nINIT for initialization pulses from the master (Compatibility mode only)

Any or all of these bits may be set, based on the mode of operation.

The NegCh interrupt is issued whenever the remote master performs a protocol change, such as
moving from Compatibility mode to ECP; the CPU examines the NSR to determine the new state
of the parallel interface. Signal changes can be identified by reading the SSR. In response to the
EPPAW interrupt, the CPU would read the EAR to retrieve the value that was written during the
EPP address write cycle.
44 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 7. Interrupt Generation Logic

FAILED NEG
(INVALID

EXTCODE)
[COMPATIBLE

MODE]

NSR=0x41

TERMINATION
[COMPATIBLE

MODE]

NSR=0x82

NEG-OK

NSR=0x86[EPP
MODE]{40}
NSR=0x88[RN MODE]
{00} NSR=0x8A[RB
MODE]{01}
NSR=0x8C[ECP w/o
RLE]{10}
NSR=0x8E[ECP w/
RLE]{30}

NEG-OK
NSR=0x89[RN ID REQUEST]{04}
NSR=0x8B[RB ID REQUEST]{05}
NSR=0x8D[ECP w/o RLE ID
REQUEST]{14}
NSR=0x8F[ECP w/ RLE ID
REQUEST]{34}

IDREQ

PCISR[1]

NEGCH
PCISR[5]

IDREQ
PCIER[1]

FAILED NEG
MODE NOT
ENABLED

[COMPATIBLE
MODE]

NSR=0x46 (EPP)
NSR=0x48 (RN)
NSR=0x49 (RN-ID)
NSR=0x4A (RB)
NSR=0x4B (RB-ID)
NSR=0x4C (ECP)
NSR=0x4D (ECP-ID)
NSR=0x4E (ECP-RLE)

NSR=0x4F (ECP-RLE-ID)

HOST-TIMEOUT
HOST HAS NOT RESPONDED

FOR OVER 1 SEC.)
[COMPATIBLE MODE]

NSR=0x22

INVALID/ImedTerm
HOST HAS VIOLATED

HANDSHAKING SEQUENCE
[COMPATIBLE MODE]

NSR=0x16 (EPP)
NSR=0x18 (RN)
NSR=0x19 (RN-ID)
NSR=0x1A (RB)
NSR=0x1B (RB-ID)
NSR=0x1C (ECP)
NSR=0x1D (ECP-ID)
NSR=0x1E (ECP-RLE)
NSR=0x1F (ECP-RLE-ID)

An immediate termination from the Host will
generate this interrupt

ID requests will fail if either the negotiation type or RID is
disabled in NER. Other negotiations will also fail if the
negotiation type is disabled.

KEY:[] = Current mode
{ } = Interface extensibility request value (see IEEE1284

Spec. for more details)
(register name[x]) : x = bit #, that is PCIER[1] = PCIER, bit 1

NEGCH
PCIER[5]
 Datasheet 45

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 7. Interrupt Generation Logic (Continued)

A1284 signal
transition from low-
to-high, and
A1284(ODR[3]) = 1

nInit signal
transition from
low-to-high, and
nInit(ODR[2]) = 1

HstBsy signal
transition from low-
to-high, and
HstBsy(ODR[1]) = 1

HstClk signal
transition from low-
to-high, and
HstClk(ODR[0]) = 1

MANMD
(PCR[7])

SIGCH
(PCIER[4])

SIGCH
(PCISR[4])

Interface must be in COMPATIBLE MODE
when MANMD (PCR.7) is set or MANMD wil
have no affect

HstClk signal
transition from
high-to-low, and
HstClk(ZDR[0]) = 1

HstBsy signal
transition from high-
to-low, and
HstBsy(ZDR[1]) = 1

A1284 signal
transition from
high-to-low, and
A1284(ZDR[3]) = 1

nInit signal
transition from
high to low, and
nInit(ZDR[2]) = 1

Host has reversed the direction of the interface from ECP-
forward to ECP-reverse by driving nReverseRequest (nInit)
signal low.

Host has changed the direction of the interface from ECP-
reverse to ECP-forward by driving nReverseRequest
(nInit) signal high.

DIRCH
(PCISR[2])

EPPAW
(PCISR[3])

NINIT
(PCISR[0])

EPPAW
(PCIER[3])

EPP address received
on parallel port

nInit
(PCIER[0])

In Compatible mode, the
host has requested the
peripheral to re-initialize
itself (nInit went low).

INTEN
(PFCR[4]) PPORT

(PIR[6])

(PCISR[5])

NEGCH

(PCISR[4])

SIGCH

(PCISR[3])

EPPAW

(PCISR[2])

DIRCH

(PCISR[1])

IDREQ

(PCISR[0])

NINIT
46 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 7. Interrupt Generation Logic (Continued)

DataErr
(PFSR[0])

OneChar
(PFSR[1])

Timeout
(PFSR[5])

PPort
(PIR[6])

Pipeline
(PIR[5])

DMAwrerr
(DER[7])

(DMAACK* w/o
DMAREQ*)

DMArderr (DER[6])

(DMAACK* w/o
DMAREQ*)

Bufwrerr (DER[5])
(write to non-empty

DMABUF)

HR1wrerr
(DER[3])

(write to non-
empty HR1)

HR1rderr
(DER[2])

(Read from
empty HR1))

HR2wrerr
(DER[1])

(Write to non-
empty HR2)

PPireq
(PIR[7])

IntEn

(PFCR[4]) Pipeline
(PIR[5])

OneChar
(PFSR[1])

Timeout
(PFSR[5])

Interface in forward direction,
PFHR2 full, PFHR1 empty, and
Timeout (PFSR[5]) is set.

Stale (PFSR[3]) transitions from false to true
and:

DMA is disabled.

DMA is enabled, but DMABUF is empty (else, a
DMAREQ* is generated, then a timeout interrupt
is generated when the DMABUF is empty and all
DMA cycles are complete.

SRP
(SVRR[3])

ErrEn

(PFCR[1]) DataErr
(PFSR[0])

Bufrderr (DER[4])
(Read from empty

DMABUF)

HR2rderr
(DER[0])

(Read from
empty HR2)
 Datasheet 47

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
A direction change (DirCh) interrupt occurs when the remote master has reversed the interface
from ECP forward to ECP reverse or ECP reverse to ECP forward. The IDReq interrupt is
generated when the remote master issues an ID Request command during IEEE 1284 negotiations.
The normal response by the local CPU is to send its ID string after reversing the direction of the
data pipeline by setting the DMAdir bit to ‘1’.

In an interrupt-driven system, as with the serial channel requests, the SVCREQP* output normally
connects to one of the local CPU interrupt control inputs. It can also be OR’ed together, through an
external gate, with the serial request outputs to produce a single interrupt request to the local CPU.
The interrupt service routine scans the SVRR and determines the actual source of the interrupt.

The parallel channel has the same Vector register arrangement as the serial channels. The LIVR
must be initialized by the local CPU in the same manner as the serial channels; the upper five bits
are defined by the local CPU and can be any value appropriate to the system design. The lower
three bits should be initialized to zero during the programming of the LIVR, however they are
‘don’t cares’ and masked in the PIVR to provide the vector indicating the source and type of
request from the parallel channel.

Access to the parallel channel LIVR is made by first setting the CAR to ‘x’00’, making the
Channel Zero register set accessible. Since the LIVR is a read/write register, the local CPU can
read it at any time. When read during a normal read cycle, it returns the original value written to it.
When a service acknowledge is performed, the upper five bits of LIVR are copied into PIVR.

The encoding of the three least-significant bits of PIVR during a service acknowledge cycle
indicates which of the functional blocks in the parallel channel is requesting service and is as
follows:

The encoding of the parallel channel service-request status was designed using the remaining
unused states of the CD1400: ‘100’, ‘101’, and ‘110’. The other states of these three bits are
already used to indicate serial interrupt status in RIVR, TIVR, and MIVR.

5.4.1 Hardware-Activated Context Switch, Parallel

When conditions within the parallel channel require attention, a request is made by the
SVCREQP* output. If the system is interrupt driven, this output would be connected to the CPU
interrupt generation circuitry. In a hardware-activated service-acknowledge system, the CPU
responds to the request by activating the SVCACKP* input (along with DGRANT* and DS*) in
the same manner as the serial channels; the CS* input is not used and must remain inactive (high).
The CD1284 responds to the SVCACKP* cycle by driving the contents of the PIVR onto the data
bus with IT2–IT0 encoded as shown above. The SVCACK cycle also places the device in the
correct context to service the parallel channel request.

The vector supplied by the PIVR indicates which block of the parallel channel requested service;
the cause of the request is indicated in the Request Status registers of each: the PCISR in the
channel control state-machine block and/or the PFSR in the data pipeline block. Refer to Chapter
7.0 for detailed descriptions of the various status bits in these registers.

IT2
(Bit 2)

IT1
(Bit 1)

IT0
(Bit 0) Requestor

1 0 0 Channel control state machine

1 0 1 Data pipeline

1 1 0 Both
48 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The I/O cycle that activates the SVCACKP* input also removes the active SVCREQP* output. The
request output is inactive until after the CPU terminates the acknowledge routine by writing to the
EOSRR. As with the serial channels, this is a dummy operation and the data written is ‘don’t care’.
The purpose of the write is to clear the internal logic of the current request context and allow it to
generate another request when the need arises. Until this write occurs, no further service requests
are made from the parallel channel. When the MPU detects the write to the EOSRR, it zeros-out
the PIVR in preparation for the next service-request cycle.

5.4.2 Software-Activated Context Switch, Parallel

Software-activated acknowledges of the parallel channel differ somewhat from those of the serial
channels. The start of a software acknowledge of the parallel channel is the same as for the serial
channels: the CPU copies the contents of the PIR into the CAR (after first saving the current
contents of the CAR) to set the device context. However, at this point the methods (serial versus
parallel) diverge. The CPU can read either the LIVR or PIVR (or read the status from the two status
registers in the Parallel Port register set) to determine which of the parallel channel blocks is
requesting service, copy the PIR into the CAR (or just load it with ‘x’00’) to set the context, then
proceed to service that request. Once the CPU has satisfied the request needs of the parallel
channel, it must toggle the IntEn bit (PFCR[4]) or clear the PIR. Toggling IntEn clears the PPort
and Pipeline bits and the PPIreq bit (PIR[7]). This action informs the MPU to clean up the PIVR
and remove the external request. The software should then restore the CAR to its previous contents
and exit the service routine.

The PPIreq bit can be cleared at any time by the CPU. If the system design requires the request be
removed quickly, the procedure can be performed at the beginning of the polled service routine. If
the CPU waits until the end of the service routine, it clears the bit itself or terminates the service in
the manner described, letting the MPU do it.

5.5 Serial Data Reception and Transmission

The CD1284 has two serial channels, each with a receiver and a transmitter. Although a receiver
and a transmitter pair are associated with each channel, in many respects they operate
independently, sharing only parameter settings regarding character format including length, parity
type if any, and number of stop bits. Each receiver and transmitter has its own baud rate generation
function, allowing a channel to send at one rate and receive at another. Shared and independent
parameters are shown in the following diagram.

RECEIVER TRANSMITTER

BAUD RATE BAUD RATE

PARITY

CHARACTER LENGTH

STOP BITS

FIFO THRESH

PRESCALE PERIOD REGISTER

RCV TIMEOUT
 Datasheet 49

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Channel service needs, such as an empty transmit FIFO, are indicated to the CPU by one of three
service-request indicators: one for all receivers, one for all transmitters, and one for all modem
signal changes. The internal processor (MPU) scans each channel sequentially for service needs,
posting a request when it detects a particular type. It continues the Fair Share scheme used in the
external daisy-chain configuration by not allowing a channel to post another request of one type
until all other channels have posted their requests of that type, if any. For example, if channel two is
currently being serviced for a transmit request and channel three has one pending, the request from
channel three is posted before channel two is able to make another request for transmit service.

Each receiver and transmitter has a 12-character FIFO. The receiver has two additional character
holding locations: the Receive Character Holding and Receiver Shift registers. The transmitter also
has two additional locations, the Transmitter Holding and Transmitter Shift registers. The receive
FIFO has a programmable threshold that sets the level at which a service request is posted. When
data reaches this FIFO-full threshold, a request is made of the CPU to empty the FIFO (for details
see Section 5.5.1). Receive FIFOs also have a programmable threshold that, when reached, causes
the DTR output to be deasserted (see the flow-control description).

In the asynchronous serial data protocol, a message consists of one ‘character,’ made up of bits,
either high or low, representing a ‘1’ or ‘0’ value. A character can be from five to eight bits plus an
optional parity bit bracketed by a start bit and a stop bit. Each bit has a time duration that sets the
data transmission rate — or baud rate. The start bit indicates the beginning of a character bitstream
and is indicated by a transition from a logic ‘1’ to a logic ‘0’ (mark to space) on the transmission
media. The start bit lasts one ‘bit-time’ and is immediately followed by the data bits (8:5), the
parity if any, and the stop bit.

As previously discussed, the CD1284 incorporates special hardware to receive and transmit each
bit. These are the ‘bit engines’. They perform all timing associated with sending or receiving one
serial data bit. A bit engine behaves differently depending on whether it is sending or receiving.
When a complete bit is received, the bit engine interrupts the MPU so that it can handle the bit on
the character level. This usually entails its addition to the character being assembled. For
transmitting, a transmit bit engine interrupt causes the MPU to give it the next bit to transmit. The
bit engine interrupt occurs at the end of a bit time that is timed by the engine, thus removing that
duty from the MPU.

5.5.1 Receiver Operation

Each channel can be programmed to receive characters with several different parameters, such as
character length, parity, number of stop bits, FIFO threshold, and baud rate. Each receiver is
independent of any other receiver. It can also be set to a different baud rate from its corresponding
transmitter.

Before valid data can be received, the CPU must set up each channel by programming the desired
operational parameters in the COR1–COR5, the BRRR, RCOR, and RBPR. Once these registers
are set, the channel is enabled by issuing the receiver enable command through the CCR and
enabling service requests in the SRER.

Once a receiver is enabled, its bit engine begins to scan the RxD input for a valid start bit. It does
this by detecting a falling edge transition on the input. When the transition is detected, the bit
engine delays until the middle of the programmed bit time and rechecks the input. If the input is
still low, the start bit is considered valid and character assembly begins. At each subsequent full bit
time, the input is checked and its level recorded as the value of the next bit. If, at the center of the
bit time, the RxD input returns to a mark state, then the start bit is considered invalid and the bit
engine returns to the start bit detect mode.
50 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Following a valid start bit, the bit engine begins receiving data bits. At the end of the programmed
number of bits, following bits are checked for parity (if enabled) and a valid stop bit. A valid stop
bit is defined as a mark or logic ‘1’ on the input. If a valid stop bit is not detected, a framing error is
noted for the character. After a properly assembled (no framing error) character has been received,
it is checked for several special conditions (see Section 5.6 and Section 5.7) and the overrun
condition before it is placed in the receive FIFO. If no errors or special character processing is
required, the character is considered ‘good’ data and placed directly in the FIFO. If errors exist, it is
placed in the FIFO as ‘exception’ data along with status indicating the type of error. As each good
character is placed in the FIFO, the RDCR (Receive Data Count register) is updated to reflect the
number of good characters currently in the FIFO.

The receive FIFO has a programmable threshold to determine the level where the CD1284 requests
receive data service. This level is programmed through the RxTh[3:0] bits (COR3[3:0]). The CPU
can set the threshold to any number of characters from 1 to 12.

Note: This only sets the level where the CD1284 posts a service request and not the depth of the FIFO.

When the CPU responds to a receive good data service request, it can read any number of
characters out of the FIFO, from zero up to the number indicated in the RDCR before exiting the
service routine. If the number read is zero, the CD1284 posts another request for service almost
immediately. If the number of characters read is less than the number indicated by the RDCR, but
enough so that the number in the FIFO falls below the threshold, a new request is not made until
the threshold is once again exceeded. Since the MPU circularly scans the channels, another channel
can post a receive service request before this channel has the opportunity, this is why the request
for service is posted ‘almost immediately’.

5.5.2 Receiver Timer Operations

Also associated with each receiver FIFO is a timer that has its duration set in the RTPR. This timer
provides two services in relation to the receive FIFO operation: a timeout to prevent ‘stale’ data in
the FIFO and a timeout after the last character is removed from the FIFO.

The first type, type 1, occurs if the receive FIFO does not reach the set threshold before the
programmed time period expires. The second type, type 2, occurs if the timer expires and no new
data has been placed in the FIFO after the last character is removed — this is the NNDT (No New
Data Timeout) service request.

The timer is driven by the prescaled clock selected in the PPR in the Global register set. This timer
is loaded with the value contained in the RTPR each time a character is placed in the receive FIFO
or when the last character is removed from the FIFO. Each ‘tick’ of the prescaler decrements the
timer. If the timer reaches zero and the receiver interrupts are enabled, the MPU generates a receive
data service request for the valid timeout condition.

Type 1

If there are characters in the FIFO but the threshold level has not been reached, a good data service
request is posted when the timer expires. This function is provided to prevent data from remaining
in the FIFO for long (potentially infinite) periods of time because the remote did not send enough
data to fill the FIFO to the threshold level. This timeout cannot be disabled.
 Datasheet 51

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Type 2

If there is no data in the FIFO when the timer expires and the NNDT service request is enabled in
the SRER, a receive exception service request is posted with status indicating the timeout
condition. This timeout is optional and is provided so that driver software can detect the possible
end of a block of data and allow its buffers to be flushed to the higher, operating system level. The
NNDT is posted only on the first occurrence of a timeout after the FIFO becomes empty. Also note
that the NNDT timer is not started if the last character removed from the FIFO was an exception
character, such as a break or parity error.

Figure 8 on page 53 shows the timer process evaluation performed by the MPU when the timer
reaches zero.

5.5.3 Receive Exceptions

Several conditions can cause the CD1284 to post the receive exception service request. If an
exception condition occurs, two bytes are placed in the receive FIFO. The first byte contains the
status indicating the type of error; the second byte contains the data.

Exception data is sent to the CPU one event at a time. That is, there is a separate service request for
each character received with special conditions. If, when an exception condition occurs the receive
FIFO contains good data, a good data receive service request is immediately posted upon receipt of
the bad data. This happens regardless of the number of characters in the FIFO and the programmed
threshold. This allows the CPU to remove the data in the FIFO ahead of the exception data so that
the CD1284 can post the service request for the error condition. Once the service-acknowledge
procedure for the good data is terminated, a new service request is posted for the exception data.

When the CPU acknowledges the receive exception service request, it first reads the RDSR to
determine the status and then to retrieve the data. Reading the data is optional: if the FIFO is not
read twice during the service routine, the CD1284 updates the internal FIFO pointers appropriately
and discards the second byte.

Note: The CPU need not actually read any data from the FIFO during an exception service acknowledge
— the FIFO pointers are correctly updated at the end of the service routine, discarding both the
status and the data. In this way, the CPU must at least read the status or it is permanently lost.)

Another special case of exception data handling is received line break conditions. A line break is a
character with a start bit, ‘0’ data, and no parity or stop bit. In this case, a null (‘0’) character is
placed in the FIFO with the break condition indicated in the accompanying status, and a receive
exception service request is posted. However, regardless of the length of the break, only one
character is placed in the FIFO. Resumption of normal character reception causes new data to again
be placed in the FIFO.
52 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 8. FIFO Timer Processing

TIMER = 0

?

FROM OTHER

BACKGROUND PROCESSING

BACKGROUND SCANNING

DETECTS NEW CHARACTER

ARRIVED

PUT CHARACTER IN FIFO

RELOAD TIMER

RESUME BACKGROUND
SCANNING LOOP

FIFO EMPTY

?

NO NEW DATA
TIMEOUT
ENABLED

?

NO NEW DATA
INTERNAL FLAG

ARMED
?

CLEAR NONEWDATA
INTERNAL FLAG

POST RECEIVE EXCEPTION
SERVICE REQUEST

RESUME BACKGROUND
SCANNING LOOP

Y

Y

Y

Y

N

N

N

N

POST RECEIVE ‘GOOD DATA’
SERVICE REQUEST
 Datasheet 53

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.5.4 Transmitter Operation

Each of the two serial channels on the CD1284 are capable of transmitting characters with a
number of programmable characteristics such as length, parity, and baud rate. The channels operate
independently and the settings in one have no effect on the operation of the other.

After being reset from either hardware (RESET* input pin) or software (by the master reset
command in the CCR), all transmitters are disabled with the TxD output held at a logic ‘1’
condition. This is the ‘off’ or ‘mark’ condition of the asynchronous protocol.

Before any operation of the transmitter can begin, the CPU must program the appropriate
parameters in the CORs, TCOR, and TBPR. Once these registers are set, the channel is enabled by
issuing a transmit enable command through the CCR, and enabling service requests by setting the
appropriate transmit enable request bits in the SRER.

The channel then immediately posts a transmit service request since its FIFO is empty. The CPU
responds to the request by loading up to 12 characters into the transmit FIFO through the TDR after
it places the CD1284 in the Service-Request Acknowledge mode (see description of service-
request/service-acknowledge procedures in Section 5.2.3).

The transmitter does not begin transmitting the characters until the CPU terminates the service
routine and writes the EOSRR. Transmission begins by sending a start bit (a logic ‘0’) followed by
five to eight data bits (depending on the programmed value), least-significant bit first. The last data
bit is followed by the appropriate parity bit, if enabled, and a minimum of one stop bit.

All bit transmission is handled by the transmit bit engine with the MPU sending each bit as
requested. If there are still characters in the FIFO, the next one is transmitted immediately after the
last stop bit of the previous character. This process continues until all characters in the FIFO are
transmitted. At that time the CD1284 posts a service request for more data.

There are actually 14 transmit character holding locations for each channel: 12 in the FIFO, one in
the Transmitter Holding register, and one in the Transmitter Shift register. The CD1284 can be
programmed on a per-channel basis to request transmit data when one of two conditions exist:

1. When the last character in the FIFO is transferred to the holding register, or

2. When the last data bit of the last character is shifted out of the Transmitter Shift register.

Option number one allows the CPU two character transmit times to reload the FIFO and prevent a
transmit data underrun. This is the normal mode of operation. Option number two ensures that the
transmitter is empty before reconfiguring the channel. It is likely that transmitter underrun occurs if
option number two is selected, unless the CPU is sufficiently fast to respond to a transmit service
request and reload the FIFO during transmission of the stop bit(s) of the last character.

If the transmitter underruns, it continues to send stop bits (mark) until more data is placed in the
FIFO. Normally, when a string of characters greater than 12 is being transmitted, the software
programs the CD1284 transmitter to post a service request when the FIFO is empty. When the last
of the data to send is placed in the FIFO, the service request enable is changed so that requests are
made after the last character is sent. This notifies the CPU that all the data was transmitted before
disabling a channel.

If a channel is disabled without first being emptied, any characters other than the one currently
being transmitted are held and the transmitter enters the marking state. If the channel is
subsequently reenabled, any remaining data is transmitted.
54 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The transmitter is capable of performing several special functions such as break generation, inter-
character delays, and automatic flow control. These functions are discussed in Section 5.6, Section
5.7, and Section 5.8.

As with the receiver, the transmitter has a timer associated with it. This timer generates the timing
for embedded transmit commands that send line breaks and inter-character delays. Whenever the
MPU detects an embedded transmit command specifying the delay command, this timer is loaded
with the value contained in the parameter byte. Then the timer is decremented on each tick of the
PPR (prescaler timer) until it reaches zero. At that time, the delay terminates unless the next
character in the FIFO is the beginning of another delay command sequence.

5.6 Flow Control

In all data communications applications, data is sent from one system to another by a protocol.
Most systems have a method of buffering data for transmission and reception.

In asynchronous protocol, there is no way at the protocol level to determine the length of a data
transmission. Therefore, it is not normally possible to designate a buffer area to handle the entire
length of the transmission. Also, the hardware receiving the data generally has a limited amount of
buffer area — usually a FIFO — and, if the CPU does not unload data fast enough, the buffer or
FIFO can overflow. For these reasons, two methods are provided to stop the remote from sending
data until there is space to receive data. This is known as flow control.

Flow control can be in-band or out-of-band. In-band flow control uses special characters that can
be sent to the CPU to stop data transmission. Out-of-band flow control are signals outside the serial
data channel that perform the same function: the RTS* (Request To Send) and CTS* (Clear To
Send) signal set, and the DSR* (Data Set Ready) and DTR* (Data Terminal Ready) signals.

The CD1284 supports manual flow control and has built-in capabilities for automatic and/or semi-
automatic (depending on direction and options) implementation without CPU intervention.

5.6.1 In-Band Flow Control

In-band flow control is implemented by special characters imbedded in the serial data stream; one
to request that transmission stop and one to request that data transmission resume. Any character
can be selected, although conventionally, the XON or DC1 (x’11) and XOFF or DC3 (x’13)
characters are selected if the ASCII character set is being used.

XOFF designates the character used to stop data transmission. XON determines the character used
to resume transmission. Whether these characters are used, the CD1284 allows the two characters
to be set to any value appropriate to the system design by the value programmed in SCHR1 and
SCHR2 (Special Character register 1 and 2).

SCHR1 defines the XON character and SCHR2 defines the XOFF character. These registers must
be initialized by the CPU; the default value loaded during device reset is ‘x’00’.

5.6.2 Receiver In-Band Flow Control

When the CPU senses that the sender requires flow-control due to the receive buffer filling too fast
to service, it can request the remote stop transmission by the transmitter sending an XOFF
character. This is accomplished by issuing a send special character 2 command through the CCR.
The CD1284 then transmits the character programmed in SCHR2.
 Datasheet 55

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
As previously discussed, the send special character command is preemptive to data currently in the
transmit FIFO. The XOFF character is transmitted immediately after the current character and the
character in the Transmitter Holding register are sent (a maximum delay of two character times).
When the CPU is again ready to start receiving characters, the XON character is sent by another
send special character command. At this time, the CD1284 is issued the command to send the
character programmed in SCHR1.

Send special character commands override any flow-control by a remote of the CD1284. For
example, even if the CD1284 transmitter is shut off by the remote, it can still send flow control
characters.

The current state of the flow-control condition is always made available to the CPU through the
CCSR. In addition to the enabled/disabled status of the receiver and transmitter, the CCSR displays
the flow-control status.

Two bits in the CCSR pertain to receiver flow control, RxFloff and RxFlon. Whenever the CPU
issues the send special character 2 (send XOFF) command, the CD1284 sets the RxFloff bit,
indicating a request for the remote to stop transmission.

When the CPU issues the send special character 1 (send XON) command, RxFlon is set and
RxFloff reset. RxFlon remains set until the first character is received after XON is transmitted.
Table 15 shows the bit encoding for RxFloff and RxFlon.

RxFloff and RxFlon are cleared whenever the receiver is disabled or enabled, regardless of the
state of flow control when the disable/enable occurred.

Note: Regardless of the current state of RxFloff, the CD1284 continues to receive characters. If the
remote ignores or is slow to respond to the XOFF character, there an overrun condition can occur.

5.6.2.1 Transmitter In-Band Flow Control

The CD1284 can automatically flow control its own transmitter when it receives the XON and
XOFF characters, as programmed in SCHR1 and SCHR2. There are control bits in COR2 and
COR3 to enable or disable various aspects of automatic flow control.

Special-character detection must be enabled through the SCD12 bit (COR3[4]) for flow-control
characters to be acted upon. When SCD12 is set, the CD1284 scans received characters for a match
with one of the special characters programmed in SCHR1–SCHR2.

Table 15. CCSR[6:5] Encoding

RxFloff RxFlon Encoded Status

0 0
Transmission resumes, the receiver is
enabled/disabled, or receiver is in the
default reset state.

0 1 XON is sent, but transmission has not
restarted.

1 0 XOFF was sent.

1 1 Not used.
56 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
If enabled in SCD12 and a character matching the contents of SCHR2 is received (the XOFF
character), the CD1284 checks that automatic transmit in-band flow control is enabled in COR2[6].
If this function is enabled, the CD1284 stops transmission after the current transmitting character
and the character in the Transmitter Holding register, if any, are sent. If enabled, the CD1284 also
attempts to match against errored characters. This function is enabled by the CMOE bit (COR5[5]).

COR2[7] enables IXM (Implied XON mode), which determines the character that restarts
transmission after a stop by automatic flow control. If IXM (COR2[7]) is ‘0’, only a programmed
XON character (SCHR1) can restart the transmitter; all other characters are received and placed in
the FIFO. If IXM is reset, any character received restarts data transmission. TxIBE (COR2[6])
must be set to active automatic flow control, otherwise IXM (COR2[7]) has no effect.

As with receiver flow control, the CPU can determine the current state of the transmitter through
TXFloff and TxFlon (CCSR[2:1]). When automatic in-band flow control is enabled and the
CD1284 receives an XOFF character, TxFloff is set. When an XON character is received, TxFlon
is set. Once transmission resumes, TxFlon is cleared. The encoding for TxFloff and TxFlon is
shown in Table 16.

TxFloff and TxFlon are cleared whenever the transmitter is disabled or enabled, regardless of the
state of flow control when the disable/enable occurred. This feature can force transmission to
resume regardless of remote-initiated flow control.

One final aspect of automatic in-band flow control is FCT (Flow Control Transparency). FCT is
enabled/disabled in COR3[5] and determines if remote-initiated flow control is transparent to the
CPU. If FCT is not set, in addition to stopping transmission when an XOFF character is received,
the CD1284 places the received XOFF character in the receive FIFO and informs the CPU with a
receive exception service request. When the XON character is received, it is also sent to the CPU
by an exception service request, then restarts data transmission.

If FCT is enabled, received flow control characters control transmission, but are discarded instead
of being placed in the FIFO. If the CPU does not require to know when its transmit data has been
stopped, this bit can be set to reduce the number of service requests that must be handled.

Table 17 summarizes the control bits in the CORs that enable the various modes of in-band flow
control.

Table 16. CCSR[2:1] Encoding

TxFloff TxFlon Encoded Status

0 0
Transmission resumes, transmitter is
enabled/disabled, or the transmitter is
in the default reset state.

0 1 XON was received, but transmission
has not restarted.

1 0 XOFF was received, transmission has
stopped.

1 1 Not used.
 Datasheet 57

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.6.3 Out-of-Band Flow Control

Flow control can also be accomplished through the modem handshake signal pairs RTS/CTS and
DSR/DTR. These are called out-of-band because they are external to the data channel. The
CD1284 can be programmed to automatically respond to and generate out-of-band flow control
through these signals.

5.6.3.1 Receiver Out-of-Band Flow Control

Along with the receiver FIFO threshold that sets the level where the CD1284 posts a service
request, another threshold can be set to determine when it automatically asserts/deasserts DTR*.
This is the DTR threshold and is enabled in the DTRth[3:0] bits (MCOR1[3:0]). The level can be
set for any number of characters from 0 to 12. A threshold of zero disables the function and DTR*
is not controlled by the device. If the function and the receiver are enabled, the CD1284
automatically asserts the DTR* output whenever the number of characters in the receive FIFO is
less than the programmed number. Once the level reaches the threshold, DTR* is deasserted. DTR*
is held in the deasserted state until the CPU removes enough characters from the FIFO to lower the
level below the threshold.

For the receiver to operate properly, the DTR threshold must be set to a value equal to, or higher
than the receiver service-request threshold. If the levels were reversed, normal character reception
could not be completed because DTR* would always be deasserted before the receive FIFO
threshold is reached. The CPU would then not get a receive data service request until the receive
FIFO timeout is reached. This would result in a serial data transmission performance limitation.

The DTR* output can also be manually controlled through MSVR2[1]. Setting this bit to ‘1’ asserts
the DTR* output.

5.6.3.2 Transmitter Out-of-Band Flow Control

Transmitter out-of-band flow control is implemented with three modem control signals: the RTS*
output and the CTS* and DSR* inputs. The RTS* output can be programmed to be automatically
asserted whenever there is data in the transmit FIFO and the transmitter is cleared to send. CTS*
and DSR* can be enabled to automatically control the transmitter.

RTS Automatic Output is enabled in the RtsAO bit (COR2[2]). If RtsAO is set, the CD1284
automatically asserts the RTS* output when there is data in the FIFO to send. When the data is sent
and the FIFO is empty, RTS* is deasserted until the CPU places more data in the FIFO. If RTSAO
is not set and if required by the remote, the CPU must manually control the RTS* output through
MSVR1[0].

Table 17. COR Control Bits

Bit Name Register Function

SCD12 COR3 Enables recognition of special
characters 1 and 2

FCT COR3 Enables transparent flow control

TxIBE COR2 Enables automatic transmitter in-
band flow control

IXM COR2 Enables implied XON mode
58 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The CTS* input can also be monitored by the CD1284 and is a transmitter enable. The functions is
enabled by setting CtsAE (COR2[1]). If CtsAE is set, character transmission occurs only when the
CTS* input signal is asserted. If the signal is deasserted during active transmission, the current
character plus the character in the Transmitter Holding register are transmitted and transmission
ceases. Thus, a minimum of one and a maximum of two characters can be transmitted after the
control signal is deasserted. Transmission resumes when the signal(s) is reasserted.

The send special character command does not sample the CTS* or DSR* inputs. If the CPU opts to
send one of the special characters, the character is transmitted regardless of the state of these
inputs. This is preferable as the CPU can still flow control a remote even if it is being flow
controlled. If the state of CTS* and DSR* are important, they should be tested through
MSVR1[7:6] before the special character send command is issued.

5.6.4 Modem Signals and General-Purpose I/O

Each channel of the CD1284 has four pins that can be used either as modem-control or general-
purpose input/output pins. The modem signal names assigned to these four pins provide an easy
reference for system designers. In fact, they are all simply general-purpose inputs and outputs (if
automatic out-of-band flow-control is not used) are individually controlled in the MSVRs. Since
they are general-purpose, system designers can opt to connect the pins any way to suit the
application.

DCE, DTE Application

When the system software design opts to use automatic out-of-band flow control, then the signal
naming convention no longer holds true in some cases, depending on if the device is used as DCE
or DTE. For this case, use these pins within the CD1284, connect them accordingly, and disregard
their names. The RTS* and CTS* pins are associated with the transmitter; the DTR* and DSR*
pins are associated with the receiver. Table 18 shows the Intel recommended signal hook-up for
automatic out-of-band flow control.

For example, if the CD1284 is designed for DCE and automatic out-of-band flow control, connect
DTR* to the remote CTS* input. If the CD1284 is for the DTE side, then connect the CD1284
CTS* output to the remote CTS* input.

Note, if automatic out-of-band flow control is implemented, the activity of DTR* and DSR* do not
implement the function assigned to those signal names by the signaling conventions of the CCITT
(and other) standards organization. These pin names only apply to these pins if they are under
program control and not under automatic CD1284 control. In fact, the defined DTR function
enables the modem to go on- and off-line, depending on the state of the pin. If automatic flow

Table 18. Out-of-Band Pin Connections

DCE DTE CD1284 Pins Out-of-Band Flow
Control

CTS* – DTR* Signal remote to
transmit

RTS* – – Not implemented in
this direction

– RTS* RTS* Request remote
permission to transmit

– CTS* CTS* Enable transmitter
 Datasheet 59

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
control is used, then DTR* goes inactive when the receive FIFO reaches the programmed
threshold, causing the modem to drop the connection (carrier) to the remote, — this is not the
correct use of this function.

Modem pins are implemented as I/O ports accessible by either the CD1284 internal microcode or
the host. The modem pins are not connected directly to the transmit or receive hardware. When a
user programs the out-of-band modem functions to be active, the CD1284 microcode reads from
and writes to these pins. Specifically, when RTS* and CTS* are used for transmit flow control, the
CD1284 microcode asserts RTS* and senses CTS*, as required (Table 19). Also, when the receive
FIFO is full, DTR* is negated. The host must not reassert DTR* inadvertently.

Note: The host is not ‘locked out’ of accessing these bits; ensure that these bits are not written to when
auto out-of-band flow control is enabled as it could cause a system malfunction.

The user can directly control RTS* and DTR* and can probe the state of the CTS*, CD*, and
DSR* inputs through the MSVR. Since the host is accessing these pins directly, there is no delay in
its ability to detect a level change.

The CD1284 can be programmed to detect level changes and generate service requests when level
changes occur. It does this in firmware by reading DTR* and CD* and comparing them to a
previously stored value. This function is performed in the main timing loop of the firmware; the
maximum time required to detect a level change in worst-case conditions is approximately 2 ms.

When the CD1284 is performing this function, the modem pins are periodically sampled rather
than continuously monitored. In this way they have minimal sensitivity to noise, a desirable feature
in data communication applications. However, in extremely noisy applications, reread a modem
line that caused a modem signal change service request to verify it has changed and is not
malfunctioning. This eliminates even the slightest possibility of a noise pulse causing erratic
operation.

When the CD1284 is monitoring modem pins to control transmit or receive functions, it does not
rely on the previously stored value, but instead checks the pins at the appropriate time. Thus, there
is very little delay in this response. For example, before deciding to transmit another character, it
examines the CTS* pin at that time. The CD1284 makes this decision when moving characters
from the FIFO to the Holding register, not from the Holding register to the Shift register.

Note that the logical sense of the modem bits is inverted; that is, a write of ‘1’ to MSVR1 or
MSVR2 causes the output pin to go to nominal zero volts. Likewise, a low-voltage input is sensed
as ‘1’.

Table 19. Modem Control Pin Functions

Modem Control
Pins Function

RTS* Request to send (general-purpose output)

CTS* Clear to send (general-purpose input)

DTR* Data terminal ready (carrier detect/general-
purpose input/output)

DSR* Data set ready (general-purpose input)

CD* Carrier detect (general-purpose input)

RI Ring indicator (general-purpose input)
60 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.6.4.1 Generating Service Requests with Modem Pins

The CD1284 can generate service requests when any one of the input pins changes state. Either or
both edges can be detected by setting bits in MCOR1 and MCOR2. For each pin, the user can
individually enable an on-to-off or off-to-on transition detection of the inputs. When the CD1284
detects such a transition, the corresponding bit in the MCR is set. If the corresponding IER bit in
the channel is set, the CD1284 asserts the SVCREQM* output.

The user must clear the MCR during the service request service routine before writing to the EOIR.
The CD1284 performs this task by reading the modem input signals and comparing the current
value with the value read in the last pass through the outer scanning loop. Because this is the
lowest-priority event in the CD1284 scanning loop, changes can not be detected unless they are
several hundred microseconds long.

For example, the modem input pins can be used to detect the closing of a switch. However,
consider the relatively slow speed of response when using modem input pins for this purpose. The
CD1284 does not latch the modem input signals.

5.6.4.2 Using Modem Pins as General-Purpose I/O

Since the modem pins can be directly accessed by the host, they can be used as general-purpose I/O
pins if they are not needed for flow control or modem interfacing. Simply read from and write to
these pins as with any I/O port.

5.7 Receive Special Character Processing

The CD1284 has several ways to send special characters and to process these characters when
received. Some special characters have fixed definitions and others are user-defined. Figure 9 on
page 64 defines the processing that the CD1284 performs for receive data. This flow chart
illustrates the special character handling process.

5.7.1 UNIX Character Processing

The CD1284 incorporates special character processing of particular benefit in systems designed to
run the UNIX operating system. The processing performs some of the functions normally handled
by the ‘line discipline’ part of a serial device driver program. This provides higher overall
performance in serial communication than could otherwise be obtained because character
manipulation occurs at the hardware level without any CPU interaction. This processing includes
CR (carriage return) and NL (new line) substitution, programmable response to errored characters
(framing, parity and overrun errors), the LNext function and ISTRIP. Each type of processing is
optional and can be enabled/disabled with control bits in the CORs 2, 4, and 5. The following
sections describe of each of these functions.

5.7.1.1 Line-Terminating Characters

The CD1284 can be programmed to perform automatic substitution of the CR and NL characters
on both received and transmitted data. Received character processing has five unique substitutions
based on the value of IGNCR, ICRNL, and INLCR (COR4[7:5]); some combinations cause
identical actions.
 Datasheet 61

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.7.1.2 Errored Character Processing

The CD1284 can easily manage received characters with errors (such as, parity, framing, and
overrun). If none of the special processing functions are enabled, errored characters are delivered
to the CPU through a receive exception service request. As defined by the PEH[2:0] bits
(COR4[2:0]), these characters can be handled in one of the following ways:

• Parity errors can be ignored — the character is placed in the FIFO as good data and is given to
the CPU as any other received good data.

• An errored character can be replaced with a NULL (x’00) character in the FIFO.

• An errored character can be replaced in the FIFO with the 3-byte string x’FF–NULL-character.
If this mode is enabled and an actual good x’FF character is received, it is replaced in the FIFO
with the two character sequence x’FF-x’FF.

• An errored character can be discarded.

Received breaks are handled differently from other errored characters. They can be processed,
based on the settings of the IGNBRK and -BRKINT bits (COR4[4:3]), as:

• Reported as an errored character by a received exception service request.

• Replaced with a good NULL (x’00) character in the FIFO.

• Discarded.

5.7.1.3 LNext

LNext (Literal Next) allows ‘escaping’ or ignoring any special meaning of special characters and
considers them as normal data. The escape character is defined by the value in the LNC register. If
the CD1284 receives this character, places it and the next character in the FIFO without further
processing. As an example, this allows a flow-control character to be received without it causing
actual flow-control activity. LNext can be enabled to operate on characters received with errors
(such as, parity, framing, and overrun), otherwise errored characters are handled normally and the
next character is not escaped.

5.7.1.4 ISTRIP

ISTRIP is a simple function that, if enabled, resets the most-significant bit (bit 7) of all received
good characters. If the character has a parity or framing error, the ISTRIP function does nothing
and the character is sent to the CPU as a normal receive exception service request.

000 Do nothing – function not enabled

001 Received NL changed to CR

010 Received CR changed to NL

011 Received CR change to NL; NL changed to CR

100 Received CR discarded

101 Received CR discarded; NL changed to CR

110 Received CR discarded

111 Received CR discarded; NL changed to CR
62 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.7.2 Non-UNIX Receive Special Character Processing

In addition to UNIX special-character processing, the CD1284 provides other special character
recognition capabilities. The CD1284 has four registers that define special characters, SCHR1–
SCHR4. SCHR1 and SCHR2, are used in flow-control activities and (see Section 5.6). SCHR3 and
SCHR4 define two additional special characters that the CD1284 can scan for in the receive data
stream. Recognition of special characters 3 and 4 are enabled by the SCD34 bit (COR3[6]). If
either of these characters are received, a special character detect (receive exception) service request
is sent. Note that if automatic in-band flow control is not enabled, SCHR1 and SCHR2 can still be
used as special characters. They are detected and reported as receive exceptions, but they do not
cause flow-control activities to be envoked.

The range detect function is another special character function. If this mode is enabled (COR3[7]
set), the CD1284 compares all received characters against the values in the SCRL and SCRH
registers. If the character received falls between these two values (inclusive), a special character
detect service request is posted.

The status shown in the RDSR indicates which of the special character recognition conditions were
met and caused the receive exception service request.
 Datasheet 63

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 9. CD1284 Receive Character Processing

PARITY,
FRAMING,
OVERRUN

ERROR

CHARACTER
RECEIVED

?

SET ERRORED
CHAR FLAG

SET BREAK
FLAG

CLEAR LNEXT
FLAG

SET D7 = 0

Y

Y

Y

Y

Y

YY

Y

N

N
N

N

N

N

N

N

A B

BREAK

ISTRIP
ENABLED

?

?

CHAR MATCH
ON ERROR
ENABLED

?

SCHR12
ENABLED

?

LNEXT
FLAG

?
SET

LNEXT
MODE

ENABLED

?

CHAR
=

LNEXT

?

SET LNEXT
FLAG
64 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 9. CD1284 Receive Character Processing (Continued)

BA

IMPLIED

XON MODE
CLEAR FLOW

OFF

XOFF

CHARACTER

XON

CHARACTER

SET FLOW
OFF

TOGGLE FLOW
STATE

XON

CHARACTER
CLEAR FLOW

OFF

FLOW
CONTROL

TRANSPARENCY
SET

DONE

DONE

SCHR34
ENABLED

SCR

ENABLED
CHARACTER

IN RANGE

SET SPECIAL
CHARACTER
EXCEPTION

CHARACTER

MATCH

C D E

?

??

?

?

? ?

? ?

Y

YY

Y

Y

Y Y

YY

N

N N

N

N

N

N

N

N

 Datasheet 65

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 9. CD1284 Receive Character Processing (Continued)

CR/NL
PROCESSING

ENABLED

CHAR =

CR OR NL

C D E
COR4[7:5]
000 - No action
001 - NL to CR
010 - CR to NL
011 - CR to NL; NL to CR

? ?

YY

N

PARITY
ERROR

HANDLING
= ‘100’

?

Y

N

ERROR FLAG

SET
?

Y

N

Y

NCHAR =

X’FF

?

?

N

Y

PUT FF,00, CHAR
IN FIFO

PUT FF, CHAR
IN FIFO

PUT CHAR
IN FIFO

100 - Discard CR
101 - Discard CR; NL to CR
110 - Discard CR
111 - Discard CR; NL to CR

N

Y

N

Y

N
PARITY
ERROR

HANDLING
= ‘011’

?

PARITY
ERROR

HANDLING
= ‘010’

?

PARITY
ERROR

HANDLING
= ‘001’

?

POST EXCEPTION
SERVICE REQUEST

Y

Y

N

Y

N

? ?

BREAK
PROCESSING

MODE
= ‘10’

?

POST EXCEPTION
SERVICE REQUEST

DISCARD CHAR
PUT CHAR

IN FIFO
PUT 00
IN FIFO

DISCARD CHAR
PUT 00
IN FIFO

PUT CHAR
IN FIFO

N

BREAK
PROCESSING

MODE
= ‘11’

BREAK
FLAG

SET

Y

DONE

PARITY

ERROR FLAG
SET

PARITY

N

66 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.8 Transmit Special Character Processing

The CD1284 also provides some special character handling on the transmit side – embedded
transmit commands and direct commands to transmit predefined special characters. Figure 10 on
page 70 illustrates the process of special character handling.

5.8.1 Line Terminating Characters

On transmit, there are four possible substitutions based on the setting of two flags, the ONLCR and
OCRNL bits (COR5[1:0]):

When both flags are set (‘11’), only one translation occurs – a CR that changed to NL is not
changed to CRNL.

5.8.2 Embedded Transmit Commands

The CD1284 has a special feature that optionally allows specific ‘escape’ character sequences in
the transmit data stream to be interpreted as commands. These are called ETCs (embedded transmit
commands) and are enabled in COR2[5]. These sequences can insert programmed time delays
between characters and generate a line break on the transmit data output.

If enabled, an ETC is detected when the two- or three-character escape sequence is detected in the
transmit FIFO. An escape-character sequence is comprised of the special escape character followed
by the command character and an optional count for the delay period. The escape character is an
all-zero character (null or NUL in the ASCII character set map). Five commands are supported in
the ETC command set:

• NUL NUL

• NUL x’81

• NUL x’82 x’xx

• NUL x’83

• NUL x’01–x’3F

NUL NUL – Send One NUL Character

This command sequence allows the NUL character to be sent alone. Thus, this ‘escapes’ the escape
when it is desired to send a null character.

NUL x’81 – Send BREAK

This sequence forces the transmitter to enter the line-break condition for at least one character time.
Several conditions control the continuation and/or termination of the line break.

00 Do nothing — function not enabled

01 Change all <CR> characters to <NL>

10 Change all <NL> characters to <CR> <NL>

11 CR characters changed to NL or NL
 Datasheet 67

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
• If there is no more data in the FIFO following the send break command, the break continues
indefinitely until terminated by a stop break command.

• If there is an insert delay command (see the next command) immediately following the send
break command, the break duration is set by the value programmed in the delay command.
Any other character in the FIFO immediately following the send break command carries an
‘implied’ end-of-break condition, causing the break to be terminated and the next character to
be sent.

NUL x’82 x’xx – Insert Delay

This command causes a delay between the previous character transmitted and the next character to
be transmitted. The hex value contained in the third byte of the sequence determines the time of the
delay based on the basic time period set by the PPR. The value is treated as an unsigned binary
value loaded into an internal counter. The counter decrements once for each tick of the prescale
period timer. Thus, if the PPR sets a basic timing period of 10 ms and the value set by the command
is 100 (x’64), then a delay of 1 second is generated. Multiple insert delay commands can be placed
in the FIFO if time delays longer than that generated by a single delay period are needed.

This command is useful when a delay is required after sending a carriage return. A printer is an
example of this type of situation. Often, the carriage return causes the printer to start a print cycle
and the sending device must wait for the print to complete before sending the next line of text
(unbuffered input). Using the insert delay command allows the delay to be performed
automatically without the need for the CPU to time it. The delay command is placed in the FIFO
directly following the carriage return and preceding the first data for the next line. The CD1284
automatically executes the delay following the carriage return, then restarts sending characters.

Another useful application of the delay command is as a built-in timer that the CPU uses as an
interrupt source causing it to periodically check its internal buffers for data to transmit. This
assumes that the channel is not currently transmitting data. When the CPU services the transmit
FIFO service request after a delay timeout (as set by the delay value) it can start transmission of a
buffer if data is available or resend the insert delay command and wait for the next service request.
An internal timer interrupt set by the CPU is now unnecessary to perform this function.

NUL x’83 – Stop BREAK

This command terminates a break in progress regardless of other conditions. This command can be
preceded by insert delay commands to set a specific, programmed break period if more than one
character time is required. Any character in the FIFO causes the break to terminate. NUL x’83 is
required only if it is necessary to stop the break and there is no more data to be sent. A break
continues until another character is sent or ESC x’83 is encountered in the FIFO.

NUL x’01–x’3F – Send Repeat Space

This command causes the CD1284 to send repeated space characters. The character following
NUL is interpreted as a binary count specifying the number of ASCII space (x’20) characters to
send. The count must be in the range of x’01 through x’3F (1–63 decimal).

5.8.3 Send Special Character Command

One command of the CD1284 transmits any one of the four special characters programmed in
SCHR1–SCHR4. The command is issued by the CCR[5] set to ‘1’, and the least-significant three
bits encoding a selection of one of the four characters. This function is preemptive, meaning that
68 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
the selected character is transmitted immediately following the currently transmitting character and
any character in the Transmitter Holding register. This preempts any characters in the transmit
FIFO. If there are characters in the transmit FIFO, transmission resumes after the special character
is sent.

One important use of this command is that it allows the CPU to flow-control a remote without
having to wait for the transmit FIFO to empty before the flow control character is placed in it. This
is a special case different from the normal transmitter operation of the CD1284, in that the
character can be sent without waiting for a transmit service request. The only requirement is that
the transmitter must be enabled (interrupts need not be enabled).
 Datasheet 69

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 10. CD1284 Transmit Character Processing

READY FOR NEXT
CHARACTER

DELAY
TIME
= ‘0’

?

REPEAT
CHAR MODE

ACTIVE
?

DECREMENT
COUNT, SEND

‘SPACE’

COUNT

= 0

?

CLEAR REPEAT

CHAR MODE

EMBEDDED
COMMAND IN
PROGRESS

?

RESET EMBEDDED
COMMAND IN
PROGRESS

CHAR
= X’81

?

CHAR

= X’82

?

Y

Y

Y

Y

Y

Y

N

N

N

N

N

SEND
BREAK

SET DELAY
TIME USING

N

A B C

NEXT CHAR
70 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 10. CD1284 Transmit Character Processing (Continued)

A B C

CHAR

= X’83

?

CHAR

= X’00

?

CHAR

= X’01 TO X’3F

?

STOP BREAK

SEND ‘00’
AS CHAR

1. INITIALIZE REPEAT
CHAR COUNT

2. SET REPEAT
CHAR = ‘SPACE’

3. SET REPEAT
CHAR MODE

ILLEGAL CONDITION:

SEND THIS AS A CHAR

Y

Y

N

N

Y

N

CHAR

= X’00

?

N

Y

ETC
ENABLED

?

Y

N

SET EMBEDDED
COMMAND IN

PROGRESS FLAG

D E
 Datasheet 71

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.9 Baud Rate Generation

The CD1284 provides a separate baud rate generator both directions of each channel. Each receive
and transmit baud rate generator can be driven from one of five available clock sources. The source
being used is selected by the value in the R/TCOR. The selected clock is divided by the value in the
R/TBPR to yield the desired bit rate.

Note: R/T is used as a register abbreviation indicating Receive / Transmit followed by the register
acronym.

The five clock sources are:

Figure 10. CD1284 Transmit Character Processing (Continued)

D E

CHAR

TRANSLATION

ENABLED

?

PERFORM CR, NL
PROCESSING AS

SPECIFIED

Y

N

SEND CHAR

EXIT

Clk0 System clock ÷ 8, R/TCOR = 0

Clk1 System clock ÷ 32, R/TCOR = 1

Clk2 System clock ÷ 128, R/TCOR = 2

Clk3 System clock ÷ 512, R/TCOR = 3

Clk4 System clock ÷ 2048,
72 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The system clock is the external clock driving the CLK input of the CD1284. Three example baud
rate tables are provided at the end of Section 6.7 on page . A sample program for automatically
deriving the baud rate clock selection and divisor is also provided in Chapter 6.0.

5.10 Serial Diagnostic Facilities — Loopback

The CD1284 provides the capability to perform internal loopback testing for both local and remote
loopback modes. Loopback mode is enabled by the LLM (Local Loopback mode) and RLM
(Remote Loopback mode) bits (COR2[4:3]).

In Local Loopback mode, the output of the transmitter bit engine is directly connected to the input
of the receiver bit engine; the input and output pins (TxD and RxD) are disconnected. The TxD
output is left in the mark condition so that remote equipment does not sense any line activity. Input
conditions on the RxD are ignored. All channel parameters and service-request functions are in
effect and operate normally. If enabled, special characters in the loopback data are detected and
acted upon and UNIX translations occur.

Remote Loopback mode causes the CD1284 to echo any received data back immediately to the
transmit output. This is done on a character-by-character basis rather than on a bit-by-bit basis. In
other words, characters are echoed once they are completely received and assembled. Received
data is not placed in the FIFO, thus no data is sent to the CPU. The received character is
retransmitted with parity and stop bit options as defined by COR1. Note, if the transmit baud rate is
lower than the receive baud rate, overrun errors and loss of data are likely to occur.

5.11 Parallel Port FIFO and Data Pipeline Overview

The parallel port within the CD1284 implements all modes defined for the ‘slave’ (peripheral) side
in the IEEE STD 1284 Standard Signaling Method for a Bidirectional Parallel Peripheral Interface
for Personal Computers. This specification defines four methods of performing bidirectional data
transfers between a computer system and a peripheral device, in addition to the generally accepted
unidirectional Centronics -compatible mode. These modes include Compatibility mode, Reverse-
Nibble mode, Reverse-Byte mode, ECP (Extended Capabilities Port) with and without RLE (run
length encoding), and the EPP (enhanced parallel port).

The IEEE 1284-compliant parallel port consists of two major functional blocks:

• A data pipeline that moves data between the parallel port and the CPU and includes a FIFO,
holding registers, DMA control, interrupt control logic.

• A channel control state machine to perform all control and handshake generation on the
parallel port interface side of the device.

5.11.1 IEEE STD 1284 Protocols

The following sections discuss data movement within the pipeline for the various IEEE STD 1284
operating modes. For a complete description of these modes, refer to the IEEE STD 1284
specification; it is beyond the scope of this data book to give complete information on the
specification. A copy of the IEEE STD 1284 standard can be obtained from:

IEEE Standards Department

445 Hoes Lane
 Datasheet 73

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
P.O. Box 1331

Pascataway, NJ 08855-1331

USA

5.11.2 Bus Interface

DMA transfers are the preferred means of transferring data to/from the FIFO. However, it is also
possible to transfer data to/from the data pipeline by reading and writing the holding registers
directly through the PIO. DMA request and acknowledge handshake signals support transfers to/
from the 16-bit-wide DMABUF register. The direction of transfer is determined by the DMAdir bit
(PFCR[5]).

In the transmit direction, with DMAbufWe (PFCR[0]) set, the CPU can write 2 bytes at a time
directly to the DMABUF register. However, most applications are not concerned with speed on the
parallel port in the reverse direction and do not require 16-bit writes to the FIFO. The CPU must
avoid writing to these registers when they are already full or reading from them if they are empty.
The status bits in the HRSR indicate if the holding registers and the DMA buffer are full or empty.
When writing a block of data to the CD1284 (DMAbufWe is set to ‘1’), the CPU can determine
how much data the FIFO can accommodate by reading the PFQR.

Should data become ‘trapped’ in the DMABUF register in the receive direction because of a failure
of the external DMA controller or because the external buffer area is full, it can either remain until
the DMA transfer can be resumed or the CPU can read the data directly from the DMA buffer.

Note: The DMA buffer can only be read when DMAREQ* is active because data is not moved into the
DMABUF register until DMAREQ* is activated by the threshold logic or a timeout condition.

Once a DMA request is initiated by the CD1284, it is maintained until the last data transfer the
FIFO can accommodate occurs, or the CPU either clears DMAen or clears the FIFO and data-
transfer logic by setting FIFOres. In the transmit direction, the DMA request is removed by the
CD1284 when it determines that the FIFO is nearly full. (If RLEen is set, the pipeline does not
fully drain into the FIFO, but the logic does not factor that into the decision to conclude the DMA
transfer.)

In the receive direction, the DMA request is removed when there are not at least two more bytes
available to transfer or a tagged byte has moved into the data pipeline. In the latter case, an
interrupt is generated to the CPU (IntEn must be true) to remove the tagged data from the pipeline.

The quantity of data transferred within a single DMA request can significantly exceed the capacity
of the FIFO if RLEen is set, the parallel port is in ECP mode, and compressed data is being
transferred. This is because the FIFO always stores the data in compressed form. Since other
modes do not support RLE compression, the CPU should only set RLEen when the parallel port
interface is in ECP mode.

5.11.3 Parallel Port FIFO

The CD1284 has a dedicated 64-byte FIFO with counters to maintain the fill/empty pointer
addresses, logic to manage data transfers, automatic DMA handshake, and status interrupts to the
CPU. A simple register interface provides control over setting the direction of the pipeline,
initializing/resetting the DMA pointers, setting the DMA threshold, and so on. The FIFO
management logic responds to data-transfer requests from the dedicated IEEE 1284 parallel port
state machine.
74 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Byte-alignment issues on transfers to/from the FIFO are avoided by having the FIFO byte-oriented
with 2-byte word packing/unpacking occurring between the DMABUF register and PFHR1 and
PFHR2. The order of byte transfers to/from the DMA buffer is controlled by the BYTESWAP
input. If BYTESWAP is high, the upper byte (bits 15:8) is transferred first. If BYTESWAP is low,
the lower byte (bits 7:0) is transferred first.

Data transfers to/from the CPU are initiated by a DMA request whenever the quantity of data or
space in the FIFO equals or exceeds the threshold value stored in the PFTR. The DMA request is
deasserted during the DMA cycle determined by the logic to be the last because of filling/emptying
the FIFO or the presence of tagged data in the receive pipeline.

5.11.4 Receive Direction

In the receive direction (DMAdir = 0), the first two bytes of data placed into the FIFO by the
parallel port are immediately moved into the data pipeline, PFHR1 and PFHR2 (Figure 11 on
page 78). This is done in part to make the tagged status of the data visible to the pipeline control
logic. If RLEen is ‘0’, any tagged data from the FIFO must move through the pipeline. However,
tagged data cannot be transferred to the CPU by a DMA transfer from the DMABUF register.
Therefore, the presence of tagged data in the pipeline causes an interrupt to the CPU. The CPU
must then examine the HRSR to determine the pipeline status.

If there is tagged data in one of the holding registers, the CPU must read that register to empty it
and clear the tag. If more data is available in the FIFO, data immediately moves forward to fill the
pipeline. If the FIFO is empty, the pipeline does not move. If the CPU emptied PFHR2 and PFHR1
is full, the data in PFHR1 moves forward to PFHR2 only if the FIFO is not empty.

The pipeline logic keeps the pipeline full in the receive direction. The value in the threshold
register is tested against the quantity of data in the FIFO. Therefore, a number of characters equal
to the PFTR-threshold value plus two must arrive before a DMA request is made to the CPU to
remove the data.

5.11.5 Receiving Compressed Data

RLE compressed-data sequences that consist of a tagged RLE count followed by the compressed
data character are stored in the FIFO in compressed form. As data moves from the FIFO into the
data pipeline, the tag bit is inspected. If the tagged data is an RLE count (HostAck signal is high)
and RLEen is true, the RLE count is loaded into the RLCR instead of PFHR1; the next data
character is loaded into PFHR1. Decompression occurs by holding the compressed character in
PFHR1 as copies of the character are shifted forward into PFHR2. As each copy of the character is
shifted, the RLCR value decrements. When the RLCR reaches zero, the hold on PFHR1 is released
and it can shift forward in the pipeline as ordinary data.

Tagged data from the FIFO is recognized as an ECP mode address and shifts into the pipeline
where it causes an interrupt to the CPU to remove the tagged data from the pipeline. If RLEen is
‘0’, all tagged data from the FIFO is shifted into the pipeline and produces CPU interrupts.

If an immediate termination occurs between the reception of the RLE count and the corresponding
data, then the RLE count is stored in RLCR and the next data byte received in ECP mode is
uncompressed into the FIFO (based on the values in RLCR and if RLEen is still set). If the next
byte received in ECP mode is a new RLE count, then that value overwrites the old value in RLCR.
 Datasheet 75

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.11.6 Stale Data (Stale, OneChar, and Timeout Status Bits)

Data transfer to the CPU can also be initiated by the ‘stale’ data timer. This timer is reloaded with
the value in the SDTPR and restarts each time data is placed into the FIFO from the parallel port.
When the timer reaches zero, the status indication stale (visible in the PFSR) is set true unless
StaleOff (PACR[5]) is true.

StaleOff keeps the stale status false, even though the SDTCR counter value is zero. Should the stale
status become true with at least two characters of data available, a DMA request is made to transfer
the data. If the stale is true and there is exactly one character available, the OneChar status bit is set
(PFSR[1]) and an interrupt is generated to the CPU to transfer the single residual character.

The Parallel FIFO Status register indicates the Stale and OneChar conditions, and FFmpty. The
HRSR (Holding Register Status register) shows that holding register PFHR2 contains the final
character. An odd number of bytes can not be transferred by DMA. If a DMA transfer completes
with 1 byte of data left, the data is held pending arrival of additional data or the expiration of the
stale data timer.

The OneChar status is latched true when the FIFO and DMA buffer are empty and there is one
character in the pipeline in PFHR2. While the OneChar status is true, further pipeline operations
are inhibited. If additional data arrives in the FIFO, it remains there until the CPU:

1. Services the interrupt caused by the OneChar status, and

2. Reads the data character from PFHR2.

When the CPU reads the single character from PFHR2, any newly arrived data in the FIFO
immediately moves forward into the pipeline and a DMA transfer can begin if conditions warrant.

Another latched status condition associated with the stale data timer is the Timeout status bit
(PFSR[5]). Timeout is reset by the FIFOres bit (PFCR[7]) and the ClrTO bit (PACR[3]). Timeout,
OneChar, and DataErr are pipeline interrupt conditions and, if enabled, generate an interrupt. In the
receive direction, the Timeout condition is armed when Stale is ‘0’ and ClrTO and FIFOres are also
‘0’. When Stale becomes ‘1,’ the timeout is triggered, but is not set until a DMA transfer is
complete, the FIFO is empty, and there is no more than one character remaining in the pipeline. To
clear the timeout condition, set the ClrTO bit. To reenable the timeout function, clear the ClrTO bit.

The CPU can arm the timeout by a write of ‘01h’ directly to the SDTCR. If the timer expires before
any data arrives, an interrupt is generated for the timeout condition. If data arrives before the timer
expires, the interrupt delays until the data becomes stale.

5.11.7 Transmit Direction

Note: In the transmit direction, the pipeline behaves in one of two ways depending on the RLEen control
bit. RLEen should only be set by the CPU after the parallel port is in ECP mode, otherwise
compression of data occurs, but cannot be supported in data transfers on the parallel port. If RLEen
is ‘0’, data written to the DMABUF register by a DMA (DMAen true) or CPU write (DMAbufWe
true) is moved through PFHR1 to PFHR2 and immediately transferred into the FIFO (if space is
available).

If RLEen is ‘1’, run-length encoding is enabled and comparators among the pipeline stages
recognize repeated strings of characters and compress them (Figure 12 on page 80). To allow the
comparator-based logic to work, the pipeline registers, PFHR1 and PFHR2, must be kept full. One
comparator determines if the characters in PFHR1 and PFHR2 are identical.
76 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Another comparator determines if the next character coming from the DMABUF register and the
character in PFHR1 are identical. Compression begins when the pipeline is full (immediately after
a DMA or CPU write to the DMA buffer) and both comparators show identical characters in their
pipeline stages. This starts the compression process and the character in PFHR1 and the DMA
buffer shift forward. The (same) character in PFHR2 is not loaded into the FIFO, but rather the
RLCR increments to ‘1’.

As long as identical additional characters are loaded into the DMA buffer, the RLCR value
continues to increment and the data in PFHR2 does not move into the FIFO. When the repeated
sequence is finally broken, or the RLCR count reaches 127, the RLCR value transfers into the
FIFO, the RLCR zeros, and the character in PFHR2 transfers into the FIFO. Compression resumes
when both comparators indicate the presence of a string of at least three identical characters.
During intervals between DMA transfers, the last two data characters are held in PFHR1 and
PFHR2.

After the entire block transfer is complete, the CPU must either zero RLEen or ensure that both
DMAen and DMAbufWe are zeros. When either of these conditions is true, the pipeline is released
and data held in PFHR1 and PFHR2 transfers into the FIFO.

The timeout interrupt can be a general timer interrupt in the transmit direction. Unlike the receive
case, when DMAdir is true, the timeout status is immediately set when the timeout is triggered by a
‘0’-to-‘1’ transition of Stale. To use the timeout interrupt, the CPU must load the desired time delay
directly into the SDTCR. When the timer expires, Stale becomes true and the timeout interrupt is
generated.

5.12 CD1284 Parallel Port Overview

5.12.1 Terminology

This document uses the terms ‘master’ and ‘slave’ for the IEEE STD 1284 specification terms
‘host’ and ‘peripheral’ that describe the two sides of a parallel-port interface.

5.12.2 Signal Names

The IEEE STD 1284 specification uses different names for the nine control signals, depending on
the current mode of operation (Table 20). The CD1284 uses fixed names for each of its pins. The
names were selected to represent the most commonly used names of the various protocols. The
CD1284 device operates as a slave only. There are four input-control signals driven by the master-
side device, and five output-control signals driven by the slave-side device. The Parallel Data bus
(PD[7:0]) is bidirectional.

Table 20. Signal Names (Sheet 1 of 2)

Names Compatibility Rev. NB Rev. BT ECP EPP

Inputs

A_1284 SLCTIN* A_1284 A_1284 A_1284 nAStrb

HstBsy AUTOFD* HstBsy HstBsy HstAck nDStrb

HstClk STROBE* HstClk HstClk HstClk nWrite

nInit INIT* nInit nInit nRevReq nInit
 Datasheet 77

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.12.3 State Machine

The parallel port is controlled by a large synchronous state machine. The state machine is based on
the IEEE STD 1284 specification and conforms to all the functional modes (except extensibility
link options, none of which are currently — as of the print date of this document — defined).

5.12.4 Configuration

At power-up, the interface begins in Compatibility mode (Centronics mode) ready to accept data
from the master. Only the ETxfr bit (PCR[5]) is required to allow transfers in Compatibility mode
(parallel port only; datapath section is separate). PCR[7:5] enable transfers and Negotiation and
Manual modes.

Outputs

AkDaRq PError AkDaRq AkDaRq nAkRev USER1

PerBsy BUSY PerBsy PerBsy PerAck nWait

PerClk ACK* PerClk PerClk PerClk Intr

nDatAv FAULT* nDatAv nDatAv nPerReq USER2

XFlag SELECT XFlag XFlag XFlag USER3

Table 20. Signal Names (Sheet 2 of 2)

Names Compatibility Rev. NB Rev. BT ECP EPP

Figure 11. FIFO Data Path Functional Diagram — Receive

D
M

A
B

U
F

H
D

M
A

B
U

F
L

P
F

H
R

1

P
F

H
R

2

FIFO (64 BYTES)

TAG (64 BITS)

DB[15:8]

DB[7:0]

PFSR

(RECEIVE)

M
U

X
M

U
X

P
A

R
A

L
L

E
L

 P
O

R
T

STATUS

TAG TAG
TAG BIT

TAG BIT

STATUS
78 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
5.12.5 Interrupts

Interrupts are enabled in the PCIER and interrupt status can be read in the PCISR. These two
registers have the same format.

5.12.6 Manual Mode

Manual mode allows direct control of the five output control signals and the PD bus. It is not
intended for data transfers, but rather for advanced diagnostics. Enter Manual mode by setting the
ManMd bit (PCR[7]) when the interface is in Compatibility mode.

The MMDir bit (PCR[1]) sets the direction of the PD bus: 0 = input; 1 = output. When the MMDir
bit is set to ‘1’, data for the PD bus comes from the MDR. The ManOE bit controls the tristate
buffer on the PD bus: 0 = floating; 1 = driving. When MMDir is ‘0’, ManOE is ignored, PD[7:0]
are inputs, and the data can be read in the MDR.

5.12.7 Control Signals

Output signals are controlled by the OVR. The degree of control depends on the current mode. In
Manual mode, all five signals are under user control. In Compatible and EPP modes, only three
signals are available; the others are set by the state machine.

IVR, ZDR, ODR, and SSR monitor the four input signals. These four registers have a common
format. The IVR always shows the values of the four input pins. The ZDR and ODR allow the user
to force interrupts on specific signal transitions. Bits set in ZDR generate an interrupt if the
specified signal changes from ‘1’ to ‘0’. Similarly, bits set in ODR cause an interrupt if the
specified signal changes from ‘0’ to ‘1’. Setting both bits generates interrupts on either transition.
The SSR shows the status of signal changes according to ZDR and ODR. SSR indicates which
signal changed. (It is necessary for the user to read IVR to determine how the signal changed.) The
signal change interrupt is enabled with the SigCh bit (PCIER[4]).
 Datasheet 79

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.12.8 Parallel Port Interface to the FIFO

The DMAdir bit indicates the current direction (0 = in; 1 = out) of transfers between the FIFO and
the DMA logic. Due to a recent negotiation, this can differ from the current parallel-port interface
direction. The CPU must change the direction after it receives an interrupt showing a direction
change. The FIFOlock bit (PACR[4]) stops the DMA pipeline, useful in diagnostics.

5.12.9 1284 Negotiations

All IEEE STD 1284 protocol negotiations are initiated by the master side. The role of the CD1284
is to accept or reject the attempted negotiation. The NER contains bits to individually enable
specific IEEE 1284 modes.

The various IEEE 1284 modes require negotiations on the parallel interface before they can be
entered. Until a successful negotiation sequence is complete, the interface remains in Compatibility
mode. These negotiations occur in two stages; both stages occur automatically after the device is
commanded to begin the negotiation procedure to a particular mode. The first stage determines if
the slave is IEEE 1284-compatible. Once determined, the interface continues the process to
determine if the mode requested is supported. The result of the requested negotiation appears in the
NSR.

For negotiations to occur, the slave must enable the E1284 bit (PCR[6]). Data transfers require that
the ETxfr bit (PCR[5]) be set; negotiations can occur without data transfer enabled.

Figure 12. FIFO Data Path Functional Diagram — Transmit

D
M

A
B

U
F

H
D

M
A

B
U

F
L

P
F

H
R

1

P
F

H
R

2
FIFO (64 BYTES)

TAG TAG TAG (64 BITS)

DB[15:8]

DB[7:0]

P
A

R
A

L
L

E
L

 P
O

R
T

PFCR
TAG BIT

(TRANSMIT)

STATUS STATUS
80 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Negotiation Status Register

After any IEEE-1284 negotiation or termination, the current protocol status can be read in the
NSR. NegOK and NegFl (bits 7:6) indicate successful and failed attempts. Invalid (bit 4) indicates
that the mode terminated from an invalid state. Termination from valid states are reported as
successful with NegOK.

A 4-bit code is displayed in the lower portion of the NSR to indicate the results of successful
negotiation. This 4-bit code also indicates the mode that the interface was in when an invalid
termination was detected, as well as a failed negotiation. Interrupts indicating a successful
negotiation into a reverse mode should prompt the CPU to load reverse data into the FIFO.

Special Command Register

The bits in the SCR cause actions on the parallel port. SetPs and ClrPs (bits 3:2) control data
movement into the CD1284 from the remote master. In Compatibility mode this function posts
error status to the remote. Errors can only be presented to the master by the slave during the active
BUSY period. SetPs causes the CD1284 to stop transfers by asynchronously asserting the BUSY
signal. To protect against the possibility of data loss, one more byte can be strobed into the CD1284
after BUSY goes active due to the setting of SetPs. When the error status is delivered, ClrPs
restores the parallel interface to the normal running state.

EPIrq sends an interrupt pulse in EPP mode. Setting the RevRq bit indicates to the host parallel
port that data is available for reverse transfer in either Compatible or ECP mode. These operations
are further described in the relevant protocol sections.

5.12.10 Data Transfers

In Compatibility mode, incoming HstClk (STROBE*) pulses activate PerBsy (BUSY), and the
data on the PD lines is held in latches. PerBsy protects the data latches by signaling the master it is
not ready for more transfers. After the HstClk pulse ends, a pulse is sent on PerClk (ACK*) to
acknowledge the receipt of the data into the holding latches. After the data moves from the latches
to the FIFO, PerBsy goes low to signal readiness for the next character.

All other data transfer modes require IEEE-1284 negotiations.

5.12.11 Compatible Mode Status

The IEEE 1284 specification requires that the three Compatibility mode status lines (SELECT,
FAULT*, and PError) must not be asserted unless PerBsy (BUSY) is high. PerBsy can only be
activated in response to a received character, and must remain high until the status condition (for
example, paper out) changes.

To send these status signals to the master device, set the SetPs bit (SCR[2]) and the appropriate bit
in the OVR for each of the status signals. The SetPs bit activates PerBsy, which remains active
until ClrPs (SCR[3]) is set. No data is lost in this operation.
 Datasheet 81

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.13 1284 Parallel Protocol Support

5.13.1 Compatibility Mode

Compatibility mode provides backward compatibility with Centronics and PC-compatible printer
interfaces. When the host parallel port is in Compatibility mode (with no data transfer in progress),
the host can initiate data transfers in Compatibility mode or initiate negotiations to a new operating
mode.

Only Busy-while-Strobe and Ack-in-Busy timing is supported in Compatibility mode. Busy-after-
Strobe, Ack-after-Busy, and Ack-while-Busy timings are not supported.

5.13.2 Reverse-Nibble and Reverse-Byte Modes

These modes support reverse transfers only, from slave to master. Reverse-Nibble mode is enabled
with NER[0]; Reverse-Byte mode is enabled with NER[1]. Reverse-Nibble mode sends 4 bits at a
time over four of the peripheral status lines. With software drivers the advantage of this scheme is
that any unidirectional PC parallel port can be used for bidirectional data transfers. Reverse-Byte
mode requires bidirectional buffers on the PC hardware, but allows substantially faster transfers
because it moves one byte at a time.

There is no mechanism in Compatibility mode for the slave to indicate that data is available for
reverse transfers. The master must poll the slave by negotiating into a reverse mode and examining
the nDatAv signal. During negotiation, RevRq (SCR[0]) instructs the CD1284 to post the
availability of data to the master through the nDatAv signal.

5.13.3 ID Request

An ID request is enabled with a combination of NER[6] and one of four other transfer mode bits.
ID requests can be made in conjunction with ECP, ECP/RLE, Reverse-Byte, and Reverse-Nibble
modes; there is no ID request function defined for EPP mode. The CD1284 can accept an ID
request in any mode where it is enabled to do transfers. IDReq is set when an ID request is received
in any enabled mode.

5.13.4 ECP Mode

ECP mode allows bidirectional transfers and supports the RLE-compression scheme. The ability to
expand RLE data is required of all IEEE-1284, ECP-compliant devices, but the ability to compress
data is optional. The CD1284 handles both expansion and compression in the data path section.
The parallel port simply passes the inverse of the command signal to/from the FIFO on the ninth
tag bit in the FIFO. ECP mode is enabled by NER[2]. RLE mode enabling requires both NER bits
2 and 3.

nStrobe

nAck

BUSY
82 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The handshake is identical for both ECP and RLE modes. The control signals, HstBsy and PerBsy
(in the forward and reverse directions, respectively), indicate command and address options. If
HstBsy/PerBsy is low, the upper bit of the byte is examined: ‘0’ indicates to interpret the lower 7
bits as an address; ‘1’ indicates to use the lower 7 bits as an RLE repeat count. This count shows
the number of times to consecutively repeat that the next data character in the datastream.

The master device is responsible for determining the direction of the transfer. The slave can request
a direction change, but the master actually changes the direction. ECP mode always begins in the
forward direction, from master to slave. The CPU sets the RevRq bit (SCR[0]) to request reverse
transfers. Once the master changes direction, RevRq is automatically cleared and the DirCh
interrupt status appears in PCISR (if enabled in the PCIER).

The master device switches the direction of the interface for forward transfers when the slave
indicates no more data is available.

5.13.5 EPP Mode

Data transfers use the DMA pipeline and the FIFO. Address transfers are handled out-of-band, not
in the FIFO stream. When the slave receives an address write command, it deposits the address into
the EAR and asserts an EPPAW interrupt request. When the slave receives a read address
command, the contents of the EAR are returned.

5.14 Protocol Timing

The IEEE-1284 specification timing parameter TP specifies the minimum pulse width and the
minimum setup time as 500 ns. The SPR must be loaded with the number of system clock ticks
equivalent to 500 ns.

5.15 General-Purpose I/O Port

The CD1284 provides an 8-bit general-purpose port (GP[7:0]) to control or give status of external
functions. Each of the eight signals is individually programmable for direction, so the port can be
comprised of any number of inputs and outputs. Each port signal is implemented with a standard,
bidirectional HCMOS pad and is fully TTL compatible. The port is controlled by two internal
registers – GPDIR and GPIO.

Each bit in the GPDIR sets the direction of the corresponding bit in the GPIO; ‘1’ sets the signal as
output; ‘0’ sets it as input. When writing to the GPIO, only the bits programmed as outputs are
affected by the contents of the data bus. When reading the GPIO, bits programmed as inputs reflect
the true state of the condition of the external pin; bits programmed as outputs reflect the state of the
last value written to the register and the current state of the output pins.

Table 21. System Clock Settings

CLK Freq.
(MHz)

Time/Tick
(ns) SPR Value TP Width

16 62.5 8 500

20 50 10 500

25 40 13 520
 Datasheet 83

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
At reset, all bits in the GPIO are cleared and the signals are programmed as inputs.

Note: Interrupts are not generated on signal changes within the General-Purpose I/O port; the CPU must
periodically poll GPIO to detect changes in external conditions. Therefore, if it is necessary to
detect changes, use the port with signals that change with low-duty cycles.

5.16 Parallel Port Interface

The CD1284 parallel port signals are implemented with Level 2 characteristics – as defined in the
IEEE STD 1284 specification with the exception of transient protection. The port can be directly
connected to the interface cable with the addition of a few external components. The components
consist of passive pull-up resistors, series-impedance-matching resistors, and clipping diodes.
Additional noise-filtering may be required in an end system. Figure 13 on page 85 shows a typical
interface with the components listed above.

Some system designs may require buffers between the CD1284 and the cable. Systems that require
drive cables longer than the specified maximum of 10 m or those that need to protect the CD1284
require inexpensive buffers between it and the cable. The device provides two signal outputs,
PDBEN and EBDIR, that can to connect and control buffers (such as, 74AS245 or equivalent).
These signals do not allow direct control of the buffer. However, the addition of an XNOR gate
provides both an enable control signal and a signal to select the direction of the buffer. PDBEN and
EBDIR are outputs from the control state machine that indicate its current state (see Figure 14 on
page 86).
84 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 13. Cable Connection

+5 V

1.2 kΩ

20 Ω

20 Ω

CD1284

BIDIRECTIONAL
SIGNAL LINE

OUTPUT
SIGNAL LINE

INPUT
SIGNAL LINE

B
ID

IR
E

C
T

IO
N

A
L

S
IG

N
A

L
 L

IN
E

TRANSIENT
PROTECTION

Caution: Transient protection is not implemented inside the CD1284 device, therefore transient voltages may cause
damage. Laboratory testing has shown that this type of protection is not necessary under normal conditions.
However, damage may occur under harsh conditions or when subjected to unusual abuse. Also note, the protection
circuit shown here may cause a powered-up host to supply power to the +5 V (Vcc) of the peripheral if it is not
powered up. If this is a concern, then another protection circuit must be designed.

1.2 kΩ
 Datasheet 85

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
5.17 Hardware Configurations

The simplicity of the CPU interface to the CD1284 allows the device to be designed into systems
that employ popular microprocessors such as the Intel 80x86 family (8086, 80286, 80386, and so
on), the Motorola family (68000, 68010, 68020, and so on), the National Semiconductor 32x32
family (32CG16, 32332, 32532, 32GX32, and so on), and the AMD 29000.

5.17.1 Interfacing to an Intel Microprocessor-Based System

With very little extra logic, the CD1284 can interface to any system based on a processor in the
Intel 80x86 family. Figure 15 shows a generalized view of an I/O-mapped interface with an 80286-
based system. To provide the proper strobes and controls, the IOR* and IOW* control strobes
synthesize the DS* and R/W* signals. DTACK* is used as an input to wait-state-generation logic
that holds the processor (if necessary) until the CD1284 has completed the I/O request.

5.17.2 Interfacing to a Motorola Microprocessor-Based System

Interfacing to a 68000 family device is relatively simple. Bus timing and the interface signal
definitions closely match those of the 68000 microprocessor, which allows a direct connection in
most cases. With later versions (68020, 68030), some additional logic is required to generate the
DSACK0* and DSACK1* functions that replace the DTACK* on earlier devices. The example in
Figure 16 on page 88 shows a generalized interface to a 68020 device.

5.17.3 Interfacing to a National Semiconductor
Microprocessor-Based System

The connections between the CD1284 and an NS32000 (32GX320, 32CG16, and so on) embedded
controller are also relatively simple. As with the Intel devices, cycles are controlled by the DS*,
CS*, and R/W* signals synthesized from the available I/O-control signals. I/O-cycle extensions
(wait states) are generated by logic connected to the DTACK* signal. All necessary controls are
available to prevent multiple read/write cycles in the CD1284 FIFOs when using memory-mapped
I/O.

Figure 14. External Buffer Control

G

DIR

B A TO CABLETO CD1284

PDBEN

EBDIR

74
A

S
24

5

Impedance matching and protection circuitry
(see Figure 13) as required for the 74AS245.
86 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 17 on page 89 depicts a simplified interface example.

Figure 15. Intel 80x86 Family Interface

80x86
CD1284SYSTEM

CS*

SVCACKR*

SVCACKT*

SVCACKM*

A[6:0]

DB[15:0]

ADDRESS

DATA

IOR*

IOW*
DS*

R/W*

SVCREQR*

SVCREQT*

SVCREQM*

A[23:7]

A[6:0]

READY DTACK*

SVCREQP*

SVCACKP*

ADDRESS
DECODE

LOGIC

WAIT-STATE
GENERATION

LOGIC

IRQ
INPUTS

DMAREQ*

DMAACK*

DMA
CONTROL
 Datasheet 87

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 16. Motorola 68020 Interface

68020
CD1284SYSTEM

CS*

SVCACKR*

SVCACKT*

SVCACKM*

A[6:0]

DB[15:0]

ADDRESS

DATA

DS*

R/W*

DS*

R/W*

SVCREQR*

SVCREQT*

SVCREQM*
IPL[2:0]

A[31:9]

A[8:2]

DSACK1*
DTACK*

FC[2:0]

AS*

DSACK0*

SVCREQP*

SVCACKP*

ADDRESS
DECODE

LOGIC

PRIORITY
ENCODING

TRANSFER
CONTROL

DMAREQ*

DMAACK*

DMA
CONTROL
88 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 17. National Semiconductor 32000 Interface

32000
CD1284SYSTEM

CS*

SVCACKR*

SVCACKT*

SVCACKM*

A[6:0]

DB[15:0]

DS*

R/W*

SVCREQR*

SVCREQT*

SVCREQM*

DTACK*

D[15:0]

IOINH*

IODEC*

BW0

BW1

A[31:0]

DDIN*

CONF*

BMT*

BCLK

RDY*

INTERRUPT
INPUTS

SVCACKP*

SVCREQP*

DATA
TRANSCEIVER

LATCH

ADDRESS
DECODE AND
BUS CYCLE
CONTROL

DMAREQ*

DMAACK*

DMA
CONTROL
 Datasheet 89

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
6.0 Programming

6.1 Overview

As shown in the register summary tables in Chapter 4.0, the CD1284 local CPU interface is made
up of a large array of registers. These registers control all aspects of device behavior; some affect
overall chip operations, and others affect only one channel. Fortunately, most of the registers are
only modified once, during initialization, and rarely modified during normal operation. The
purpose of this chapter is to discuss these aspects, as well as the methods of interacting with the
CD1284 for channel-service needs.

6.2 Initialization

To properly power-up a CD1284, several procedures must be completed. These include device
initialization, programming global functions, and setting channel-specific parameters. In most
cases, initialization routines are executed once; during the overall system boot-up. The following
sections discuss these steps in detail (see Figure 18 on page 92 for a flow-chart step outline).

6.2.1 Device Reset

The procedures that perform chip reset are normally executed after a power-up, system-wide reset.
The hardware reset control signal, RESET* causes the CD1284 to perform its own internal
initialization. If desired, the driver software can issue a full chip reset before chip initialization
begins. To accomplish this, use the following steps (see Figure 18 for a flow-chart step outline):

1. Wait for CCR (Channel Command register) to contain 0x00.

The contents of the CCR must be ‘0’ before a command is issued. This is required to ensure
that any currently executing command has completed before the new one is started. Since this
is probably the first command being written to the CD1284 after power-on initialization, the
CCR is likely to be ‘0’, but it is recommended to always check the CCR before writing in a
new command.

2. Set the CAR (Channel Access register) to one of the two serial channels (2 or 3).

This step is required when the parallel channel does not respond to any value written to the
CCR address (this register does not exist in the parallel channel).

3. Write hexadecimal 81 (x’81) to the Channel Command Register (CCR).

This command causes the CD1284 to perform an all-channel and global reset. It causes the
internal RISC processor to begin execution from its power-up reset location. The results are
the same as if the RESET* input is activated. All internal interface registers are cleared, the
FIFOs are flushed, and all channels are disabled.

The full-chip reset command is a special-case CCR operation. Normally, the commands issued
to the CCR affect only the channel selected by the CAR. In this case, the setting of the CAR is
insignificant, but must be set to channel 2 or 3. Unlike other commands issued to the CCR, the
global reset command does not use the clearing of the CCR. Instead, the GFRCR indicates that
the command is complete (see below).

4. Wait for the firmware revision code to be written into the GFRCR.
90 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Internal firmware uses this operation to flag completion of the reset procedure. After the reset
is issued, the GFRCR is one of the first registers cleared and it is the last one set before normal
runtime code execution begins. The initialization routine must wait for this register to become
non-zero before it begins any other programming of CD1284 registers. If the CPU is
sufficiently fast, it could begin testing the GFRCR before the MPU clears it. The assumption
could be made that the CD1284 has completed internal initialization when, in fact, it has not
even started. To avoid this error, the CPU should look for the GFRCR to change to ‘0.’ It
should then look to the current revision code. Alternatively, the CPU can clear the GFRCR just
prior to issuing the global reset command and then poll for the correct revision code. This is
useful in slow systems that cannot guarantee that the CPU can check the register after it is
cleared or before it is loaded with the revision code.

This procedure is also used as part of a diagnostic test suite. The device completes internal
initialization within 500 µsec. A timer (software or hardware) detects when the operation is not
completed within that time and cues if the device is functional.
 Datasheet 91

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 18. Flow Diagram of CD1284 Master Initialization Sequence

GFRCR

ISSUE RESET

N

Y

GFRCR N

Y

CONTINUE

* REVISION CODE FOR

REVISION E DEVICE = 25

FUTURE REVISIONS, IF

CCR N

Y

THIS BY ONE; FOR EXAMPLE,
REVISION F WOULD BE 26.

NECESSARY, INCREMENT

COMMAND

CLEAR
GFRCR

INIT PROCESS

= 0
?

= 25*
?

= 0
?

92 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
6.2.2 Global Function Initialization

Once chip reset has been completed, the next step is to set the Global Operating mode and timer
prescale. All other initialization occurs at the channel level.

Set the Prescaler Period Register (PPR)

The PPR sets the master time ‘tick’ for the CD1284. It is a binary value that sets a constant by
which the system clock is divided (after a fixed prescale of 512) to produce the internal clock for
the on-chip timers (This does not include baud rate generators). This clock is used for receiver
FIFO time-out generation and delay timing for the insert delay command in the embedded transmit
command set. For example, to generate a timer clock of 1 ms, the value is computed as:

The value 49 is loaded into the PPR. This value, selects an approximate 1-kHz clock as the source
for the RTPR (Receiver Time-out Period registers) of each channel. Those registers are loaded with
an appropriate value divisor that generate the desired character time-out periods. This value, 49, is
the recommended minimum value that is placed in the PPR for a clock frequency of 25 MHz.
Values that generate a time period of less than 1 ms adversely affect the performance of the MPU,
and thus, overall serial data performance.

6.2.3 Serial Channel Initialization

At this point, the basic operation of the CD1284 serial channels are set up. The internal register
states are cleared and basic timer operations are initialized. The next step is programming the
operating modes of each channel. This includes setting the values for the interrupt vectors, the
receive and transmit baud rates, number of bits per character, number of stop bits, parity, special
characters, if any, and so on. Each channel can have a completely unique set of operating
characteristics or they can all be the same.

Serial channel initialization is application-dependent. The operating modes of one channel have no
effect on the operation of others.

The following code, is a typical initialization sequence for setting up a single serial channel:

9600 baud, send and receive
8 bits per character, 1 stop bit,No parity
Automatic In-Band (Xon/Xoff) flow control
Transparent flow control
Special character detect enabled
Eight character receive FIFO threshold
Receiver and transmitter enabled for interrupt operation
Enable ISTRIP on incoming characters

A clear way of showing this initialization sequence is by a ‘C’ program fragment; the code shown
below, is compatible with Borland Turbo C :

/* Init channel. Channel number is included in call. Register names and addresses
are defined in the header file (not shown). This routine does not include parallel
channel initialization. */
init_channel(chan)
char chan
{

25MHz
512

 1ms× 48.828=
 Datasheet 93

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
outportb(CAR, chan); /* set channel number in CAR */
outportb(RTPR, 0x14); /* set channel time-out value (20ms) */
outportb(TCOR, 0x01); /* constants for 25 MHz clock – clock option*/
outportb(TBPR, 0x51); /* – baud rate period */
outportb(RCOR, 0x01); /* constants for 25 MHz clock – clock option*/
outportb(RBPR, 0x51); /* – baud rate period */
outportb(COR1, 0x03); /* no parity, 1 stop bit, 8 bit chars */
outportb(COR2, 0x40); /* auto. in-band flow control */
outportb(COR3, 0x38); /* transp. flow-control, special char 1 & 2 detect,

fifo thresh = 8 */
while (inportb(CCR) != 0)/* make sure that CCR is zero before issuing

commands */
;

outportb(CCR, 0x4E); /* issue COR changed command for COR1, 2, 3 */
outportb(COR5, 0x80); /* enable ISTRIP */
outportb(SRER, 0x14); /* enable receive and transmit interrupts */
while (inportb(CCR) != 0)/* make sure that CCR is zero before issuing

commands */
;

outportb(CCR, 0x1A); /* issue receiver and transmitter enable command to
CCR */
}

6.3 Serial Poll Mode Examples

The CD1284 provides a set of seven registers dedicated to Poll-mode operation, described in
Chapter 5.0. This section shows one of many ways that these registers are used to detect and
service requests from any of the channels receiver, transmitter, or modem signal change functions.

The primary registers involved in polling are: SVRR, RIR, TIR, MIR, and CAR. The
supplementary registers are: RIVR, TIVR, and MIVR. Of the latter three registers, only RIVR is
actually used. RIVR provides the service request status for ‘good’ data or exception data. The
TIVR and MIVR provide redundant information and are rarely used. Other registers related to
service requests (TDR, RDSR, MISR, and so on) perform the same functions as in hardware-
acknowledged service requests. The parallel channel uses a slightly different register manipulation
procedure and is shown separately. The top-level polling routine is the same regardless of the type
of request serviced.

Once again, C code fragments describe the functions. As with other coding examples, it is assumed
that register addresses are defined elsewhere, such as in a header file. The routines cannot be
considered complete. The routines cannot be considered complete; some pieces are dependent on
the system software design and the code presented is only an example. The pieces do, however,
show methods used to implement the poll mode service request/service acknowledge sequence.

6.3.1 Polling Routine Examples

6.3.1.1 Scanning Loop

/* Poll-mode code fragments routinely check for any servicing requests and branches
to the appropriate service routine. The code prioritizes service requests as receive,
transmit, modem and parallel, in that order. System design dictates the actual
priorities required. Note that the routine ignores the state of the DMA active bit.
*/
poll()
{

char status;
char rx_stat = tx_stat = md_stat = 0, par_stat = 0;

if (status = inportb(SVRR) & 0x0F) {/* Mask off DMA status */
94 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
switch (status) {
case 1: /* all values that include a receive

request */
case 3:
case 5:
case 7:
case 0xF:

rx_stat = service_rec();
return(rx_stat);
break;

case 2: /* all values that include transmit but
not receive */

case 6:
case 0xA:
case 0xE:

tx_stat = service_txm();
return(tx_stat);
break;

case 4: /* modem service request */
case 0xC:

md_stat = service_mdm();
return(md_stat);
break;

case: 8: /* parallel port service request */
par_stat = service_par();
return(par_stat);
break;

default: /* can’t happen */
break;

}
}

}

Once the code above locates an active request posted in the SVRR, it calls the appropriate
subroutine to service the request. The service routines follow.

6.3.1.2 Serial Receive Service

/* The receive service acknowledge cycle begins by reading the RIR. This register
contains the necessary information to switch the CD1284 into the correct service
acknowledge context. The RIR is saved for use at the end of the routine and then
copied into the CAR. The act of copying the RIR into the CAR forces the context
switch. The channel number requesting service is extracted from the RIR. The RIVR
register indicates whether the request is for good data or exception data and is
used to correctly handle the request. At the end of the service, the upper two bits
in the RIR are cleared causing the switch out of the service acknowledge context. */

service_rec()
{

char serv_type, save_rir, save_car, channel, status, char;
int char_count, i;

save_rir = inportb(RIR); /* retrieve and save receive interrupt
value */

channel = save_rir & 0x03; /* extract channel number from the RIR*/
save_car = inportb(CAR); /* save CAR for restore */
outportb(CAR, save_rir); /* switch CD1284 to service ack. context

*/
serv_type = inportb(RIVR) & 0x07; /* read vector register; get type (good/

exception)*/
switch (serv_type) {

case 3: /* good data service */
char_count = inportb(RDCR); /* get number of

characters in FIFO */
for (i = 1; i <= char_count; i++) {/* - read that number of

chars */
char = inportb(RDSR); /* read char from FIFO */
 Datasheet 95

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
/* Code here would put the character in a buffer of some sort for
each

 * channel. That code would be dependent on system software design
 * so it won’t be shown here. */

}
outportb(RIR, save_rir & 0x3f);/* terminate service ack.

sequence */
outportb(CAR, save_car); /* restore original CAR* /
return(0);
break;

case 7: /* exception data service request */
status = inportb(RDSR);/* by definition, only one char; get

status */
outportb(RIR, save_rir & 0x3f);/* terminate service ack.

sequence */
outportb(CAR, save_car); /* restore original CAR */
return(status); /* just return the error type */
break;

}
}

6.3.1.3 Serial Transmit Service

/* The transmit service acknowledge routine follows very nearly the same steps that
the receive service routine follows. This time, the TIR is used to force the switch
to a transmit service for the requesting channel. */

service_txm()
{

char save_tir, save_car, channel;
int char_count, i;

save_tir = inportb(TIR); /* retrieve and save transmit interrupt
value */

channel = save_tir & 0x03; /* extract channel number from the TIR*/
save_car = inportb(CAR); /* save CAR for restore */
outportb(CAR, save_tir); /* switch CD1284 to service ack. context

*/

/* Buffer management code would set-up pointers to the next 12
 * characters (maximum) to be sent on this channel. Again, buffer
 * layout is system design dependent and won’t be shown here.
*/

for (i = 0; i < char_count; i++) {/* transmit FIFO can take 12 characters
*/

outportb(TDR, *next_char++);

/* it is assumed that char_count and next_char is set up by buffer code
*/

}

outportb(TIR, save_tir & 0x3f);/* terminate service ack. sequence */
outportb(CAR, save_car); /* restore original CAR */
return(0);

}

6.3.1.4 Modem Service

/* Code to handle modem signal change service request can be simple or complex
depending on whether port control is handled directly in the service routine or
simply noted with status returned. The following routine services the request and
returns the status of which signals changed with the channel number OR’ed into the
96 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
least-significant two bits; the main driver software must perform the necessary
functions. As with the receive and transmit routines, the Interrupt register, this
time the MIR, is used to force the CD1284 into the service context. */

service_mdm()
{

char save_mir, channel, save_car, mdm_status;

save_mir = inportb(MIR); /* retrieve and save modem interrupt value
*/

channel = save_mir & 0x03; /* extract channel number from the MIR*/
save_car = inportb(CAR); /* save CAR for restore */
outportb(CAR, save_mir); /* switch CD1284 to service ack. context

*/
mdm_status = inportb(MISR); /* get status of which modem signals

changed */
outportb(MIR, save_mir & 0x3f) /* terminate the service ack. sequence */
outportb(CAR, save_car); /* restore CAR */
return(mdm_status | channel);

}

6.4 Hardware-Activated Service Examples

In nearly all respects, the way that the CPU interacts with the CD1284 during hardware-activated
service acknowledge is the same as software-activated methods. The main difference is that the
SVCACK* input signals perform the context switch automatically, relieving that duty from the
CPU. The result is the same: the CAR is set to point to the correct channel and the device is placed
in the proper internal mode to service the request.

When the SVCACK* input is activated, a read cycle is performed. The CD1284 places the contents
of the appropriate Interrupt Vector register (RIVR, TIVR, MIVR) of the channel requesting service
on the data bus. The CPU uses the information provided to determine the type of service and the ID
number of the device being accessed in the case of daisy-chained multiple CD1284s.

At the end of the service routine, the CPU writes a dummy value to the EOSRR. This causes the
switch out of the service acknowledge context and restores the environment to what it was before
the service began. Again, the parallel port service is slightly different and it is shown separately.

The following code fragments show the differences between this type of service acknowledge and
the types shown above for the software-activated context switch. Only the beginning and ending
steps are shown; the code between is very similar to the previous examples. These routines can be
executed as the result of a hardware interrupt or by software polling as in the previous examples.
For the purpose of this discussion, the method of arriving at the proper service routine is not
important.

6.4.1 Serial Receive Service

/* The receive service acknowledge cycle begins by executing a service acknowledge
cycle, which activates the SVCACKR* input. The data obtained as a result of this
‘read’ cycle is the contents of the RIVR register of the channel making the service
request. The service routine decodes the vector in the least significant three bits
to determine if the data is ‘good’ or ‘bad’ (exception). The context switch is done
automatically when the SVCACKR* signal is activated and the CAR does not need to be
loaded. The routine reads the RICR to determine the requesting channel number. If
this is a multiple–CD1284 system using daisy-chaining, the routine extracts the chip
ID from the upper five bits of the RIVR. */

service_rec()
{

 Datasheet 97

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
char serv_type, vector, channel, status, char;
int char_count, i;

vector = inportb(SVCACKR); /* gen. ack and get vector (read LIVR) */
channel = inportb(RICR) >> 2; /* extract channel number from the RICR*/
serv_type = vector & 0x07; /* mask RIVR to get type (good/

exception)*/
switch (serv_type) {

case 3: /* good data service */
char_count = inportb(RDCR); /* get number of characters in FIFO

*/
for (i = 1; i <= char_count; i++) {/* - read that number of

chars */
char = inportb(RDSR); /* read char from FIFO */

/* Code here would put the character in a buffer of some sort for
each

 * channel. That code would be dependent on system software design
 * so it won’t be shown here; this code just shows how to

manipulate the
 * CD1284 registers to implement the poll mode service

acknowledge. */

}
break;

case 7: /* exception data service request */
status = inportb(RDSR);/* by definition, only one char; get

status */
break;

}
outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate

*/
}

6.4.2 Serial Transmit Service

/* The transmit service acknowledge routine follows very nearly the same steps that
the receive service routine follows. The SVCACKT* input is activated to start the
service cycle, reading the contents of the TIVR, and the TICR is read to get the
channel number. */

service_txm()
{

char vector, channel;
int char_count, i;

vector = inportb(SVCACKT); /* retrieve and save transmit interrupt
value */

channel = inportb(TICR) >> 2; /* extract channel number from the RICR*/

/* Buffer management code would set-up pointers to the next 12
 * characters (maximum) to be sent on this channel. Again, buffer
 * layout is system design dependent and won’t be shown here.
*/

for (i = 0; i < char_count; i++) {/* transmit FIFO can take 12 characters
*/

outportb(TDR, *next_char++);

/* it is assumed that char_count and next_char is set up by buffer code
*/

}
outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate

*/
}

98 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
6.4.3 Modem Service

/* The following routine services the modem change service request. Context switch
is set up by activating the SVCACKM* input, reading the MIVR. The routine reads the
MISR register to determine which modem signal(s) changed. Channel status is an
externally defined variable that this routine updates. */

service_mdm()
{

char vector, channel;

vector = inportb(SVCACKM); /* retrieve and save transmit interrupt
value */

channel = inportb(MICR) >> 2; /* extract channel number from the RICR*/
mdm_status[channel] = inportb(MISR);/* get status of which modem signals

changed */
outportb(EOSRR, 0x00); /* write dummy value to EOSRR to terminate

*/
}

6.5 Parallel Channel Service Routines

In most respects, the parallel channel functions in the same way as the two serial channels, but the
Poll mode operation is different. Its functions can be performed in a couple of ways. The MPU is
only involved with the parallel channel in performing interrupt generation services. All other
channel operations are completely separate. Since the MPU is involved in the interrupt structure,
aspects of its behavior must be taken into account.
 Datasheet 99

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
6.5.1 Software-Activated Service Examples (Poll)

The scanning loop for Poll-mode operation is shown in Section 6.3. Software activation of the
context switch is performed in the same manner, but termination of the service is done in two ways.
The first method is similar to the serial channel method and the second method can work well in
certain systems, but requires extra steps.

The first method follows the same basic procedure as the serial channels, but the termination
sequence requires only that the upper bit (PPIreq) of the PIR is cleared by the CPU. Since Fair
Share is not implemented on the parallel channel, there is no ‘unfair’ bit in the PIR; the ‘busy’
status is maintained by the MPU differently and is not maintained in the PIR.

Figure 19. Polling Flow Chart

HARDWARE RESET

TEST
SVRR

SERVICE NEGOTIATION
CHANGE

SET

SOFTWARE RESET

INITIALIZE DEVICE

TEST
PIR

TEST
PFSR

SERVICE DMA REQUEST

DMAREQ

POLL DEVICE AGAIN

SERVICE

CHANGE

SERVICE

CHANGE DIRECTION

RETURN ID TO HOST

RESET PRINTER

TEST
PCISR

TEST
NSR

TEST
SSR

TEST
PFSR

TEST
HRSR

= 00H

SRP SET

= 00H

Pipeline SET

PPort SET

DirCh

IDReq

nInit NegCh SET

FIFO

DataErr

SIGNAL

INTERRUPT

SERVICE
ERROR

INTERRUPT

SERVICE

HOLDING
APPROPRIATE

REGISTER

OR
FF FULL (receiving)

EMPTY (transmiting)

OR
HR DATA

HR TAG

POLL DEVICE AGAIN

SigCh

NOTE: It may not be necessary to poll the PFSR if
DMA requests are enabled. With DMA
requests enabled, the DMAREQ bit
(SVRR[7]) can be polled to determine
when a FIFO threshold is exceeded. If
DMA requests are disabled, the PFSR
must be polled to determine when to move
data to and from the FIFO. If DMA requests
are enabled, data must be read through the
DMABUF register; this requires a 16-bit
data bus.
100 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
The routine below shows one way of implementing the poll-mode service activation using the first
method.
service_par()
{

char save_pir, save_car, livr_val;

save_pir = inportb(PIR); /* retrieve and save parallel interrupt
value */

save_car = inportb(CAR); /* save CAR for restore */
outportb(CAR, save_pir); /* switch CD1284 to service ack. context

*/
livr_val = inportb(LIVR) & 0x07;
switch (livr_val) {

case 4: /* just the parallel channel state-machine
request is active */

service_par_chan();
break;

case 5: /* just the data path pipeline request is
active */

service_pipeline();
break;

case 6: /* both requests are active */
service_par_chan();
service_pipeline();
break;

default:
break;

}
outportb(PIR, save_pir & 0x00); /* terminate service ack. sequence by

clearing bit 7 */
outportb(CAR, save_car); /* restore original CAR*/
return(0);

}

It is not necessary for the CPU on the parallel channel to actually copy the contents of the PIR into
the CAR. Since it is known that the parallel channel is always channel 0, the CPU may switch the
context by simply writing a x’00 into the CAR after first saving the previous state of the CAR, if
desired. At the end of the service, the interrupt context can be returned by toggling the IntEn bit in
the PFCR within the data pipeline. Hardware in that block of logic detects the toggle operation and
clears the PPireq bit itself. The CPU can restore the CAR, if desired, and exit the routine. Just as it
would in the other poll-mode case, once the MPU has detected the clearing of the parallel interrupt
source bits (PPort and Pipeline) and the PPIreq bit. It cleans up the PIR and LIVR.

service_par()
{

char save_car, livr_val;

save_car = inportb(CAR); /* save CAR for restore (if desired) */
outportb(CAR, 0x00); /* switch CD1284 to service ack. context

*/
livr_val = inportb(LIVR) & 0x07; /* get the vector (Not from the PIVR) */
switch (livr_val) {

case 4: /* just the parallel channel state-machine
request is active */

service_par_chan();
break;

case 5: /* just the data path pipeline request is
active */

service_pipeline();
break;

case 6: /* both requests are active */
service_par_chan();
service_pipeline();
break;

default:
 Datasheet 101

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
break;
}
outportb(PFCR, inportb(PFCR & 0xEF);/* clear IntEn (first step of ‘toggle’

operation */
outportb(PFCR, inportb(PFCR | 0x10);/* set IntEn (second step of ‘toggle’

operation */
outportb(CAR, save_car); /* restore original CAR (if desired) */
return(0);

}

6.5.2 Hardware-Activated Service Examples

Hardware-activated context switching is nearly identical to the serial case; during the service
acknowledge cycle, the SVCACKP* input is active and the CD1284 drives the parallel channel
vector on the data bus. At the same time, the MPU pushes the current state of the device on the
context stack and sets the context for channel 0. The vector comes from the PIVR, which is a
reflection of the LIVR. The vector supplied indicates the source of the request in the IT2-IT0 bits.
There is no equivalent to the Interrupting Channel register (TICR, RICR, MICR) since, by
definition, the interrupt is from channel 0. Once the context switch occurs, the CPU can proceed to
service the source of the request.

The CPU must decode the ITx bits to determine the blocks that require service. Each section of the
parallel channel has an Interrupt Status register to indicate what conditions, if any, in that block
require service. These are the PFSR in the data path and the PCISR in the channel control state
machine.

At the end of the service routine, the CPU must perform the same dummy write operation to the
EOSRR as for the serial channels. This informs the device that the parallel service is complete.
The write operation to the EOSRR generates a high-priority interrupt to the MPU to cause it to pop
the context stack and restores the device environment to what it was at the start of the interrupt
service.

6.6 Baud Rate Derivation

/* This is a simple code example which shows a way to derive the proper values for
the RCOR/TCOR and RBPR/TBPR register pairs for any baud rate. Routine is called with
the desired baud rate and master clock; global variables cor and bpr are set by the
routine. */

int brp, cor;

compute_baud(clock, baud_rate)
double clock;
double baud_rate;
{

double cor_values[] = {8.0, 32.0, 128.0, 512.0, 2048.0, -1.0};
int i;

for (i = 0; cor_values[i] != -1; i++)
{

brp = (int) (((clock / baud_rate) / cor_values[i]) + 0.5);
if (brp < 0xFF)

{
cor = i;
bpr = brp;
break;

}
}

102 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
return(0);
}

6.7 Baud Rate Tables

Table 22 through Table 26 indicate the values to be loaded into the RCOR/RBPR and TCOR/TBPR
to set the designated baud rate when using five standard frequency crystals. Table 22 uses a 25-
MHz frequency; Table 23 uses a 20.2752-MHz frequency, which yields near-perfect bit rates. Table
24 uses a 20-MHz frequency and shows error rates that are larger although still well within the
limits set by the various standards covering asynchronous communications. Table 25 also uses
another standard communications base frequency (18.432 MHz) that yields divisors with nearly
zero errors overall. However, since this frequency is below 20 MHz, performance at the higher
baud rates (76.8K and above) may be slightly lower and rates above 76.8K are not recommended.
Table 26 shows divisors for the lowest recommended operating frequency, 16 MHz.

Note: It is not necessary that both the receiver and transmitter of a channel be programmed to the same
baud rate; the CD1284 can send and receive at different rates on the same channel.

Table 22. Baud Rate Constants — CLK = 25 MHz

Baud Rate R/TCOR1 R/TBPR (Hex) Error

110 4 6F 0.02%

150 4 51 0.47%

300 3 A3 0.15%

600 3 51 0.47%

1200 2 A3 0.15%

2400 2 51 0.47%

4800 1 A3 0.15%

9600 1 51 0.47%

19200 0 A3 0.15%

38400 0 51 0.47%

56000 0 38 0.35%

57600 0 36 0.47%

64000 0 31 0.35%

76800 0 29 0.76%

115200 0 1B 0.47%

128000 0 18 1.70%

150000 0 15 0.80%

NOTE:
1. In this and the following tables, R/T is used as a register abbreviation indicating Receive/

Transmit, followed by the register acronym.
 Datasheet 103

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Table 23. Baud Rate Constants — CLK = 20.2752 MHz

Baud Rate RCOR/TCOR RBPR/TBPR (Hex) Error

110 4 5A 0.00%

150 4 42 0.00%

300 3 84 0.00%

600 3 42 0.00%

1200 2 84 0.00%

2400 2 42 0.00%

4800 1 84 0.00%

9600 1 42 0.00%

19200 0 84 0.00%

38400 0 42 0.00%

56000 0 2D 0.57%

57600 0 2C 0.00%

64000 0 28 1.00%

76800 0 21 0.00%

115200 0 16
0.00%

(Not recommended at this CLK)

128000 0 14
1.01%

(Not recommended at this CLK)

150000 0 11
0.62%

(Not recommended at this CLK)

Table 24. Baud Rate Constants — CLK = 20.00 MHz (Sheet 1 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error

110 4 59 0.25%

150 4 41 0.16%

300 3 82 0.16%

600 3 41 0.16%

1200 2 82 0.16%

2400 2 41 0.16%

4800 1 82 0.16%

9600 1 41 0.16%

19200 0 82 0.16%

38400 0 41 0.16%

56000 0 2D 0.79%

57600 0 2B 0.94%

64000 0 27 0.16%
104 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
76800 0 21 1.36%

115200 0 16
1.36%

(Not recommended at this CLK)

128000 0 14
2.40%

(Not recommended at this CLK)

Table 25. Baud Rate Constants — CLK = 18.432 MHz

Baud Rate RCOR/TCOR RBPR/TBPR (Hex) Error

110 4 52 0.22%

150 3 F0 0.00%

300 3 78 0.00%

600 2 F0 0.00%

1200 2 78 0.00%

1800 2 50 0.00%

2400 1 F0 0.00%

4800 1 78 0.00%

9600 0 F0 0.00%

19200 0 78 0.00%

38400 0 3C 0.00%

56000 0 29 0.35%

57600 0 28 0.00%

64000 0 24 0.00%

76800 0 1E 0.00%

115200 0 14
0.00%

(Not recommended at this CLK)

128000 0 12
0.00%

(Not recommended at this CLK)

Table 26. Baud Rate Constants — CLK = 16 MHz (Sheet 1 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error

110 4 47 0.03%

150 3 D0 0.16%

300 3 68 0.16%

600 2 D0 0.16%

1200 2 68 0.16%

1800 2 45 0.16%

2400 1 D0 0.16%

Table 24. Baud Rate Constants — CLK = 20.00 MHz (Sheet 2 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
 Datasheet 105

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
6.8 ASCII Code Tables

6.8.1 Hexadecimal — Character

4800 1 68 0.16%

9600 0 D0 0.16%

19200 0 68 0.16%

38400 0 34 0.16%

56000 0 24 0.80%

57600 0 23 0.80%

64000 0 1F 0.80%

76800 0 1A

0.16%

(Not recommended at this CLK)

115200 0 11
2.080%

(Not recommended at this CLK)

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL

08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI

10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB

18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US

20 SP 21 ! 22 “ 23 # 24 $ 25 % 26 & 27 ‘

28 (29) 2A * 2B + 2C , 2D - 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _

60 ~ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E _ 7F DEL

Table 26. Baud Rate Constants — CLK = 16 MHz (Sheet 2 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
106 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
6.8.2 Decimal — Character

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 13 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB

24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

32 SP 33 ! 34 “ 35 # 36 $ 37 % 38 & 39 ‘

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _

96 ~ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 _ 127 DEL
 Datasheet 107

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.0 Detailed Register Descriptions

This section presents a complete and detailed description of each register. Registers have two
formats: 1) full eight bits, where the entire content defines a single function; 2) the register is a
collection of bits, grouped singly or in multiples, defining a function. In the second format, the
descriptions divide the register into its component parts and describe the bits individually. The
order of register presentation corresponds to the register summary tables in Chapter 4.0.

7.1 Global Registers

7.1.1 Channel Access Register

The CAR provides access to individual channels within the CD1284. The least-significant two bits
of the register select one of the four channels. Before any operation that affects a channel, this
register must be loaded so that channel registers are available to the host. Bit 2 must always be ‘0’.
Bits 7:3 are not used except during Poll-mode operation (see Section 6.3 for details).

7.1.2 Global Firmware Revision Code Register

The GFRCR serves two purposes in the CD1284. First, it displays the revision number of the
firmware in the chip. When a revision to the CD1284 is required, the revision number of the
firmware is incremented by one. The revision code is 24 (hex) for the Revision D device, and 25
(hex) for the Revision E device.

Register Name: CAR
Register Description: Channel Access
Access: Read/Write

8-Bit Hex Address: 68
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Poll Poll Poll Poll Poll 0 C1 C0

C1 C0 Channel Selected

0 0 Channel 0

0 1 Not used

1 0 Channel 2

1 1 Channel 3

Register Name: GFRCR
Register Description: Global Firmware Revision Code
Access: Read/Write

8-Bit Hex Address: 4F
Default Value: 25

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Firmware Revision Code
108 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Secondly, a system programmer can use this register to indicate when the internal processor
completes reset procedures. This is done by a power-on reset (by the RESET* input) or a software
global reset (by the reset command in the CCR). Immediately after the reset operation begins, the
internal CPU clears the register. When complete, and the CD1284 is ready to accept host accesses,
the register is loaded with the revision code.

7.1.3 General-Purpose I/O Direction Register

7.1.4 General-Purpose I/O Register

This pair of registers enables access and control of the general-purpose I/O port. The general-
purpose I/O port provides a byte-wide general purpose set of signals that are individually direction
programmable.

The GPIO register accesses the data port on pins 53–60 (G[7:0]) with Data 0 accessing GP[0], etc.
The corresponding bit in the GPDIR register controls the direction of the associated signal; ‘1’
programs the signal as output and ‘0’ programs it as input. When writing to the GPIO register, ‘1’s
and ‘0’s are reflected in their true states on the pins that are programmed as outputs. When reading
from the GPIO register, bits programmed as inputs reflect the true state of the signal condition on
those bits; bits programmed as output reflect the previously set state.

7.1.5 Modem Interrupting Channel Register

The MICR, RISR, and TICR indicate the serial channel number that is currently being serviced by
an active acknowledge cycle (whether polled or interrupt). Bits 3:2 (C1 and C0) are only valid
during the context of a channel service routine; at any other time, their state is undefined. Host
system software uses these registers to determine the number of the channel that originated the
particular service request (receive, transmit, or modem). The format of these registers is the same
and the description is valid for each. The upper four bits and lower two bits are user-defined and
can be set to any value desired. When the register is read, these bits are presented as defined by the
user; C1 and C0 are set by the CD1284 to reflect the proper channel number.

Register Name: GPDIR
Register Description: General-Purpose I/O Direction
Access: Read/Write

8-Bit Hex Address: 71
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0

Register Name: GPIO
Register Description: General-Purpose I/O
Access: Read/Write

8-Bit Hex Address: 70
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

Register Name: MICR
Register Description: Modem Interrupting Channel
Access: Read/Write

8-Bit Hex Address: 46
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X C1 C0 X X
 Datasheet 109

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.1.6 Modem Interrupt Register

The MIR, PIR, and TIR are used during Poll-mode operation of the CD1284. All three registers
provide the same type of information for each of the three service requests. The functions of
RxIreq, TxIreq, and MdIreq have identical meanings, as do the group Rxbusy, Txbusy, and
Mdbusy and the group Rxunfair, Txunfair, and Mdunfair. The least-significant two bits indicate the
number of the channel requesting service. Bits 4:2 are used internally by the CD1284 to set the
context of the service-acknowledge cycle. See the description of Poll-mode operations in Chapter
5.0 for complete details.

Bit Description

7:4 User defined.

3:2

Channel X: When these bits are set to the values shown below, the channel number is defined.

1:0 User defined.

Register Name: MIR
Register Description: Modem Interrupt
Access: Read/Write

8-Bit Hex Address: 69
Default Value: 08

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MdIreq Mdbusy Mdunfair 0 1 0 ch[1] ch[0]

C1 C0 Channel Number

0 0 Channel 0

0 1 Undefined

1 0 Channel 2

1 1 Channel 3

Bit Description

7

RxIreq, TxIreq, and MdIreq: These bits are set by the internal processor when service is required by a
channel. The bits are a direct reflection of the inverse state of the SVCREQ* pins and they are the active-high
output of the latch that drives the SVCREQ* pins. The bits can be scanned by the host to detect an active
service request. These bits are cleared by the internal processor at the beginning of the service-acknowledge
cycle (hardware-service acknowledge) or by the host software when the Poll-mode cycle is terminated.

6

Rxbusy, Txbusy, and Mdbusy: These bits are set by the internal processor and they remain set until the end of
the service-acknowledge cycle is indicated by either a write to the EOSRR (hardware-service acknowledge),
or cleared by the host software when the Poll-mode cycle is terminated. These bits signal the current state of
the service-acknowledge cycle. When cleared, the internal processor knows that it can assert another service
request of this type.
110 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.1.7 Parallel Interrupt Register

The PIR is a modified version of the other interrupt registers (RIR, TIR, and MIR) that
incorporates the unique differences between interrupt structures of the two major blocks of the
CD1284. The Ireq bit (bit 7) has the identical function as the Ireq bits in the TIR, RIR, and MIR.

7.1.8 Prescaler Period Register

The PPR sets the divisor that generates the time period for CD1284 timer operations. It can be set
to any value between 0 and 255 (x’FF). The PPR is clocked by the system clock prescaled
(divided) by 512.

5

Rxunfair, Txunfair, and Mdunfair: These bits are used by the internal processor to implement the Fair Share
service request function. If this bit is set, the CD1284 does not assert another service request of this type until
the bit is cleared by a pulse on the external SVCACK* pin. The unfair bits are forced to ‘0’, disabling the Fair
Share mechanism, by setting the Unfair bit in the PACR. These bits are not used in Poll mode.

4:2

These bits define the context of the current service-acknowledge cycle during Poll mode and are fixed by
hardware within the CD1284. These bits must be replicated exactly when the register is copied to the CAR
and is activating a service-acknowledge cycle. See the discussion of Poll-mode operation in Section 5.3 for a
more detailed description.

1:0
ch[1:0]: These two bits encode the channel number of the requesting channel. During Poll-mode operation
when the RIR, TIR, and MIR are copied into the CAR to start the service routine, ch[1:0] set the channel
number that is serviced.

Register Name: PIR
Register Description: Parallel Interrupt
Access: Read/Write

8-Bit Hex Address: 61
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PPIreq PPort Pipeline 0 0 0 0 0

Bit Description

Bit Description

7

PPIreq: The internal processor sets this bit to generate the external service request output. It is a direct
reflection of the inverse state of the SVCREQP* pin; it is the active-high output of the latch that drives
SVCREQP*. This bit can be scanned by the host to detect an active service request. The bit is cleared by the
internal logic at the beginning of the hardware service-acknowledge cycle or by toggling the IntEn bit
(PFCR[4]).

6:5

PPort and Pipeline: These two bits indicate which of the two functional blocks of the parallel port are
requesting service. PPort set indicates that the parallel channel control state machine is the cause of the
request; Pipeline set indicates that the data pipeline is requesting service. Both bits set indicates that both
blocks are requesting service simultaneously.

4:0 Reserved: These bits always return ‘0’ when read by the host. Do not modify.

Register Name: PPR
Register Description: Prescaler Period
Access: Read/Write

8-Bit Hex Address: 7E
Default Value: FF

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Value
 Datasheet 111

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Note: This value does not have any effect on baud rate generation.

The time period generated by this register drives the receive timer and activates the ‘no new data’
and ‘receive data timeout’ interrupts. See the receiver operation discussion in Chapter 5.0 for a
description of receiver timer functions.

7.1.9 Receive Interrupting Channel Register

See Section 7.1.5 on page 109, the description of the MICR, for details on the RICR.

7.1.10 Receive Interrupt Register

See Section 7.1.6 on page 110, the description of the MIR, for details on the RIR.

7.1.11 Service Request Register

The SVRR reflects the inverse of the state of the service request pins (SVCREQR*, SVCREQT*,
and SVCREQM*). Its primary use is in polled systems, and it allows system software to determine
what, if any, service requests are pending.

Register Name: RICR
Register Description: Receive Interrupting Channel
Access: Read/Write

8-Bit Hex Address: 44
Default Value: 00

7 6 5 4 3 2 1 0

X X X X C1 C0 X X

Register Name: RIR
Register Description: Receive Interrupt
Access: Read/Write

8-Bit Hex Address: 6B
Default Value: 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

RxIreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0]

Register Name: SVRR
Register Description: Service Request
Access: Read only

8-Bit Hex Address: 67
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DMAREQ ExtM ExtT ExtR SRP SRM SRT SRR

Bit Description

7 DMA Request Status: ‘1’ indicates request pending.

6 ExtM: Reflects the current state of the external SVCREQM* signal.

5 ExtT: Reflects the current state of the external SVCREQT* signal.

4 ExtR: Reflects the current state of the external SVCREQR* signal.

3 Service Request Parallel: ‘1’ indicates request pending.
112 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.1.12 Transmit Interrupting Channel Register

See Section 7.1.5 on page 109, the description of the MICR, for details on the TICR.

7.1.13 Transmit Interrupt Register

See Section 7.1.6 on page 110, the description of the MIR, for details on the TIR.

7.2 Virtual Registers

The CD1284 has two operational contexts:

Normal: Allows host access to most registers and any channel

Service-acknowledge: Allows host access to some registers specific to the channel requesting
service.

This special set of registers is called Virtual because they are only available to host access and valid
during this service-acknowledge context. At all other times, their contents are undefined and must
not be written to by host software.

The use of Virtual registers and context switching allows the CD1284 to maintain all channel-
specific information. To access the registers pertinent to the channel being serviced, it is not
necessary for the host to make any changes to the device registers.

The service-acknowledge context can be entered in two ways: 1) by activating one of the
SVCACK* input pins (hardware-activated); 2) by the host software when the contents of any one
of TIR, RIR, MIR, or PIR are copied into the CAR during a Poll-mode acknowledge cycle. Chapter
5.0 discusses the differences between these two modes.

2 Service Request Modem: ‘1’ indicates request pending.

1 Service Request Transmit: ‘1’ indicates request pending.

0 Service Request Receive: ‘1’ indicates request pending.

Register Name: TICR
Register Description: Transmit Interrupting Channel
Access: Read/Write

8-Bit Hex Address: 45
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X C1 C0 X X

Bit Description

Register Name: TIR
Register Description: Transmit Interrupt
Access: Read/Write

8-Bit Hex Address: 6A
Default Value: 10

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TxIreq Txbusy Txunfair 1 0 0 ch[1] ch[0]
 Datasheet 113

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Virtual Registers — Serial

7.2.1 Modem Interrupt Status Register

The MISR provides the status regarding a modem service request. If the modem-signal change
detections (zero-to-one or one-to-zero transition) are enabled in MCOR1 or MCOR2, the change
causes a service request and the changed signal is flagged in this register.

7.2.2 Modem Interrupt Vector Register

The value in this register is placed on the data bus, DB[7:0], when SVCACKM* is activated in
response to an active SVCREQM*. See Section 7.4.6 on page 128 for more details on the LIVR.

Register Name: MISR
Register Description: Modem Interrupt Status
Access: Read only

8-Bit Hex Address: 4C
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRch CTSch RIch CDch 0 0 0 0

Bit Description

7 Data Set Ready Change: An enabled transition on the Data Set Ready signal causes this bit to be set and a
modem service request posted.

6 Clear To Send Change: An enabled transition on the Clear To Send signal causes this bit to be set and a
modem service request posted.

5 Ring Indicator Change: An enabled transition on the Ring Indicator signal causes this bit to be set and a
modem service request posted.

4 Carrier Detect Change: An enabled transition on the Carrier Detect signal causes this bit to be set and a
modem service request posted.

3:0 These read-only bits always return ‘0’.

Register Name: MIVR
Register Description: Modem Interrupt Vector
Access: Read only

8-Bit Hex Address: 41
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X IT2 IT1 IT0

IT2 IT1 IT0 Description

0 0 0 No modem interrupts.

0 0 1 Group 1: Modem signal change service request.

0 1 0

Invalid.l l l

1 1 1
114 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.2.3 Parallel Interrupt Vector Register

The value in this register is placed on the data bus, DB[7:0], when SVCACKP* is activated in
response to an active SVCREQP*. See Section 7.4.6 on page 128 for more details on the LIVR.

7.2.4 Receive Data/Status Registers

The Receive Data/Status register serves two purposes. During a serial receive-service acknowledge
for good data, the RDSR provides access to the receive FIFO. The number of characters available
in the FIFO is indicated by the RDCR, and is described in Section 7.5. Any number of characters,
up to the value in the RDCR, can be read from the FIFO. All internal FIFO pointers are updated by
the on-chip processor.

During a serial receive exception service acknowledge, the RDSR provides both the received
character and the status that caused the exception condition. By definition, a receive exception
service request has only one character available (multiple receive exceptions produce multiple
service requests). The first read from the RDSR provides the exception status, and the second read

Register Name: PIVR
Register Description: Parallel Interrupt Vector
Access: Read only

8-Bit Hex Address: 40
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X IT2 IT1 IT0

IT2 IT1 IT0 Description

0 0 0 No parallel interrupt source is active.

0 0 1 Group 1: Modem signal change service request.

0 1 0

Invalid.l l l

0 1 1

1 0 0 The parallel port state machine requests service.

1 0 1 The parallel port data pipeline requests service.

1 1 0 Both the parallel port state machine and the parallel port data
pipeline request service.

1 1 1 Invalid.

Register Name: RDSR
Register Description: Receive Data
Access: Read only

8-Bit Hex Address: 62
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received Character

Register Name: RDSR
Register Description: Receive Status
Access: Read only

8-Bit Hex Address: 62
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Timeout SC Det2 SC Det1 SC Det0 Break PE FE OE
 Datasheet 115

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
provides the character. It is not necessary to read either of these values. If the service acknowledge
is terminated without reading the exception status and data from the RDSR, the internal processor
updates the FIFO pointers as if the status/data were read. The same is true when only the status is
read. Overrun errors are an exception to this (see table below).

7.2.5 Receive Interrupt Vector Register

The value in this register is placed on the data bus, DB[7:0], when SVCACKR* is activated in
response to an active SVCREQR*. See Section 7.4.6 on page 128 for more details on the LIVR.

Bit Description

7 Timeout: If the service request enable for timeout is set, this bit indicates that no data has been received
within the receive timeout period set by the RTPR after the last character was removed.

6:4

Special Character Detect: These three bits are encoded as follows:

NOTE: No special character matching is performed if either a parity (PE) or framing (FE) error occur unless
CMOE is enabled by COR5[5].

3 Break: Indicates that a break was detected.

2 Parity Error: Indicates that a character was received with parity other than that programmed in COR1.

1 Framing Error: Indicates that the character was received with a bad stop bit.

0

Overrun Error: This bit is set if new data is received, but there is no space available in the FIFO and Holding
register. In this case, the character data is lost, and the overrun flag is applied to the last good data received
before the overrun occurred. Thus, the character read on the subsequent read from the RDSR is good data
and should not be discarded.

Register Name: RIVR
Register Description: Receive Interrupt Vector
Access: Read only

8-Bit Hex Address: 43
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X IT2 IT1 IT0

SCDet2 SCDet1 SCDet0 Status

0 0 0 None detected.

0 0 1 Special character 1 matched.

0 1 0 Special character 2 matched.

0 1 1 Special character 3 matched.

1 0 0 Special character 4 matched.

1 0 1 Not used.

1 1 0 End-of-break detected.

1 1 1 Range detect.

IT2 IT1 IT0 Description

0 0 0 No receive interrupt active.

0 0 1
Invalid.

0 1 0
116 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.2.6 Transmit Data Register

The transmit data register is the port for the host to write to the transmit FIFO. When a channel is
being serviced for a transmit service request, the host can write up to 12 characters to this register.
The transmit data register should only be written during the context of a transmit-service
acknowledge. A write of data to this location at any other time yields unpredictable results.

7.2.7 Transmit Interrupt Vector Register

The value in this register is placed on the data bus, DB[7:0], when SVCACKT* is activated in
response to an active SVCREQT*. See Section 7.4.6 on page 128 for more details on the LIVR.

0 1 1 Group 3: Received good data service request.

1 0 0

Invalid.l l l

1 1 0

1 1 1 Group 3: Received exception data service request.

Register Name: TDR
Register Description: Transmit Data
Access: Write only

8-Bit Hex Address: 63
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transmit Character

IT2 IT1 IT0 Description

Register Name: TIVR
Register Description: Transmit Interrupt Vector
Access: Read only

8-Bit Hex Address: 42
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X IT2 IT1 IT0

IT2 IT1 IT0 Description

0 0 0 No transmit interrupt active.

0 0 1 Invalid.

0 1 0 Group 2: Transmit data service request.

1 1 1

Invalid.l l l

1 1 1
 Datasheet 117

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Virtual Registers — All

7.2.8 End of Service Request Register

The EOSRR is a dummy location used to signal the end of a hardware service-acknowledge
procedure invoked by the activation of SVCACK*. The data pattern written is a ‘don’t care’ value.
A write to this location causes the CD1284 to perform its internal switch out of the service-
acknowledge context. This register is only used during a hardware-activated service acknowledge
and must not be written during Poll-mode operation.

7.3 Channel Registers

Each of the four channels has a set of registers that control aspects of its operation. In the following
register descriptions the register contents and offsets apply to any of the channels; the channel
being accessed at any given time is controlled by the CAR. This is true even during a service-
acknowledge context; the CAR points to the channel to be serviced, whether it was loaded by the
host (during Poll-mode operation) or by the CD1284 itself (during a hardware-activated service
acknowledge).

7.3.1 Channel Command Register

The CCR issues commands directly to the on-chip processor to control or change some channel
and, in one case, global functions of the channel selected by the CAR. The upper four bits indicate
which of four command types is being issued and the lower four bits are parameters to those
commands. No more than one bit is ever set in the command type field. When the command is
executed by the CD1284, it zeros out the CCR. Therefore, two consecutive commands must wait
for the CCR to clear after the first is issued, before the second command is issued.

Note: The CCR is valid only for serial channels 2 and 3. Commands issued to the CCR location of the
parallel channel (channel 0) or channel 1 are ignored by the MPU and have no effect on device
operation. If the host needs to issue a full device reset, it must select either channel 2 or channel 3
before issuing the command.

Register Name: EOSRR
Register Description: End of Service Request
Access: Write only

8-Bit Hex Address: 60
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X X X X

Register Name: CCR
Register Description: Channel Command
Access: Read/Write

8-Bit Hex Address: 05
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res Chan COR Chg Send SC Chan Ctl D3 D2 D1 D0
118 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.3.1.1 Format 1 — Reset Channel Command

When bit 7 is set, one of three types of reset operations are initiated, based on the value of the least-
significant two bits. Bit 0 sets the type of reset, either channel-only or full-chip, and bit 1 causes the
FIFO of the selected channel to be flushed.

The two types of reset selected by bit 0 cause very different results. When bit 0 is ‘0’, the reset
command effects only the selected channel. Resetting a channel disables both the receiver and
transmitter, and all FIFOs are flushed (cleared). If bit 0 is ‘1’, a full-chip reset is initiated. This reset
has the same results as a hardware reset caused by activation of RESET*: all channels are disabled,
all FIFOs are flushed, and all control registers set to their power-on reset state.

The completion of the reset operation can be detected the same way as though a power-on or
hardware reset had occurred: the GFRCR changes from zero to the value of the firmware revision.
Note that at the start of the reset operation, the GFRCR is cleared, but it can take some time for this
to occur. Host software should wait for the GFRCR to go to zero, and then wait for it to go non-
zero to indicate that the reset operation is complete. The host can clear the GFRCR before issuing
the reset command and then wait for it to become non-zero.

The FTF (flush serial transmit FIFO) command, bit 1, causes the serial transmit FIFO of the
selected channel to be cleared and pointers reset to the empty state. Any data in the FIFO is lost.

7.3.1.2 Format 2 — Channel Option Register Change Command

Bit 6 – combined with any bits 3:1 – informs the MPU that a change occurred in one of the Channel
Option registers, COR1, COR2, and/or COR3, respectively. It is permissible to indicate that more
than one COR has changed.

This command exists so that changes in the CORs are noted by the MPU, allowing it to update its
internal working register, since it keeps copies of the CORs in its own shadow registers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res Chan 0 0 0 0 0 FTF Type

Bit Description

7 This bit must always be ‘1’.

6:2 These bits must always be ‘0’.

1:0

These bits are encoded as:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 COR Chg 0 0 COR3 COR2 COR1 0

FTF Type Function

0 0 Reset current channel.

0 1 Full CD1284 reset.

1 0 Flush serial transmit FIFO of current channel

1 1 Not used.
 Datasheet 119

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.3.1.3 Format 3 — Send Special Character Command

This command causes one of the pre-programmed characters in the special character registers
(SCHR1, SCHR2, SCHR3, and SCHR4) to be sent preemptively (applies to the serial channels
only). The character sent is selected by the settings of bits 2 through 0. ‘Preemptively’ means that
the special character is sent immediately following the character in the Transmitter Holding
register; it does not wait until the FIFO empties. Once the special character is sent, transmission of
any characters remaining in the FIFO proceeds normally.

Bit Description

7 This bit must always be ‘0’.

6 This bit must always be ‘1’.

5:4 These bits must always be ‘0’.

3:1

These three bits are encoded as:

0 This bit must always be ‘0’.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 Send SC 0 0 SSPC2 SSPC1 SSPC0

COR3 COR2 COR1 Encoding

0 0 0 Not used.

0 0 1 COR1 changed.

0 1 0 COR2 changed.

0 1 1 COR1 and COR2 changed.

1 0 0 COR3 changed.

1 0 1 COR3 and COR1 changed.

1 1 0 COR3 and COR2 changed.

1 1 1 COR1, COR2, and COR3 changed.

Bit Description

7:6 Must be ‘0’.
120 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.3.1.4 Format 4 — Channel Control Command

This command activates or deactivates the serial transmitter and/or receiver of the selected
channel, based on the values in bits 3 through 0. This command is issued when a channel is being
started for the first time. Once a channel is in use, it can be started and stopped using this
command. It is more efficient however, to use the appropriate SRER bit in the IER. Multiple
control commands can be issued at the same time; for example, both the transmitter and receiver
can be enabled by simultaneously setting both the XMT EN and RCV EN bits.

Issuing an enable/disable command does not affect any register programming of the selected
channel. It does however, affect the state of transmit flow-control. Issuing a disable or enable
command to a channel whose transmitter has been flow-controlled by a remote (see the TxIBE bit
in COR2), restarts transmission and clears the TxFloff bit (CCSR[2]). This ability is provided so
that the host can override remote-generated flow control.

5 Must be ‘1’.

4:3 Must be ‘0’.

2:0

These bits are encoded as:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 Chan Ctl XMT EN XMT DIS RCV EN RCV DIS

Bit Description

SSPC2 SSPC1 SSPC0 Encoding

0 0 0 Not used.

0 0 1 Send special character 1.

0 1 0 Send special character 2.

0 1 1 Send special character 3.

1 0 0 Send special character 4.

1 0 1

Not used.1 1 0

1 1 1
 Datasheet 121

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.3.2 Channel Control Status Register

The CCSR provides current receiver/transmitter status of the selected channel.

Bit Description

7:5 Must be ‘0’.

4 Must be ‘1’.

3:0

Select channel enable/disable activity:

Register Name: CCSR
Register Description: Channel Control Status
Access: Read only

8-Bit Hex Address: 0B
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

RxEN RxFloff RxFlon 0 TxEN TxFloff TxFlon 0

XMT EN XMT DIS RCV EN RCV DIS Encoding

0 0 0 1 Disable receiver.

0 0 1 0 Enable receiver.

0 1 0 0 Disable transmitter.

1 0 0 0 Enable transmitter.

0 1 0 0 Disable transmitter and receiver.

0 1 1 0 Disable transmitter; enable receiver.

1 0 0 1 Enable transmitter; disable receiver.

1 0 1 0 Enable transmitter and receiver.

Bit Description

7 Receiver Enabled: This bit is set when the receiver is enabled and cleared when it is disabled.

6

Receiver Flow Off: This bit indicates that the receiver has requested the remote to stop transmitting through
the use of a send XOFF character by a send special character 2 command in the CCR. The bit is cleared
when a send special character 1 (XON) command is issued; the channel is either enabled or disabled, or the
channel is reset.

5
Receiver Flow On: When a send special character 1 (XON) command is issued by the CCR, this bit is set.
This bit is cleared when one of three events has occurred, 1) the first non-flow control character is received,
2) the receiver is either enabled or disabled, 3) or the channel is reset.

4 Reserved: This bit returns ‘0’ when read.

3 Transmitter Enabled: This bit is set when the transmitter is enabled and cleared when it is disabled.
122 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.4 Channel Registers — Parallel Pipeline

The following five Channel Option registers control many aspects of CD1284 serial channel
operation and enable special character processing features. COR4 and COR5 specifically enable
the UNIX line discipline character handling functions.

7.4.1 Channel Option Register 1

2

Transmitter Flow Off: This bit indicates that the CD1284 has been requested to stop transmission by the
remote (received in-band flow control character XOFF). The bit is cleared when the CD1284 requests to
restart transmission (receives an XON character); the channel is either enabled or disabled, or the channel is
reset.

1
Transmitter Flow On: This bit is set when the CD1284 requests to restart transmission (received an XON
character). It is reset when transmission begins, when the channel is either enabled or disabled, or when the
channel is reset.

0 Reserved: This bit returns ‘0’ when read.

Bit Description

Register Name: COR1
Register Description: Channel Option Register 1
Access: Read/Write

8-Bit Hex Address: 08
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Parity ParM1 ParM0 Ignore Stop1 Stop0 ChL1 ChL0

Bit Description

7 Parity Type: This bit selects the type of parity that is generated and checked if parity is enabled. ‘1’ selects
odd parity and ‘0’ selects even parity.

6:5

Parity Mode 1 and Parity Mode 0: These bits define the parity operation for both the transmitter and
receiver. The encoding is:

ParM1 ParM0 Function

 0 0 No parity.

 0 1 Force parity (odd parity = force 1, even parity = force 0).

 1 0 Normal parity.

 1 1 Not used.
 Datasheet 123

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.4.2 Channel Option Register 2

4 Ignore Parity: If this bit is set, the CD1284 ignores the parity on all incoming characters, thus no receive
exception service requests are generated if the parity is in error. If the bit is cleared, parity is evaluated.

3:2

Stop Bit Length: These two bits set the length, in bit times, of the Stop bit for each character.

1:0

Character Length: ChL1 and ChL0 select the length of each character, in number of bits. The CD1284
receives and transmits the same length character, on a given channel, in the range of five to eight bits.

Register Description: COR2
Register Description: Channel Option Register 2
Access: Read/Write

8-Bit Hex Address: 09
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE

Bit Description

7

Implied XON mode: This bit enables the automatic resumption of character transmission upon the reception
of any character. This bit only has meaning if the transmitter is in Automatic In-band Flow-control mode as
programmed by the TxIBE control bit. When this bit is reset and TxIBE is enabled, the reception of any
character restarts character transmission.

6

Enable Automatic In-band Transmit Flow Control: This bit allows the CD1284 to examine error-free
incoming characters looking for an XOFF character (as programmed by SCHR2), if the special character
match function is enabled (COR3[4]). If a match occurs, transmission ceases after the current characters in
the Transmitter Shift register and Transmitter Holding register are sent. Transmission resumes when an XON
character (or any character, depending on the value of the IXM bit) is received or if a channel enable
command is issued by the CCR.

5
Embedded Transmit Command Enable: If the ETC bit is set, the CD1284 examines characters in the
transmit FIFO. If an embedded command is detected, it is processed. See the embedded transmit command
description in Chapter 5.0 for details of valid commands.

Bit Description

Stop1 Stop0 Number of Stop Bits

0 0 1

0 1 1.5

1 0 2

1 1 Not used.

ChL1 ChL0 Character Length

0 0 5 bits

0 1 6 bits

1 0 7 bits

1 1 8 bits
124 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.4.3 Channel Option Register 3

Note: The threshold for the parallel channel (channel 0) are set by the PFTR.

4

Local Loopback Mode: This bit enables local loopback of the channel. This mode is generally used during
system diagnostics. If this bit is set, the transmitter is internally ‘looped’ back to the receiver. The TxD pin is
set to the marking state. Data sent is immediately received by the receiver. No data appears on the TxD pin;
data on the RxD pin is ignored.

3
Remote Loopback Mode: Remote loopback allows a remote system to test its serial data stream. If this
function is enabled, the CD1284 internally connects its receiver to the transmitter. Any data received is
immediately echoed back. This mode is enabled by setting RLM, and disabled by clearing RLM.

2

Request To Send Automatic Output: The CD1284 can automatically assert RTS when a channel is
enabled (by transmit/receive enable command in the CCR) and there is data in the FIFO. When the channel
is disabled or there is no more data to send (that is, in the FIFO or Holding and Shift registers), RTS* is
negated. Setting RtsAO enables the function.

1 Clear To Send Automatic Enable: This bit enables the CTS* input to control transmitter operation. If CtsAE
is set and CTS* is not asserted, character transmission does not proceed.

0
Data Set Ready Automatic Enable: This bit allows the DSR* input to control receiver operation. Setting
DsrAE enables the function. When enabled and DSR* is deasserted, the CD1284 discards all received
characters.

Register Name: COR3
Register Description: Channel Option Register 3
Access: Read/Write

8-Bit Hex Address: 0A
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCDRNG SCD34 FCT SCD12 RxTh3 RxTh2 RxTh1 RxTh0

Bit Description

7

Special Character Detect Range: This bit enables range checking on received characters. If the character
falls between a lower range, set by the value stored in the SCRL register, and an upper range, set by the
value stored in the SCRH register – inclusive, a receive exception service request is posted with the status
indicating a range detect (RDSR bits SCDet2–SCDet0 = 111).

6
Enable Special Character Detect on SCHR4 and SCHR3: This bit controls whether or not the CD1284
performs a comparison on received characters against the values stored in SCHR4 and SCHR3. The
comparison is enabled by this bit being ‘1’.

Bit Description
 Datasheet 125

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.4.4 Channel Option Register 4

5

Flow Control Transparency: This bit enables/disables the transparent response to flow control characters
received by the CD1284. If set, received XON and XOFF characters are not placed in the FIFO for the host. If
in-band flow control is enabled, the characters are acted upon. If this bit is not set, flow control characters are
acted upon, placed in the receive FIFO, and the host is notified by a receive exception service request.

4
Enable Special Character Detect on SCHR2 and SCHR1: This bit controls whether or not the CD1284
compares received characters with the values stored in SCHR2 and SCHR1. ‘1’ enables compare. This bit
must be set to enable automatic in-band flow control.

3:0

Serial Receive FIFO Threshold

Register Name: COR4
Register Description: Channel Option Register 4
Access: Read/Write

8-Bit Hex Address: 1E
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IGNCR ICRNL INLCR IGNBRK −BRKINT PEH[2] PEH[1] PEH[0]

Bit Description

RxTh3 RxTh2 RxTh1 RxTh0 Receiver FIFO Threshold

0 0 0 0 Not used.

0 0 0 1 1 character

0 0 1 0 2 characters

• • • •

1 0 1 1 11 characters
126 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Bit Description

7:5

Carriage Return (CR) and New Line (NL) Processing: These three bits define the way that the CD1284
processes received CR and NL characters (x’0D and x’0A). The following table shows the actions performed:

4:3

Break Processing: The CD1284 can handle received break characters in three ways:

2:0

Parity (P), Framing (F), and Overrun (O) Error Special Processing: As with break characters, the CD1284
can treat error characters in several different ways, if enabled:

IGNCR ICRNL INLCR Action

0 0 0 No action.

0 0 1 Received NL changed to CR.

0 1 0 Received CR changed to NL.

0 1 1 Received CR changed to NL; NL changed to CR.

1 0 0 Received CR discarded.

1 0 1 Received CR discarded; NL changed to CR.

1 1 0 Received CR discarded.

1 1 1 Received CR discarded; NL changed to CR.

IGNBRK −BRKINT Break Action

0 0
Received break generates an exception service request. End-
of-Break also generates an exception service request if EBD is
enabled in COR5.

0 1 Received break treated as a good NULL character.

1 0 Not used.

1 1 Received break discarded.

PEH[2] PEH[1] PEH[0] Action

0 0 0 Received P/F/O error characters treated as exception data.

0 0 1 Received P/F/O error characters treated as good data.

0 1 0 Received P/F/O error characters discarded.

0 1 1 Received P/F/O error characters replaced with good NULL
characters.

1 0 0

Received P/F/O error characters are replaced with the two
character sequence x’FF-NULL-character. Good x’FF
characters are replaced with the two character sequence
x’FF-x’FF.

1 0 1

Not used.1 1 0

1 1 1
 Datasheet 127

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.4.5 Channel Option Register 5

7.4.6 Local Interrupt Vector Register

The LIVR is used only during hardware-activated service-acknowledge cycles. Host software
loads desired information into the most-significant five bits; the least-significant three bits are not
used. When the CD1284 is setting up a service request, it overlays the five most-significant bits of
the LIVR into appropriate interrupt vector register (RIVR, TIVR, PIVR, and MIVR) and sets the
least-significant three bits as required for the service request vector type. (See RIVR, TIVR, PIVR,
and MIVR descriptions). Refer to Section 7.7.5 on page 138 for a more detailed description of this
register.

Register Name: COR5
Register Description: Channel Option Register 5
Access: Read/Write

8-Bit Hex Address: 1F
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISTRIP LNE CMOE 0 0 EBD ONLCR OCRNL

Bit Description

7 ISTRIP: This bit enables stripping of the most-significant bit (bit 7) on all received characters. ‘1’ enables the
function.

6 LNext Enable: When this bit is set, characters following an LNext character (as programmed by the LNC
register) are not processed as a special character.

5 Character Matching on Error: If this bit is set, character matching occurs on both good and error characters.
If the bit is cleared, matching occurs on good characters only.

4:3 These bits must always be ‘0’.

2
End of Break Detect: If this bit is set, the CD1284 after detecting and reporting a line-break condition,
searches for the end of a break and reports it by an exception service request with the End of Break status in
the RDSR (see RDSR description Section 7.2.4 on page 115).

1:0

Carriage Return (CR) and New Line (NL) Processing – Transmit: These two bits define any actions taken on
characters in the transmit data stream.

Register Name: LIVR
Register Description: Local Interrupt Vector
Access: Read/Write

8-Bit Hex Address: 18
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X IT2 IT1 IT0

ONLCR OCRNL Action

0 0 No action.

0 1 Transmit CR changed to NL.

1 0 Transmit NL changed to CRNL.

1 1 Transmit CR changed to NL; NL changed to CRNL.
128 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.4.7 LNext Character Register

This register defines the LNext character. If the LNext function is enabled (COR5[6]), the CD1284
examines received characters and compare them against this value. If a match occurs, this character
and the following are placed in the FIFO without any special processing. In effect, the LNext
function causes the CD1284 to ignore characters with special meaning, such as flow-control
characters. There are two exceptions. If the character following the LNext character is either a
break or an error character, LNext is placed in the FIFO, and the following character are treated as
it normally would be for these error conditions.

7.5 Modem Change Option Registers

The CD1284 has two registers that control its response to changes on the modem input pins. It can
be programmed to respond to the low-to-high transition, the high-to-low transition or both. In
addition, the threshold at which the DTR signal is negated can be set by the DTRth3–DTRth0 bits
in MCOR1.

7.5.1 Modem Change Option Register 1

Register Name: LNC
Register Description: LNext Character
Access: Read/Write

8-Bit Hex Address: 24
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LNext Character

Register Name: MCOR1
Register Description: Modem Change Option Register 1
Access: Read/Write

8-Bit Hex Address: 15
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRzd CTSzd RIzd CDzd DTRth3 DTRth2 DTRth1 DTRth0
 Datasheet 129

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.5.2 Modem Change Option Register 2

7.5.3 Modem Signal Value Register 1

Bit Description

7:4 DSRzd, CTSzd, RIzd and CDzd: Each of these bits controls its corresponding input pin. If the bit is set, the
function is enabled and transitions from one-to-zero (zeros detect) generate an SVCREQM* service request.

3:0

DTRth3 through DTRth0: These bits form a binary value to determine when the DTR output is negated
(based on the number of characters in the receive FIFO). When the FIFO holds more characters than this
value, DTR is negated, informing the remote to stop transmission. This value must be set to a value
numerically larger than the value set for the receive FIFO threshold in COR3.

Register Name: MCOR2
Register Description: Modem Change Option Register 2
Access: Read/Write

8-Bit Hex Address: 16
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSRod CTSod RIod CDod 0 0 0 0

Bit Description

7:4 DSRod, CTSod, RIod, CDod: Each of these bits controls its corresponding input pin. If the bit is set, the
function is enabled and transitions from ‘0’-to-‘1’ (ones detect) generate an SVCREQM* service request.

3:0 These bits are not used and must be ‘0’.

Register Name: MSVR1
Register Description: Modem Signal Value Register 1
Access: Read/Write

8-Bit Hex Address: 6C
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSR CTS RI CD 0 0 0 RTS

DTRth3 DTRth2 DTRth1 DTRth0 Number of Characters in FIFO

0 0 0 0 Automatic DTR mode disabled.

0 0 0 1 1 character

0 0 1 0 2 characters

• • • •

1 0 1 1 11 characters

1 1 0 0 12 characters

1 1 0 1

Not used.1 1 1 0

1 1 1 1
130 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.5.4 Modem Signal Value Register 2

MSVR1 and MSVR2 provide information regarding the state of the modem input pins (DSR*,
CTS*, RI*, and CD*) and allows control of the modem output pins (DTR* and RTS*). A write to
any of the input bits has no effect. With the exception of the least-significant two bits, the registers
reflect identical data. The two are provided as a convenience for control of the modem output pins.
It is not necessary for host software to keep a copy of the current state of either when controlling
the other. The actual signal level on the output is the inverse of the value placed in this register. For
example, setting the DTR bit causes the DTR output to become active-low. The state of the modem
input pins is also the inverse of the value in the corresponding bit in the registers.

7.5.5 Receive Baud Rate Period Register

This register holds the baud rate divisor for the receiver. It is used in conjunction with the RCOR.
This provides the clock, which is divided by this value. The time period produced must equal the
value for one bit time of the receive data.

7.5.6 Receive Clock Option Register

The RCOR selects the clock source, which drives the RBPR. The value in ClkSel2–ClkSel0 selects
one of five possible clocks generated from the master clock (CLK).

Register Name: MSVR2
Register Description: Modem Signal Value Register 2
Access: Read/Write

8-Bit Hex Address: 6D
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSR CTS RI CD 0 0 DTR 0

Register Name: RBPR
Register Description: Receive Baud Rate Period
Access: Read/Write

8-Bit Hex Address: 78
Default Value: 41

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Divisor Value

Register Name: RCOR
Register Description: Receive Clock Option
Access: Read/Write

8-Bit Hex Address: 7C
Default Value: 01

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X ClkSel2 ClkSel1 ClkSel0

ClkSel2 ClkSel1 ClkSel0 Clock Selected

 0 0 0 Clk0 (CLK ÷ 8)

 0 0 1 Clk1 (CLK ÷ 32)

 0 1 0 Clk2 (CLK ÷ 128)

 0 1 1 Clk3 (CLK ÷ 512)

 1 0 0 Clk4 (CLK ÷ 2048)
 Datasheet 131

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.5.7 Received Data Count Register

The RDCR indicates the number of good characters currently in the serial received data FIFO. Host
software can use this value as a loop counter when taking characters out of the FIFO. The value in
this register is only valid during the context of a service request acknowledge. At other times, it
may or may not give a true indication of the number of characters in the FIFO.

 1 0 1

Not used. 1 1 0

 1 1 1

Register Name: RDCR
Register Description: Received Data Count
Access: Read only

8-Bit Hex Address: 0E
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 CT3 CT2 CT1 CT0

ClkSel2 ClkSel1 ClkSel0 Clock Selected

Bit Description

7:4 These bits must always be ‘0’.

3:0

Character Count 3:0: The encoding for these bits is:

CT3 CT2 CT1 CT0 Number of characters in FIFO

0 0 0 0 Not used.

0 0 0 1 1 character

0 0 1 0 2 characters

• • • •

1 0 1 1 11 characters

1 1 0 0 12 characters

1 1 0 1

Not used.1 1 1 0

1 1 1 1
132 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.5.8 Receive Timeout Period Register

The RTPR determines the time period used for the NNDT (no new data timeout) and the ‘no new
data’ timeout. The timeout counter is loaded from this register whenever a new character is placed
in – or the last character is removed from – the receive FIFO. The counter decrements on each tick
of the prescaler counter (PPR). A service request is generated if the count reaches zero and:

• Either an NNDT if the FIFO is empty and the NNDT is enabled, or

• A Good Data service request is generated if there is data in the FIFO

In either case the timeout period has expired before the FIFO reaches the programmed threshold.

7.6 Special Character Registers

The four special character registers, SCHR1–SCHR4, contain the character patterns used for
various character matching and flow-control functions. Each 8-bit character is right justified, that
is, comparison occurs from right to left, and all bits are compared. Any unused bits must be ‘0’.
SCHR1 and SCHR2 serve the additional function of defining the XON and XOFF characters,
respectively, used for in-band flow control.

7.6.1 Special Character Register 1

SCHR1 defines the XON character.

7.6.2 Special Character Register 2

SCHR2 defines the XOFF character.

Register Name: RTPR
Register Description: Receive Timeout Period
Access: Read/Write

8-Bit Hex Address: 21
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Count Value

Register Name: SCHR1
Register Description: Special Character Register 1
Access: Read/Write

8-Bit Hex Address: 1A
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 1

Register Name: SCHR2
Register Description: Special Character Register 2
Access: Read/Write

8-Bit Hex Address: 1B
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 2
 Datasheet 133

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.6.3 Special Character Register 3

7.6.4 Special Character Register 4

7.6.5 Received Character Range Detection

If enabled (by bit 7 of COR3), the CD1284 checks received characters to see if they fall within a
range of values. SCRL and SCRH set the range and the checking occurs inclusive of the values
programmed into these registers. If a received character is determined to be within the range, a
special character detect exception service request is posted. When set to ‘111’, RDSR[6:4] indicate
a range detect. Note that this range checking is performed in addition to the normal special
character detection on SCHR4–SCHR1.

7.6.6 Special Character Range — High

SCRH sets the upper inclusive value for range detection.

7.6.7 Special Character Range — Low

SCRL sets the lower inclusive value for range detection.

Register Name: SCHR3
Register Description: Special Character Register 3
Access: Read/Write

8-Bit Hex Address: 1C
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 3

Register Name: SCHR4
Register Description: Special Character Register 4
Access: Read/Write

8-Bit Hex Address: 1D
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 4

Register Name: SCRH
Register Description: Special Character Range, high
Access: Read/Write

8-Bit Hex Address: 23
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Character Range — high

Register Name: SCRL
Register Description: Special Character Range, low
Access: Read/Write

8-Bit Hex Address: 22
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Character Range — low
134 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.6.8 Serial Service Request Enable Register

This register enables the conditions that cause the CD1284, to post a service request by the SVRR
and the SVCREQ* output pins, and applies to the serial channels only. Each of the individual
enable bits control one type of service request.

7.6.9 Transmit Baud Rate Period Register

This register holds the baud rate divisor for the transmitter and is used in conjunction with the
TCOR. This provides the clock, which is divided by this value. The time period produced must
equal the value for one bit time of the transmit data.

Register Name: SRER
Register Description: Serial Service Request Enable
Access: Read/Write

8-Bit Hex Address: 06
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MdmChg 0 0 RxData 0 TxRdy TxEmpty NNDT

Bit Description

7
Modem Change: This bit enables the Modem Change service request. When this bit is ‘1’, any selected
modem signal change conditions (as programmed by MCOR1 and MCOR2) cause a modem service request
to be posted.

6:5 These bits must always be ‘0’.

4
Receive Data Enable: This bit enables the posting of receive service requests when characters have been
received and either the FIFO reaches the programmed threshold (set by COR3) or the receive timeout period
has expired.

3 This bit must always be ‘0’.

2:1

Transmitter Ready and Transmitter Empty: The transmitter can be enabled to post service requests on one
of two conditions: either the FIFO is empty or the Transmitter Shift register is empty.

TxRdy enables the service request on the condition that the FIFO is empty. In this case, there are still two
characters available for transmission before the transmitter underruns (one in the Shift register and one in the
Holding register).

TxEmpty enables the service request on the condition that the Shift register is empty. The transmitter
underruns due to the latency experienced between the time the service request is posted and the time the
host can load the FIFO. Under normal operating conditions, TxEmpty is set and TxRdy reset when there is no
more data to transmit and the host requires notification that the last character was sent before it can disable
the transmitter.

0

No New Data Timeout Enable: This bit activates the optional exception service request when all data is
removed from the FIFO and no new data has arrived after a preprogrammed delay period set by the value in
the RTPR. The LIVR (or RIVR) indicates a receive exception in the IT2–IT0 vector bits. There is no data
associated with this exception service request. RDSR[7] indicates that the service request is for an NNDT
condition.

Register Name: TBPR
Register Description: Transmit Baud Rate Period
Access: Read/Write

8-Bit Hex Address: 72
Default Value: 41

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Divisor Value
 Datasheet 135

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.6.10 Transmit Clock Option Register

The TCOR selects the clock source which drives the TBPR. The value in ClkSel[2:0] selects one of
five possible clocks generated from the master clock (CLK).

7.7 Channel Registers — Parallel Pipeline

7.7.1 Data Error Register

The bits in this read-only register indicate read/write errors involving the DMABUF register and
the Data Pipeline registers. The DataErr bit (PFSR[0]) is the logical OR of these eight Error Status
bits.

Reading this register has no effect on the error status. A write to this register clears all the bits,
which cannot be written by the user. Host software should clear this register (write x’00) after
completing an error service-acknowledge procedure. This bit is provided primarily as an aid to
driver software development. Data errors should never occur under normal circumstances.

This register is cleared during device reset.

Register Name: TCOR
Register Description: Transmit Clock Option
Access: Read/Write

8-Bit Hex Address: 76
Default Value: 01

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X ClkSel2 ClkSel1 ClkSel0

ClkSel2 ClkSel1 ClkSel0 Clock Selected

 0 0 0 Clk0 (CLK ÷ 8)

 0 0 1 Clk1 (CLK ÷ 32)

 0 1 0 Clk2 (CLK ÷ 128)

 0 1 1 Clk3 (CLK ÷ 512)

 1 0 0 Clk4 (CLK ÷ 2048)

 1 0 1

Not used. 1 1 0

 1 1 1

Register Name: DER
Register Description: Data Error
Access: Read only

8-Bit Hex Address: 33
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DMAwrerr DMArderr Bufwrerr Bufrderr HR1wrerr HR1rderr HR2wrerr HR2rderr
136 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.7.2 DMA Buffer Data Register — High

7.7.3 DMA Buffer Data Register — Low

This 16-bit data register is used to buffer DMA data transfers to and from the CD1284. Under
normal operating conditions, this register is only accessed during a DMA data transfer cycle. If the
DMAbufWe (PFCR[0]) is set to ‘1’ and DMAdir (PFCR[5]) is set to ‘1’, data may be transferred
from the host to the FIFO by directly writing to the DMABUF. The data automatically moves
forward into the FIFO through the Data Pipeline Holding registers. The user must ensure that the
FIFO has sufficient free space to accept the data before writing into the DMABUF.

The BYTESWAP pin determines the order of byte transfer from this register into the data pipeline.
If BYTESWAP is set to ‘1’, data transferred on DB[15:8] is the first byte transferred into the data
pipeline and DB[7:0] is transferred second. If BYTESWAP is set to ‘0’ this sequence is reversed.
The same applies during data read during DMA transfers: if BYTESWAP is set to ‘1’, data from
the data pipeline moves to the upper byte of DMABUF, the next byte moves into the lower byte.
Again, if BYTESWAP is set to ‘0’, this sequence is reversed.

Bit Description

7
DMA Write Error: This bit is set if the DMA control logic has written to the DMA buffer when it already
contains data. It indicates that an invalid DMA transfer cycle occurred (a DMAACK* without a corresponding
DMAREQ*).

6 DMA Read Error: As with bit 7, this bit indicates that DMA logic has performed a read from the DMA buffer
when there was no data in it. It indicates that an invalid DMA transfer cycle occurred.

5 Buffer Write Error: This bit indicates that a system write to the DMA buffer occurred while it still contained
data.

4 Buffer Read Error: This bit indicates that a system read from the DMA buffer occurred while it was empty.

3 Holding Register 1 Write Error: This bit indicates that a system write to PFHR1 occurred while it still
contained data.

2 Holding Register 1 Read Error: This bit indicates that a system read from PFHR1 occurred while it was
empty.

1 Holding Register 2 Write Error: This bit indicates that a system write to PFHR2 occurred while it still
contained data.

0 Holding Register 2 Read Error: This bit indicates that a system read from PFHR2 occurred while it was
empty.

Register Name: DMABUFH
Register Description: DMA Buffer Data Register, high
Access: Read/Write

8-Bit Hex Address: 30
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

15 14 13 12 11 10 9 8

Register Name: DMABUFL
Register Description: DMA Buffer Data Register, low
Access: Read/Write

8-Bit Hex Address: 30
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

7 6 5 4 3 2 1 0
 Datasheet 137

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
These resisters can be read through DMA acknowledge or PIO cycles, however, the DMABUF
registers can only be read when the DMAREQ* signal is active. If DMAREQ* is inactive, the
DMABUF registers will be empty. DMAfull (HRSR[3]) indicates if the DMABUF register is
empty when DMAREQ* is active.

7.7.4 Firmware Revision Code Holding Register Status Register

The HRSR is a read-only register that indicates current data pipeline status. This register is not
directly set to any particular value by a device reset, but reflects the current state of bits in other
registers.

7.7.5 Local Interrupt Vector Register

This read/write register can be initialized to any desired value and, when read in the normal context
(that is, not a service acknowledge context), the same value will be returned. The upper 5 bits are
copied into the appropriate vector register (MIVR, PIVR, TIVR, or RIVR) when the corresponding
SVCACK* signal is activated and an SVCREQ* of the same type is active. During this hardware-
activated service acknowledge read cycle, the appropriate vector register (MIVR, PIVR, TIVR, or
RIVR) is driven onto the data bus, DB[7:0].

Register Name: HRSR
Register Description: Holding Register Status
Access: Read only

8-Bit Hex Address: 34
Default Value: 04

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

HR1full HR1tag HR2full HR2tag DMAfull DMAmpty DMAact Ctnot0

Bit Description

7:6
Holding Register 1 Full and Holding Register 1 Tagged: These two bits indicate status of PFHR1. Bit 7
indicates that the register contains data; bit 6 indicates that the data is tagged. Bits 7 and 6 can be set
simultaneously.

5:4
Holding Register 2 Full and Holding Register 2 Tagged: These two bits indicate status of PFHR2. Bit 5
indicates that the register contains data; bit 4 indicates that the data is tagged. Bits 5 and 4 can be set
simultaneously.

3:2 DMA Buffer Full and DMA Buffer Empty: These two bits indicate status of the DMA transfer buffer (DMA
buffer). Bit 3 indicates that the register contains data; bit 2 indicates that it is empty.

1 DMA Active: When this bit is set, it indicates that the DMA handshake is active and a DMA service has been
requested but is not yet complete (DMAREQ* active – waiting for DMAACK*).

0 Count Not Zero: This bit indicates that the RLE counter is not zero, thus run-length encoding/decoding is in
progress.

Register Name: LIVR
Register Description: Local Interrupt Vector
Access: Read/Write

8-Bit Hex Address: 18
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

User-Defined Bits IT2 IT1 IT0
138 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.7.6 Parallel Auxiliary Control Register

This register provides some special functions for the parallel data path and interrupt generation
circuitry. The upper two bits change the basic timing of the timers associated with the data pipeline.
Bit 5 can disable the stale data timer. Bit 0 overrides the Fair Share functions of the device (serial
and parallel channels).

Bits Description

7:3

User-defined Interrupt Vector: Host software can use these five bits for any purpose appropriate to the
application. In some cases, these bits might define the rest of a complete interrupt response vector (Motorola-
type systems). In the case of daisy-chain systems made up of multiple CD1284s, these bits define the device
number in the chain.

2:0 Interrupt Vector Type Code: These bits are read/writable in the normal context. These bits are ‘don’t cares’.

Register Name: PACR
Register Description: Parallel Auxiliary Control
Access: Read/Write

8-Bit Hex Address: 3F
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ShrtTen ShrtStal StaleOff FIFOlock ClearTO 0 AsyncDMA Unfair

Bit Description

7
ShrtTen: This function shortens the Prescaler count cycle that generates the internal 10-µs (based on a 25-
MHz system clock) clock for the stale data counter. This bit is cleared by RESET*. If set, the 10-µs ‘ticks’ of
the counter are generated every two CLKs; the normal period is one ‘tick’ every 250 CLKs.

6

ShrtStal: This function shortens the period of the stale data timer. The stale data timer includes a divide-by-
10 prescaler; setting this bit bypasses the prescaler function thus causing the stale data timer to count on
each 10-µs clock ‘tick’.

If both ShrtTen and ShrtStal are set, the stale data timer counts on every other CLK.

5

StaleOff: If set, this bit masks off the Stale Status bit. The inverse of this bit is AND’ed with the stale state
condition of the parallel channel to produce the stale status and disables OneChar and Stale as interrupt
sources. StaleOff is provided primarily for test and development purposes if slow movement of data into the
parallel port causes Stale and OneChar to always appear true.

4

FIFOlock: The FIFOlock bit causes the FIFO to stop accepting data from the parallel channel state machine.
This action makes the FIFO appear full to the parallel port, thus causing it to enter the ‘busy’ state. This
function is primarily intended for use in system testing to cause a timeout on the 1284 bus.

Setting this bit in ECP Forward mode may cause a stall condition event 35 because event 36 does not occur
until FIFOlock is cleared. The ECP mode host transfer recovery handshake sequence (from event 35 stall) is
supported and the byte transit discarded as required by the specification. This bit does not provide an
effective means to flow control the host.

3

Clear Timeout: This bit is a reset bit for the timeout status latch logic. When toggled by software, the timeout
status in the PFSR is cleared; it may be left set to disable the Timeout status function. Note that if this bit is
left set, the OneChar interrupt condition will never become true because the OneChar interrupt logic uses the
timeout status to determine when the FIFO has become stale.
 Datasheet 139

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.7.7 Parallel Channel Reset Register

This register exists only in the Channel 0 register set and is in the equivalent address location as the
MSVR register of the serial channels.

7.7.8 Parallel FIFO Control Register

This register controls overall function of the parallel FIFO. These functions include resetting
(flushing) the FIFO, enabling DMA transfers, enabling host interrupts, run-length encoding, and so
on. The host sets these bits according to the mode of operation required.

After hard reset (RESET* or a CCR command of x’81 in one of the two serial channels), this
register is cleared to all zeros.

2 Reserved: Must be ‘0.’

1

AsyncDMA: AsyncDMA causes the device to synchronize the DMAACK* signal to the internal clock (rising
clock edge). This capability provides an asynchronous DMA interface for systems that cannot meet the set-up
times required by the synchronous DMA logic.

Refer to Chapter 8.0 for specific timing relationships between CLK and DMAACK* when AsyncDMA is
enabled.

0

Unfair: This bit overrides the Fair Share function of the device. If this bit is set, the device posts service
requests even if the service request is already asserted by an external device. The override is in effect for
channels 2 and 3; Fair Share is not functional on the parallel service request.

For applications where the three serial channel service request outputs are wire-OR’ed together, set Unfair so
that an interrupt of one type does not prevent posting one of the other types (receive, transmit, and modem).

Register Name: PCRR
Register Description: Parallel Channel Reset
Access: Read/Write

8-Bit Hex Address: 6C
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 0 0 PChReset

Bit Description

Bit Description

7:1 Reserved: Must be ‘0’

0
PChReset: Setting this bit asserts the equivalent of a hardware power-on reset to the parallel channel,
channel 0. If set by the host, it must be cleared to resume normal parallel channel operation. This hardware
reset affects only the parallel channel and has no affect on other functions of the device.

Register Name: PFCR
Register Description: Parallel FIFO Control
Access: Read/Write

8-Bit Hex Address: 31
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FIFOres DMAen DMAdir IntEn RLEen setTAG ErrEn DMAbufWe
140 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.7.9 Parallel FIFO Empty Pointer Register

This register holds the internal empty location pointer of the FIFO. It identifies the location in the
FIFO from which the next byte of data transfers from the FIFO.

Bit Description

7

FIFO Reset: This bit must be set together with the correct value of DMAdir to properly initialize the data
pipeline and FIFO registers for data transfer or when a new data transfer direction is desired. Any data
remaining in the FIFO is discarded. The FIFO remains in reset mode until this bit is cleared with a second
register write operation.

6

DMA Enable: This bit must be set for DMA requests to move data to or from the FIFO to be made. When
DMAen = 1, The PFQR quantity value is compared with the PFTR user-programmed threshold value. In
Receive mode, if the threshold is equalled or exceeded, DMAREQ* is asserted and causes DMA data
transfers of whole (2-byte) words from the FIFO by the data pipeline. In Transmit mode, if the amount of data
in the FIFO is equal to or less than the threshold, DMAREQ* is asserted causing DMA data transfers of whole
(2-byte) words to the FIFO by the data pipeline.

5

DMA Direction: This bit sets the direction of transfer between the parallel FIFO and system memory. If
DMAdir = 1, the direction is transmit (system memory to the parallel FIFO); if it is ‘0’, the direction is receive.
The desired DMAdir value must be set together with FIFOres when initializing the FIFO logic for data transfer.
Once a DMAdir value is set and the FIFOres is complete, that DMAdir selection must be maintained during
any other changes to the control bits of the PFCR.

Note: This bit sets the direction of the channel, even when DMA is not enabled. The proper direction must be
set regardless of the DMAen bit.

4

Interrupt Enable: This is the master interrupt enable for the parallel channel. This bit must be set for any
interrupts generated by the data pipeline, parallel port, or error status. In Poll-mode operation, host software
toggles this bit to signal the completion of the service-acknowledge cycle. Toggling this bit updates the state
of SVCREQP* and the PIR according to the current state of PCISR, DERR, and PFSR. For this reason,
PCISR, DERR, and PFSR should be read and cleared at the end of the service routine to ensure that no
requests were skipped. This is because an edge-sensitive interrupt controller may not detect a request active
when the program returns from the service routine.

3

RLE Enable: The state of this bit enables RLE encoding/decoding for the direction defined by DMAdir. The
RLEen bit effects the flow of data through the data pipeline in the transmit direction. Data flow into the FIFO is
managed in such a way that PFHR1 and PFHR2 are kept full to permit evaluation of data sequences for
possible compression. The effect is that following any data transfer while RLEen is set, the final 2 bytes
written to the DMABUF register are kept in PFHR1 and PFHR2. To allow these bytes to be moved into the
FIFO or to make room in PFHR1 for a tagged data transfer, RLEen must be ‘0’ and both DMAen and
DMAbufWe must be ‘0’.

2

Set TAG: This bit specifies that the next character written to the parallel channel by the PFHR1 register is to
be tagged as an ECP or EPP special character (for a detailed explanation of the special handling of these
characters, see Section 5.13). The setTAG bit is cleared by a write to PFHR1 thus, this bit must be set each
time a tagged character is to be written.

1 Error Interrupt Enable: This bit enables a non-zero DataErr status to cause an interrupt if IntEn is also set.

0

DMA Buffer Write Enable: This bit must be set to enable host writes to the DMABUF register. It also enables
the FIFO data pipeline to empty the DMABUF register when written to by the host system. In this case, the
system writes to the DMA buffer (without DMA transfers) providing a low-performance alternative to DMA
transfers.

Register Name: PFEP
Register Description: Parallel FIFO Empty Pointer
Access: Read/Write

8-Bit Hex Address: 39
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 6-bit binary FIFO Pointer Value
 Datasheet 141

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
The PFEP is cleared by a device or FIFO reset.

7.7.10 Parallel FIFO Fill Pointer Register

This register holds the internal fill location pointer of the FIFO. It identifies the location in the
FIFO to receive the next data byte from the pipeline.

The PFFP is cleared by a device or FIFO reset.

7.7.11 Parallel FIFO Holding Register 1

7.7.12 Parallel FIFO Holding Register 2

These two 1-byte registers provide a data pipeline between the FIFO and DMA buffer. Data always
flows into PFHR1 first, then to PFHR2, and finally, either to the FIFO or the DMABUF register.
The flow is to the FIFO if DMAdir is ‘1’ and, from the FIFO if DMAdir is ‘0’. The pipeline and the
holding registers support ‘tagged’ data for complete support of ECP Parallel Port mode. Tagged
data is either an address or a run-length code.

If RLEen (PFCR[3]) is set, in the receive direction, run-length codes are captured in the RLCR for
decompression of received data. ECP address codes are recognized and pass into the PFHR1–
PFHR2 pipeline. The presence of an ECP address interrupts DMA flow and causes an interrupt to
the host so it can remove the tagged data from the pipeline by reading either PFHR2 or PFHR1.

In the transmit direction, the host can introduce ECP address (tagged) data or run-length codes for
precompressed data by setting the SetTAG bit (PFCR[2]) and writing the byte to be tagged to
PFHR1. For each tagged data transfer, the SetTAG bit must be set prior to writing to PFHR1. To
perform a tagged data transfer, the automatic DMA function must be disabled prior to the transfer
(set DMAen = 0). This can be done at the same time that SetTAG is set to ‘1’.

Register Name: PFFP
Register Description: Parallel FIFO Fill Pointer
Access: Read/Write

8-Bit Hex Address: 38
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 6-bit binary FIFO Pointer Value

Register Name: PFHR1
Register Description: Parallel FIFO Holding Register 1
Access: Read/Write

8-Bit Hex Address: 35
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Character Data

Register Name: PFHR2
Register Description: Parallel FIFO Holding Register 2
Access: Read/Write

8-Bit Hex Address: 36
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Character Data
142 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
These registers are cleared by a device or FIFO reset and marked as empty in HRSR. Any tagged
status is also cleared.

7.7.13 Parallel FIFO Quantity Register

This register maintains the quantity (or count) of either data bytes or space available in the parallel
FIFO. In the receive direction (DMAdir = 0), PFQR counts data characters in the FIFO. In the
transmit direction (DMAdir = 1), PFQR counts space available in the FIFO for additional
characters to transmit. FIFOres, together with the value of DMAdir, initialize PFQR to either x’00
(receive) or x’40 (transmit).

In either case, the PFQR indicates only the quantity of data or space available in the FIFO, and
does not include the data pipeline registers.

7.7.14 Parallel FIFO Status Register

This read-only register provides the current FIFO and data pipeline status. Host software should
examine these bits in response to pipeline interrupts or polling operations.

This register is not directly cleared by reset, but the individual bits reflect the status of other
registers.

Register Name: PFQR
Register Description: Parallel FIFO Quantity
Access: Read/Write

8-Bit Hex Address: 3A
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data or Space Available in FIFO — Max 0x40

Register Name: PFSR
Register Description: Parallel FIFO Status
Access: Read only

8-Bit Hex Address: 32
Default Value: 40

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FFfull FFempty Timeout HRtag HRdata Stale OneChar DataErr

Bit Description

7 Parallel FIFO is Full: If this bit is set, it indicates that the parallel FIFO is full.

6 Parallel FIFO is Empty: If this bit is set, the parallel FIFO is empty.

5

Timeout: This bit is set when Stale goes from false to true. In the receive direction, Timeout is delayed until
the FIFO is empty and all DMA cycles are complete (PFHR2 may or may not be full). Timeout is a pipeline
interrupt condition and must be cleared manually by the CPU. This is done by toggling ClrTO (PACR[3]) or by
a FIFO reset in PFCR.

4
Holding Register Tag: This bit indicates that a tagged character is in either PFHR1, PFHR2, or both. If
enabled, this bit being set causes a host interrupt to be generated. The host should examine the HRSR to
determine the exact cause(s) of this bit being set.

3 Holding Register Data: If this bit is set, it indicates that either PFHR1, PFHR2, or both contain data.
 Datasheet 143

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.7.15 Parallel FIFO Threshold Register

This register sets the FIFO threshold for initiating DMA requests for data transfer. The value is
expressed in bytes. Whenever DMAen is true, regular comparisons are made between the PFQR
and the PFTR. If the value in the PFQR is greater than or equal to the threshold, the DMA request
logic becomes active and remains active until the FIFO is essentially filled or emptied. An odd
character or space in the FIFO can remain.

In the receive direction, the Holding register pipeline (PFHR1 and PFHR2) are kept filled, so that
tagged data (for example, ECP mode addresses) can be detected and passed to the host by an
interrupt. For example, if the FIFO and data pipeline are initialized for receive, and 40 hex bytes
are placed into the FIFO from the parallel port, the first two of those bytes automatically are placed
in the Pipeline registers. If the PFTR were programmed to x’40 bytes, x’42 bytes must arrive to
trigger a DMA transfer.

PFTR is cleared by device reset; it is not cleared by FIFOres.

7.7.16 Run Length Count Register

This register works with the Holding registers (PFHR1 and PFHR2) to perform run-length
encoding and decoding when RLEen is set (PFCR[3]). The parallel port must be in ECP mode; in
other modes, run-length encoding does not occur.

2

Stale: This bit is set when the stale data timer expires (see the description of SDTPR). If a single byte
remains in the data pipeline when this bit is set, a host interrupt is generated, the OneChar bit is set, and new
data entering the FIFO does not move into PFHR1 until PFHR2 empties. If two or more bytes remain in the
pipeline when this bit is set, a host interrupt is not generated, however, a DMA request is generated if
enabled.

1

One Character: In the receive direction, this bit set indicates that the FIFO is empty and stale, and one
character remains in PFHR2. This condition occurs if an odd number of bytes is transferred by the parallel
interface. Since DMA cycles only move even numbers of bytes (words) and odd transfers leave one byte
remaining, host software must remove this character outside of DMA transfer cycles.

0 Data Error: If this bit is set, it indicates that one or more of the bits in the DER are set.

Register Name: PFTR
Register Description: Parallel FIFO Threshold
Access: Read/Write

8-Bit Hex Address: 3B
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 DMA Transfer Threshold

Bit Description (Continued)

Register Name: RLCR
Register Description: Run Length Count
Access: Read/Write

8-Bit Hex Address: 37
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 7-bit Unsigned Binary Count
144 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
In the transmit direction, strings of three or more identical characters are recognized and
compressed. The running count of identical characters is kept in the RLCR. Once the sequence is
broken by a different character or the end of the transmit burst transfer, the count and a single copy
of the duplicated character are put in the FIFO.

In the receive direction, run-length codes can be received from the remote device. These codes are
recognized ‘on the fly’ as data flows from the FIFO through the holding register pipeline. A run-
length code is diverted to the RLCR. The subsequent character from the FIFO is duplicated (held in
PFHR1) while the RLCR decrements. Once the RLCR reaches ‘0’, normal pipeline data movement
resumes. If run-length codes are being received by the parallel port but RLEen is not set, the codes
enter PFHR1 and PFHR2 as tagged data and cause interrupts to the host. The host must read the
tagged Holding register directly to remove the character from the pipeline and clear the tag.

This register is cleared by a device or FIFO reset.

7.7.17 Stale Data Timer Count Register

This register determines the period that signals stale data in the FIFO. The timer is used only in the
receive direction. Each time a new character is placed in the FIFO from the parallel port, the
SDTCR is reloaded from the SDTPR, and down-counting begins at the ‘tick’ rate. If the counter
reaches ‘0’, the Stale bit (PFSR[2]) is set. If the amount of data available is greater than or equal to
one word, a DMA request is made to move all remaining whole words to the host with a DMA
transfer. Once the DMA transfer is complete, a single remaining character causes an interrupt to the
host to remove the character by reading PFHR2.

This register is cleared by a device or FIFO reset. Clearing it causes the Stale bit (PFSR[2]) to
become true.

7.7.18 Stale Data Timer Period Register

This register provides a user-defined period value for use as the timeout value of the stale data
timer (see SDTCR).

With a 25-MHz CLK input to the device, the resolution of this timer is 0.1 ms (with a maximum
value of 25.5 ms). The 25-MHz clock is divided by 250 to produce a 10-µs intermediate clock for
this timer. A fixed, divide-by-ten prescaler produces 0.1-ms ‘ticks’ to the stale data timer. To ensure
accuracy for small timeout values, the prescaler is reset each time the stale data timer is reloaded.
(A user selection of 0.1-ms timeout results in a time delay between 0.09 and 0.1 ms.)

Register Name: SDTCR
Register Description: Stale Data Timer Count
Access: Read/Write

8-Bit Hex Address: 3D
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Stale Data Timer Count

Register Name: SDTPR
Register Description: Stale Data Timer Period
Access: Read/Write

8-Bit Hex Address: 3C
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Stale Data Timeout Value
 Datasheet 145

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
The SDTPR is cleared by a device reset.

7.8 Channel Registers — Parallel Port

7.8.1 EPP Address Register

This register is only used during EPP mode.

The CD1284 deposits the value obtained during an EPP address write command in this register.
The CD1284 provides this value in response to an EPP address read command.

7.8.2 Host Timeout Value Register

This register holds the 8-bit value used to set the Host timeout period. The HTVR is an unsigned,
binary value. The reset state of this register is ‘0xFF’.

A function missing in Revision C and earlier devices is an on-chip timer to indicate that the remote
host has not responded in a specified time period. The Host timeout is defined in the IEEE STD
1284 specification as a period of one second.

Revision D and newer devices add a user-programmable timer to provide a timeout if the remote
host does not respond to specific parallel port transactions. The timer is started by the parallel port
state machine each time it starts a sequence requiring a host response. Activation of the timer is
automatic and an interrupt is generated to the local host CPU if the timer expires before the remote
host responds.

Note: Users familiar with the IEEE specification note that the events that start the timer cause the
peripheral device to wait for a remote host-generated event. For example, during the negotiation
sequence after event 2, the peripheral waits for event 3 – a host-generated event. If the host does
not respond and moves the negotiation sequence to event 4 within one second, the peripheral enters
the ‘host timeout’ condition.

The timer is a 14-bit counter clocked by the system clock (CLK) prescaled (divided) by 2048. Then
the 8-bit HTVR (address offset 0x24) is programmed and compared with the most-significant 8 bits
of the 14-bit counter. Each time the parallel port executes an event requiring a host response, the

Register Name: EAR
Register Description: EPP Address
Access: Read/Write

8-Bit Hex Address: 25
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Value

Register Name: HTVR
Register Description: Host Timeout Value
Access: Read/Write

8-Bit Hex Address: 24
Default Value: FF

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

HTVR[7] HTVR[6] HTVR[5] HTVR[4] HTVR[3] HTVR[2] HTVR[1] HTVR[0]
146 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
14-bit counter is started (from 0x00). It counts up until either the expected event occurs or the
count matches the value in HTVR. If a match occurs, a timeout condition exists. The HTVR need
only be loaded once, typically during device initialization.

The value placed in HTVR yields an approximate one second count time, based on the value of the
input CLK. For example, if the system clock driving the device is 25 MHz, the HTVR should be
loaded with 0xC0. The following equation provides an example.

The computed value is rounded up to the next largest whole hex value, in this case ‘0x3000’. Load
the HTVR with the most-significant 8 bits of this value, left-shifted two places since HTVR is a 14-
bit counter. This results in a value of ‘0xC0’. For 20 MHz, the value is computed to be ‘0x9C’; for
16 MHz, the value is ‘0x7C’; values for other clocks can be easily computed in the same manner.
At reset, the HTVR defaults to a value of ‘0xFF’; this prevents the extremely short timeouts that
occur if the register is cleared at device reset and is not initialized.

A timeout causes a negotiation status change interrupt. This status is displayed as ‘0x22’ in the
NSR (NSR[5] and the code for return to Compatibility mode – ‘0010’ – in the result code field).
When Compatibility mode is reentered, the port control state machine waits in a locked state until
signals on the parallel port return to normal Compatibility mode conditions.

For debug purposes, disable the host timeout timer by setting PCR[3:2] (HTmrTst[1:0]). In this
case, no timeouts occur and the link can hang indefinitely while waiting for a host-generated event.

7.8.3 Input Value Register

This register always shows the current state of the external handshake pins.

25MHz
2048

------------------ 1220710 2FAF16= =

Register Name: IVR
Register Description: Input Value
Access: Read only

8-Bit Hex Address: 2E
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 A1284 nInit HstBsy HstClk

Bit Description

7:4 These bits are not used and return ‘0’ when read.

3 A1284

2 nInit (low active Init input)

1 HstBsy (host busy)

0 HstClk (host clock)
 Datasheet 147

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.8.4 Manual Data Register

This read/write register can read the state of the PD[7:0] signals in any mode. If the ManMd bit
(PCR[7]) and the MMDir and ManOE bits (PCR[1:0]) are set, then the value written into this
register is driven onto the PD[7:0] signals.

7.8.5 Negotiation Enable Register

Each bit set along with EICR (PCR[6]) allows the CD1284 to engage in IEEE STD 1284
negotiations and move into the corresponding protocol. It is assumed that the peripheral host
software responds to a request for slave ID and is able to send an ID string in any supported
protocol. In response to an ID request, the CD1284 does not provide a method of storing and
automatically sending an ID string. Note that the EPP protocol does not have provision for slave ID
requests.

7.8.6 Negotiation Status Register

The results of negotiation attempts are stored in this register.

Register Name: MDR
Register Description: Manual Data
Access: Read/Write

8-Bit Hex Address: 21
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Data

Register Name: NER
Register Description: Negotiation Enable
Access: Read/Write

8-Bit Hex Address: 28
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 RID 0 EPP RLE ECP RVB RVN

Bit Description

7 Reserved: This read-only bit is always ‘0’.

6 Request Slave ID

5 Reserved: This bit must always be ‘0’.

4 EPP Mode Enable

3 Run Length Encoding in ECP Mode Enable

2 ECP Mode Enable

1 Reverse Byte Mode Enable

0 Reverse Nibble Mode Enable

Register Name: NSR
Register Description: Negotiation Status
Access: Read/Write

8-Bit Hex Address: 29
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

NegOK NegFl HostTO ImedTerm 4-bit Negotiation Result Code
148 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Any change in the mode of the parallel port is reported to the peripheral host by interrupt if the
NegCh bit (PCIER[5]) is set; host software then reads the NSR to determine the current status and
condition. Once the host has read the NSR status resulting from the current negotiation, it should
clear the register in preparation for additional negotiation cycles. The NSR can be cleared by
writing any value.

7.8.7 Ones Detect Register

Bit Description

7 Negotiation OK: The state of this bit indicates that the negotiation was successful.

6 Negotiation Failed: The state of this bit indicates that the negotiation failed. The result code indicates which
mode was attempted

5
Host Timeout: This bit indicates that a host timeout occurred on the parallel channel. The accompanying 4-
bit result code indicates that the link has returned to Compatibility mode (x02). See the description of HTVR in
Section 7.8.2 on page 146.

4
Immediate Termination: This bit indicates that the A1284 signal has unexpectedly gone inactive as a result
of an immediate termination from the host and the interface and has reentered Compatibility mode. The 4-bit
negotiation result code should indicate which mode was terminated.

3:0

The lower 4 bits of this register contain a result code that shows the current mode. The following table shows
the encoding of the result code.

0 0 0 0 Compatible mode — no negotiation.

0 0 0 1 Failed negotiation.

0 0 1 0 Compatible mode — termination of a 1284 mode.

0 0 1 1

Reserved.0 1 0 0

0 1 0 1

0 1 1 0 EPP mode.

0 1 1 1 Reserved.

1 0 0 0 Reverse Nibble mode.

1 0 0 1 Reverse Nibble mode — ID request.

1 0 1 0 Reverse Byte mode.

1 0 1 1 Reverse Byte mode — ID request.

1 1 0 0 ECP mode without RLE.

1 1 0 1 ECP mode without RLE — ID request.

1 1 1 0 ECP mode with RLE.

1 1 1 1 ECP mode with RLE — ID request.

Register Name: ODR
Register Description: Ones Detect
Access: Read/Write

8-Bit Hex Address: 2D
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 A1284 nInit HstBsy HstClk
 Datasheet 149

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Setting the bits in this register enables the CD1284 to generate an interrupt – if SigCh (PCIER[4])
is set – when the selected signal changes from low-to-high (rising edge). Bits 7:4 are reserved and
must be written as zeros; they return zero when read. The settings in this register have no effect
(that is, a SigCh interrupt is not generated) unless the device is in Manual mode.

7.8.8 Output Value Register

This register controls output signals. In Manual mode, all signals are controlled by these register
settings. In Compatibility and EPP modes, PerBsy and PerClk are controlled by the internal
parallel port state machine, while AkDaRq, xFlag, and nDatAv are controlled by this register. In
ECP mode, the settings in this register have no effect.

7.8.9 Parallel Channel Interrupt Enable Register

7.8.10 Parallel Channel Interrupt Status Register

Register Name: OVR
Register Description: Output Value
Access: Write only

8-Bit Hex Address: 2B
Default Value: 48

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PerBsy PerClk AkDaRq xFlag nDatAv 0 0 0

Bit Description

7:6 Peripheral Busy and Peripheral Clock: User-controlled in Manual mode only.

5
Acknowledge Data Request: In Compatible mode, this signal is the PError (Peripheral Error) signal.

In EPP mode, this signal is auxiliary and is a user-defined signal (USER 1).

4
XFlag: In Compatible mode, this signal is the SELCT (Select) signal.

In EPP mode, this signal is auxiliary and is a user-defined signal (USER 2).

3
Negative-true Data Available: In Compatible mode, this signal is the nFault (negative-true fault) signal.

In EPP mode, this signal is auxiliary and is a user-defined signal (USER 3).

2:0 Reserved: These bits must be written as ‘0’.

Register Name: PCIER
Register Description: Parallel Channel Interrupt Enable
Access: Read/Write

8-Bit Hex Address: 22
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 21 Bit Bit

0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT

Register Name: PCISR
Register Description: Parallel Channel Interrupt Status
Access: Read/Write

8-Bit Hex Address: 23
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 TimOvr NegCh SigCh EPPAW DirCh IDReq nINIT
150 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
PCIER and PCISR provide control and status of interrupts generated by the parallel channel
control state machine. They have the same bit definitions. Each bit in the PCIER enables the
interrupt of the same type in the PCISR. A write of any value to the PCISR in response to an
interrupt request causes it to clear and the interrupt request is removed.

7.8.11 Parallel Configuration Register

This register controls the overall configuration of the parallel port, each of which is described in
IEEE 1284 format below.

Bit Description

7 This bit must always be ‘0’

6 Timer Enable and Timer Over: These two bits are for factory test purposes only and should never be
written.

5 Negotiation Change: The state of this bit indicates that a change occurred in the negotiation status of the
port. The NSR indicates the new status of the parallel port.

4
Signal Change Enable: This enable instructs the parallel port to generate an interrupt when any of the
signals specified by the ZDR or ODR change state as programmed. This interrupt is only generated during
Manual mode, however, it cannot be cleared by terminating Manual mode.

3 EPPAW: The state of this bit indicates that the remote master has written an EPP address to the CD1284.
The new EPP address value is placed in the EAR.

2

Direction Change: This bit indicates that the host-side parallel port changed the direction of the interface.
Generally, this is in response to a request made by the CD1284 through the RevRq bit (SCR[0]). DirCh
indicates that the direction was reversed through the defined protocol and the CD1284 can now send data to
the master.

1 ID Request: The state of this bit indicates that the host has requested that the CD1284 send its ID data
string. The peripheral host sends the appropriate ID string (this is application dependent).

0 nINIT: This interrupt is generated when an nINIT pulse is received while in Compatibility mode. The interrupt
occurs on the leading edge of the nINIT pulse.

Register Name: PCR
Register Description: Parallel Configuration
Access: R/W

8-Bit Hex Address: 20
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ManMd E1284 ETxfr Ig_SEL HTmrTst[1] HTmrTst[0] MMDir ManOE
 Datasheet 151

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
7.8.12 Special Command Register

This register provides the peripheral host processor to issue special commands to the channel
control state-machine. In response, the state-machine will perform the indicated IEEE STD 1284-
defined handshake on the parallel interface.

Bit Description

7:5

Mode Control: These three bits control the type of transfer desired and whether or not it is enabled to do so.

The ManMd bit selects Manual mode, which allows the user direct control over all parallel data and parallel
port control signals. MMDir controls the direction of the MDR (Manual Data register), and ManOE is the output
enable when MMDir = 1 (output mode).

E1284 allows the parallel port to engage in IEEE 1284 negotiations; ETxfr enables data transfers. The ETxfr
enable is only used for data transfers. EPP address read and write functions do not require that the ETxfr bit
be set.

4

Ig_SEL: This bit prevents the CD1284 from considering the state of the SLCTIN* input when deciding
whether or not to accept Compatibility mode forward data transfers.

When Ig_SEL is reset, SLCTIN* must be active (low) to receive data on the parallel port in response to a
STROBE* input. If Ig_SEL is set, SLCTIN* is not considered and data is accepted regardless of its state. The
Ig_SEL bit should be set/reset together with the E1284 bit.

3:2

Host Timer Test Control [1:0]: These two bits control the clock rate of the host timeout timer and are
intended primarily for manufacturing test purposes. As such, normal user-level programming should leave
these bits cleared (‘0’). When these bits are set to ‘1’, the timer is completely disabled – useful for factory
debug purposes.

1:0

Manual Mode Control: These two bits provide direction and output enable manual control over the parallel
port.

Register Name: SCR
Register Description: Special Command
Access: R/W

8-Bit Hex Address: 2A
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 TestMux ClrPs SetPs EPIrq RevRq

ManMd E1284 Etxfr Mode

0 0 0 Compatibility mode; transfers disabled.

0 0 1 Compatibility mode; transfers enabled.

0 1 0 IEEE 1284 negotiation; transfers disabled.

0 1 1 IEEE 1284 negotiation; transfers enabled.

1 X X Manual mode.

MMDir ManOE Mode

0 0 Reverse direction.

0 1 Reverse direction.

1 0 Forward direction disabled.

1 1 Forward direction enabled.
152 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
7.8.13 Short Pulse Register

This register performs two functions,

• It sets the duration of the short pulse used by the IEEE 1284 protocols for all modes other than
Compatibility;

• In Compatibility mode, it sets the duration of the ACK* pulse.

For non-compatible modes, SPR must be set to n − 2, where n is the number of CLKs in a 500-ns
pulse. The peripheral host initializes this register with the appropriate value to generate a 500-ns
pulse width based on the operating frequency of the device. In Compatibility mode, SPR should be
set to the needed length of the ACK* pulse. This is provided to enable the device to interface to

Bit Description

7:5 These read-only bits are always ‘0’.

4
TestMux: When this bit is set, the state of the state machine is multiplexed onto the GPIO pins for debugging
purposes.

GPIO is not possible when this bit is set.

3:2

Clear Pause and Set Pause: These commands implement an error pause in Compatibility mode. Usually,
errors are presented to the host parallel port by the peripheral during the active BUSY period of a data
transfer. SetPs remains set until ClrPs is set, at which time both clear.

In most cases, the slave host also sets RevRq at the same time when SetPs is set to:

1) Lockup Compatibility mode with BUSY high, and

2) Request a reverse transfer if the master requests that an additional status be sent in the reverse direction

1 EPP Interrupt Request: This command causes the state machine to generate the EPP interrupt sequence.
This bit clears on the initiation of the Intr (PerClk) pulse on the parallel port interface.

0

Reverse Request: This command requests that the host parallel port initiate the defined interface reversal
handshake as defined by the IEEE STD 1284 specification. The command bit clears to indicate completion
after the command executes on the interface. For Reverse Nibble and Reverse Byte modes, this occurs after
negotiation is complete; in ECP mode, it occurs after the Reverse Request signal on the parallel port interface
goes low.

In ECP mode, nPeriphRequest (nFault) is driven low to request that the host-side parallel port reverse the
direction of the interface.

When this bit is set upon termination of Compatibility mode, the CD1284 can indicate that reverse data is
available (through the nDataAv signal) immediately upon recognition of a Reverse Nibble or Reverse Byte
negotiation. To obtain this behavior, this bit should be initialized to ‘1’ and set to ‘1’ upon termination of
Compatibility mode.

Register Name: SPR
Register Description: Short Pulse
Access: Read/Write

8-Bit Hex Address: 26
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Value
 Datasheet 153

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
slow masters that require an ACK* pulse longer than the maximum specified in the IEEE STD
1284 specification. The table below shows some examples of the necessary binary value for
various system clock frequencies to set the 500-ns pulse width.

7.9 Pin Control Registers

The parallel port has five outputs and four inputs. The pin assignments are the same as those
defined in the IEEE STD 1284 specification. The definition of the pins depends on the current
negotiated mode; these are detailed in the following descriptions.

7.9.1 Signal Status Register

The bits in this register show the results of changes specified in the ODR and ZDR. Normally, the
host reads this register in response to a signal change interrupt generated by the CD1284. This
register is active and valid only in Manual mode. Bits 7:4 return zeros when read. A write of any
value to the register clears it.

7.9.2 Zeros Detect Register

Setting the bits in this register enables the CD1284 to generate an interrupt – if the SigCh bit
(PCIER[4]) is set – when the selected signal changes from high-to-low (falling edge). Bits 7:4 are
reserved and must be written as ‘0’; they return ‘0’ when read. The settings in this register have no
effect (that is, the SigCh interrupt is not generated) unless the device is in Manual mode.

Clock
(MHz) SPR Value Resultant Pulse Width

(ns)

16 8 500

20 10 500

25 13 520

Register Name: SSR
Register Description: Signal Status
Access: Read/Write

8-Bit Hex Address: 2F
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 A1284 nInit HstBsy HstClk

Register Name: ZDR
Register Description: Zeros Detect
Access: Read/Write

8-Bit Hex Address: 2C
Default Value: 00

0 0 0 0 A1284 nInit HstBsy HstClk
154 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
8.0 Electrical Specifications

Note: Verify with your local sales office that you have the latest datasheet before finalizing a design.

8.1 Absolute Maximum Ratings

• Supply voltage (VCC)+7.0 V (volts)

• Input voltages, with respect to ground-0.5 V to VCC +0.5 V

• Operating temperature (TA)0°C to 70°C

• Storage temperature-65°C to 150°C

• Power dissipation0.25 W (watt)

Note: Stresses above those listed under Absolute Maximum Ratings can cause permanent damage to the
device. This is a stress rating only, and functional operation of the device at these or any conditions
above those indicated in the recommended operating conditions is not implied. Exposure to
absolute maximum rating conditions for extended periods can affect device reliability.

8.2 Recommended Operating Conditions

Supply voltage (VCC)5 V ± 5%

Operating free air ambient temperature0°C < TA < 70°C

System clock25 MHz

ESD

(Human body model)
100 pF. 1.5 kΩ, ± 2 kV

Mil-Std-883D

Method 3015.7

ESD

(Machine model)
200 pF, 0 Ω, ± 200 V EIAJ IC-121

Latch-up

I/O ± 100 mA, VCC = 5 V

Temperature = 25°C and 70°C
JEDEC number 17

VCC ramp 5 V to 9 V

Temperature = 25°C and 70°C
JEDEC number 17

Hysteresis 200 mV

(@ VCC = 5V ± 5%, TA = 0°C to 70°C)

Symbol Parameter MIN MAX Units Test Conditions

VIL Input low voltage −0.5 0.8 V

VIH Input high voltage 2.0 VCC V 1

VOL Output low voltage 0.4 V IOL = 2.4 mA 2

VOH Output high voltage 2.4 V IOH = -400 µA
 Datasheet 155

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
The signals specific to the parallel port meet all requirements of the IEEE STD 1284 specification,
except for input signal protection (−2.0 to + 7.0 V); external circuitry is required to meet this
specification.

Note: While the CD1284 is a highly dependable device, there are a few guidelines to ensure that the
maximum possible level of overall system reliability is achieved. First, design the PC board to
provide maximum isolation of noise. A four-layer board is preferable, but a two-layer board will
work if proper power and ground distribution is implemented. In either case, decoupling capacitors
mounted close to the CD1284 are strongly recommended. Noise typically occurs when either the
CD1284 data bus drivers come out of tristate to drive the bus during a read, or when an external bus
buffer turns on during a write cycle. This noise, a rapid rate-of-change of supply current, causes
‘ground bounce’ in the power-distribution traces. This ground bounce, a rise in the voltage of the
ground pins, effectively raises the input logic thresholds of all devices in the vicinity, resulting in
the possibility of a ‘1’ being interpreted as a ‘0’.
To reduce the possibility of ground-bounce affecting the operation of the CD1284, Intel has
specified the input-high voltage (VIH) of the CLK and RESET* pins at 2.7 V, instead of the TTL-
standard 2.0 V. This eliminates any sensitivity to ground bounce, even in extremely noisy systems.
Although 2.7 V is higher than the industry-standard 2.4-V output (VOH) specified for TTL, there
are several simple ways to meet this specification:

1. Use any of the available advanced-CMOS logic families (FACT, ACL, etc.). These CMOS
output buffers will pull-up close to VCC when not heavily loaded. In addition, AS and ALS
TTL can be used if the output of the TTL device is only driving one or two CMOS loads.

2. As noted in the Texas Instruments ALS/AS Logic Data Book (1986 — pages 4-18 and 4-19),
the VOH output of these families exceeds 3.0 V at low-current loading. Other manufacturers
publish similar data. Intel recommends the use of one of these two options for the CLK input
to ensure fast, clean edges.
Note that RESET* can, if desired, be pulled up passively with ≤ 1-kΩ resistor.

IIL Input leakage current −10 10 µA 0 < VIN < VCC

ILL
Data bus tristate leakage
current −10 10 µA 0 < VOUT < VCC

IOC
Open-drain output leakage
current −10 10 µA 0 < VOUT < VCC

ICC Power supply current 60 mA CLK = 25 MHz

CIN Input capacitance 10 pF

COUT Output capacitance 10 pF

NOTES:
1. VIH is 2.7 V minimum on RESET*, CLK, and DMAACK*.
2. VOL for open-drain signals is 0.5 V @ 8 mA sinking because these signals can be wire-OR’ed in some systems and can have

multiple pull-up resistors that increase the load on the output.

(@ VCC = 5V ± 5%, TA = 0°C to 70°C)

Symmetrical input/output drive: ±14 mA

Controlled voltage slew rate: 0.4 V/µs

Input hysteresis: 0.8 V
156 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
8.3 AC Characteristics

8.3.1 Asynchronous Timing

Refer to the Figures 6-1 through 6-7 for the reference numbers in the following table.

Table 27. Asynchronous Timing Reference Parameters (Sheet 1 of 2)

Timing
Number Figure Parameter MIN MAX Unit

t1
Figure

20 RESET* low pulse width 10 TCLK

t2 22 Address setup time to CS* or DS* 10 ns

t3 22 R/W* setup time to CS* or DS* 10 ns

t4 22 Address hold time after CS* 0 ns

t5 22 R/W* hold time after CS* 0 ns

t6 22 DTACK* low to read data valid 10 ns

t7 22 DTACK* low from CS* or DS2 2 TCLK 4 TCLK + 30 ns

t8 22 Data Bus tristate after CS* or DS* high 0 30 ns

t9 22 CS* or DGRANT* high from DTACK* low 0 ns

t10 22 DTACK* inactive from CS* or DGRANT* and DS* high 40 ns

t11 22 DS* high pulse width 10 ns

t12 23 Write data valid from CS* and DS* low 1TCLK ns

t13 23 Write data hold time after DS* high 0 ns

t14 21 Clock period (TCLK)1, 3 40.0 1000 ns

t15 21 Clock low time1 0.3 TCLK 0.7 TCLK ns

t16 21 Clock high time1 0.3 TCLK 0.7 TCLK ns

t17 24 Propagation delay, DGRANT* and DS* to DPASS* 35 ns

t18 24 Setup time, SVCACK* to DS* and DGRANT* 10 ns

t19 25 Setup time, DMAACK* to rising edge of CLK 10 ns

t20 25 Hold time, read data after rising edge of CLK 10 30 ns

t21 27 Setup time, write data to rising edge of CLK 0 ns

t22 22 DTACK* active pull-up time4 see note 4 ns

t23 25 Data valid after falling edge of CLK (DMA read) 25 ns

t24
25

27
Hold time, DMAREQ* after DMAACK* falling edge,
last DMA cycle 10 1 CLK + 15 ns
 Datasheet 157

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Note: For synchronous systems, it is necessary to determine the clock cycle number so that interface
circuitry can stay in lock-step with the device. CLK numbers can be determined if RESET* is
released within the range ta–tb; ta is defined as 10-ns minimum after the rising edge of the clock; tb
is defined as 5-ns minimum before the next rising edge of the clock. If these conditions are met, the
cycle starting after the second rising edge is C1. See the synchronous timing diagrams for
additional information. Clock numbers are not important in asynchronous systems.

The following timing numbers are for the back-to-back asynchronous DMA timing diagrams.

t25 26 Hold time, DMAACK* active (DMA read/write) 3 CLK

t26 26 Delay, data valid after falling edge DMAACK* (DMA
read) 0.5 CLK + 20 1.5 CLK + 25 ns

t27 26 Hold time, data valid after rising edge DMAACK* (DMA
read) 10 30 ns

t28
26

28
Inactive time, DMAACK* (DMA read/write) 10 ns

t29
26

28
Hold time, DMAREQ* rising edge after
DMAACK* falling edge (DMA read/write) 10 1 CLK + 15 ns

t30 28 Hold time, DMAACK* active (DMA write) 2.5 CLK

t31 28 Delay, data valid after falling edge DMAACK* (DMA
write) 1.5 CLK

t32 28 Hold time, data valid (DMA write) 3 CLK + 10 ns

NOTES:
1. Timing numbers for RESET* and CLK in the table above are valid for both asynchronous and synchronous specifications.

The device operates on any clock with a 40–60 duty cycle or better.
2. On host-I/O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* is delayed by 20 CLKs (1 µs @ 20

MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the I/O cycle, wait states or some other
form of delay generation must be used to assure that the CD1284 is not accessed until after this time period.

3. As TCLK increases, device performance decreases. A minimum clock frequency of 25 MHz is required to ensure
performance as specified. The recommended maximum TCLK is 1000 ns.

4. DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK* goes to the
‘open-drain’ (high-impedance) state.

Figure 20. Reset Timing

Table 27. Asynchronous Timing Reference Parameters (Sheet 2 of 2)

Timing
Number Figure Parameter MIN MAX Unit

t1

VCC

CLK

RESET*

ta tb C2 C1 C2 C1 C2
158 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 21. Clock Timing

Figure 22. Asynchronous Read Cycle Timing

t14

t16 t15

CLK

A[6:0]

R/W*

CS*

DTACK*

DB[15:0]

t2 t4

t3

t6

t7 t10

t9

t8

t5

t22

t11

DS*
 Datasheet 159

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 23. Asynchronous Write Cycle Timing

A[6:0]

R/W*

DTACK*

DB[15:0]

t2 t4

t3

t12

t7 t10

t9

t13

t5

CS*

t22

t11
DS*
160 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 24. Asynchronous Service Acknowledge Cycle Timing

A[6:0]

R/W*

SVCACK*

DGRANT*

DTACK*

DB[15:0]

t11

t2 t4

t3

t6

t7 t10

t9

t8

t5

t17

DPASS*

DS*
t18

t22

SVCREQ*
 Datasheet 161

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 25. Asynchronous DMA Read Cycle Timing

Figure 26. Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)

DB[15:0]

DMAACK*

CLK

‘a’ ‘b’

NOTES:
1. The DMA handshake operates in asynchronous mode only if the AsyncDMA bit is set in PACR.
2. If DMAACK* is released after point ‘a,’ but before point ‘b’ (two rising CLK edges after the falling edge of

DMAACK*), DB[15:0] is released at t20 following the rising edge of CLK. If DMAACK* is held past this edge, it
controls the release of DB[15:0]; the data bus remains active until DMAACK* becomes inactive (point ‘c’).

3. Figure 25 is still valid, however, Figure 26 illustrates more robust timing.

t20

t19 ‘c’

MAY CHANGE

VALID

t23

DMAREQ*

t24

NOTES:
1. The DMA handshake operates in asynchronous mode only if the AsyncDMA bit is set in PACR.
2. If DMAACK* is released after point ‘a,’ but before point ‘b’ (two rising CLK edges after the falling edge of DMAACK*),

DB[15:0] is released at t20 following the rising edge of CLK. If DMAACK* is held past this edge, it controls the release of
DB[15:0]; the data bus remains active until DMAACK* becomes inactive (point ‘c’).

3. Figure 25 is still valid, however, Figure 26 illustrates more robust timing.

DB[15:0]

DMAACK*

CLK

NOTE: The falling edge of DMAACK* is synchronized internally with the rising edge of the clock when asynchronous
timing is selected by PACR[1]. The data valid time can vary by as much as one full CLK cycle depending on when
DMAACK* falling edge occurs in relation to the CLK rising edge. The minimum DMAACK* active time must be met
to ensure that the data has become valid before the rising edge of DMAACK*. The DMAACK* can be extended to
any length, which extends the data valid hold time accordingly. If t25 is not met and DMAACK* is deasserted in less
than t25 (MIN), then the data bus tristates t27 after the third rising clock edge following the assertion of DMAACK*.

t27

t29

VALID

DMAREQ*

SEE NOTESEE NOTE

t28
t25

VALID

t26

DMAACK* SYNCHRONIZED
HERE
162 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
8.3.2 Synchronous Timing

Use the following table as a reference to timing parameters of figures in this section.

Figure 27. Asynchronous DMA Write Cycle Timing

Figure 28. Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)

CLK

DMAACK*

DB[15:0]

MAY CHANGE

VALID

t19

t21
DMAREQ*

t24

NOTE: Figure 27 is still valid, however, Figure 28 illustrates more robust timing.

DB[15:0]

DMAACK*

CLK

NOTE: The data is sampled on the third rising edge of CLK following the assertion of DMAACK*. If DMAACK* is held
active for more than three CLK cycles then the next DMA write cycle will simply be delayed, but the data will still be
sampled on the third rising CLK edge following the assertion of DMAACK*. If DMAACK* is active for < 3 CLKs, the
n the data is still sampled on the third rising CLK edge following the assertion of DMAACK* (provided that
DMAACK* is active long enough for the device to lastch it. Due to this somewhat synchronous behavior, care must
be taken to guarantee that the data is valid at this CLK edge. Do not assume that the data will be sampled on the
deassertion of DMAACK*.

t32

t29

VALID

DMAREQ*

t28

VALID

t31

t30

t30

t32
t31

DMAACK* SYNCHRONIZED
HERE

DMAACK* SYNCHRONIZED
HERE

DATA SAMPLED
HERE

DATA SAMPLED
HERE

DMAACK* LATCHED
HERE

SEE NOTE
 Datasheet 163

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Table 28. Synchronous Timing Reference Parameters

Timing
Number Figure Parameter MIN MAX Unit

t1 29 Setup time, CS* and DS* to C1 rising edge 15 ns

t2 29 Setup time, R/W* to C1 rising edge 15 ns

t3 29 Setup time, address valid to C1 rising edge 20 ns

t4 29 C2 rising edge to data valid 60 ns

t5 29 DTACK* low from C3 rising edge1 30 ns

t6 29 CS* and DS* trailing edge to data bus high-impedance 30 ns

t7 29 CS* and DS* inactive between host accesses 10 ns

t8 29 Hold time, R/W* after C3 rising edge 20 ns

t9 29 Hold time, address valid after C3 rising edge 0 ns

t10 30 Setup time, write data valid to C2 rising edge 0 ns

t11 31 Setup time, DS* and DGRANT* to C1 rising edge 30 ns

t12 31 Setup time, SVCACK* to DS* and DGRANT* 10 ns

t13 30 Hold time, write data valid after C3 rising edge 0 ns

t14 31 Propagation delay, DS* and DGRANT* to DPASS* 35 ns

t15
32

33
Falling edge DMAREQ* after rising edge CLK (DMA write/read) 25 ns

t16
32

33
Hold time, rising edge DMAREQ* after falling edge DMAACK*
(DMA write/read) 20 ns

t17 32 Setup time, data valid before rising edge C3 (DMA write) 5 ns

t18
32

33
Setup time, falling edge DMAACK* to falling edge C1 (DMA write/read) 10 ns

t21 29 DTACK* active pull-up time2

t22 32 Hold time, data valid after rising edge C3 (DMA write) 5

t23 33 Hold time, data valid after rising edge C1 (DMA read) 10 30

t24 33 Data valid after falling edge C1 (DMA read) 25

t25 33 Inactive time, DMAACK* (DMA read) 10

NOTES:
1. On host I/O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK* are delayed by 20 CLKs (1 ms @

20 MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the I/O cycle, wait states or some other
form of delay generation must be used to assure that the CD1284 is not accessed until after this time period.

2. DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK* enters the
‘open-drain’ (high-impedance) state.
164 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 29. Synchronous Read Cycle Timing

t1

t2

t3

t4

t8

t9

t6

C1 C2 C3

CLK

DS*, CS*

R/W*

A[6:0]

DB[15:0]

DTACK*

t5

t7

t21
 Datasheet 165

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 30. Synchronous Write Cycle Timing

t1

t2

t3

t8

t9

t13

C1 C2 C3

CLK

DS*, CS*

R/W*

A[6:0]

DB[15:0]

DTACK*

t5

t10

t7

t21
166 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
Figure 31. Synchronous Service Acknowledge Cycle Timing

t12

t2

t4

t8

t6

C1 C2 C3

CLK

DS*

R/W*

DB[15:0]

DTACK*

t5

t7

SVCACK*

DGRANT*

t11

t14
DPASS*

t21

SVCREQ*
 Datasheet 167

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
Figure 32. Synchronous DMA Write Cycle Timing
(Two Back-to-Back 3-Cycle DMA Writes)

Figure 33. Synchronous DMA Read Cycle Timing
(Two Back-to-Back 3-Cycle DMA Reads)

DB[15:0]

DMAACK*

CLK

NOTE: The data is sampled on the second rising edge of CLK following the assertion of DMAACK*, as long as
setup time (t18) is met. If DMAACK* is held active for more than 2.5 CLK cycles, then the next DMA
cycle is simply delayed; the data is still sampled on the second rising CLK edge following the assertion
of DMAACK*.

t16

VALID

DMAREQ*

t18

VALID

C C1 C2 C3 C1 C2 C3 C

DATA SAMPLED
HERE

t15

t25

t17 t22t22t17

DATA SAMPLED
HERE

SEE NOTE SEE NOTE

DB[15:0]

DMAACK*

CLK

NOTE: The data is driven (t24) after the first falling edge of CLK following the assertion of DMAACK*, as long as setup
time (t18) is met. If DMAACK* is held active for more than 2.5 CLK cycles after C1 falling edge, then the next DMA
cycle is simply delayed, but the data is still driven (t24) after the first falling CLK edge following the next assertion
of DMAACK*.

VALID

DMAREQ*

t18

VALID

C C1 C2 C3 C1 C2 C3 C

t15

SEE NOTE SEE NOTE

t25
t18

t24

t16

t23
168 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
9.0 Package Dimensions

NOTES:
1. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2. Before beginning any new design with this device, please contact Intel for the latest package information.

Pin 1 Indicator

Pin 1

19.90 (0.783)

22.95 (0.904)
23.45 (0.923)

20.10 (0.791)

16.95 (0.667)
17.45 (0.687)

13.90 (0.547)
14.10 (0.555)

0.13 (0.005)
0.23 (0.009)

1.60 (0.063) REF

2.57 (0.101)
2.87 (0.113)0.65 (0.026)

0.95 (0.037)

0° MIN
7° MAX

0.22 (0.009)
0.38 (0.015)

0.65
(0.0256)

BSC

Pin 100

3.40
0.25

(0.134)
MAX

(0.010)
MIN

CD1284
100-Pin MQFP (JEDEC)
 Datasheet 169

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
10.0 Ordering Information

The order number for the CD1284 is:

SCD128410QCE

Product line:

Part number

Internal reference number
Package type:

Temperature range:

Revision †

C = Commercial

MQFP (metric quad flat pack)

Contact Intel Corporation for up-to-date information on revisions.

Communications, Data
170 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284
11.0 Appendix A

11.1 Commonly Asked Questions

• Using the SPR to Change Acknowledge Pulse Width in Compatible Mode

Some older hosts may require an acknowledge pulse width longer than the default 500 ns in
Compatible mode. The SPR can be used to change the pulse width in Compatible mode, but it
will also affect the transfer rate in the other modes. If the ACK* pulse width is extended 1 µs,
the transfer rates in other modes is slowed also. This should not be a concern as IEEE 1284-
compliant hosts work with an ACK* pulse width of 500 ns as specified in the IEEE 1284
specification (page 30). While non-IEEE 1284-compliant hosts cannot support any of the
advanced modes. In other words, if the host supports IEEE 1284 advanced modes (for example
ECP), then it also supports an ACK* pulse width of 500 ns in Compatible mode. If the host is
not IEEE 1284-compliant, then it does not support any of the advanced modes and therefore
the SPR is only used for compatibility mode.

• BUSY/ACK* Timing Variations

The SPR cannot be used to support the Ack-while-Busy timing. If the SPR value is changed to
extend the ACK* pulse width, then the BUSY signal is extended as well. This means that the
CD1284 only supports the Compatible mode timing, Ack-in-Busy, as specified on pages 28–
30 of the IEEE 1284 specification. Please read Section 6.3 “Compatibility Mode” starting on
page 28. Based on this description of Compatibility mode, it is our belief that the Ack-in-Busy
timing on the peripheral-side interoperates with all existing hosts, including those that monitor
BUSY but not ACK*.

• Device ID

At this time, Intel has no more information about device ID other than that is listed on page 52
of the IEEE 1284 specification. Contact Larry Stein, Chair of the IEEE 1284.3 working group,
at Far Point Communications (Fax: (805) 726-4438) for more information. Far Point
Communications also sells IEEE 1284-compliant ISA add-in boards for the PC. This board
can be useful for testing CD1284 applications.

• Reversing the Channel with Data Remaining in the FIFO

The software must handle the situation where the host switches the direction of the parallel
interface from reverse to forward while data remains in the reverse FIFO. If this occurs then
the CD1284 produces a change of direction interrupt. When software detects this interrupt, it
must read the value in the PFQR (Parallel FIFO Quantity register) and use this value to
determine the bytes remaining in the FIFO. The software buffer pointer(s) must then be
adjusted by that amount so that the data in the FIFO can be resent when the direction is
reversed again. After the pointers are adjusted, the FIFO must be flushed (cleared) and the
direction of the FIFO must be changed to forward so that data may be received from the host.

• RLE Data Count

Software can access the RLCR to obtain the current count for RLE data.
 Datasheet 171

CD1284 — IEEE 1284-Compatible Parallel Interface Controller
12.0 Appendix B

Figure 34. UART to RS232 and IR Port Interface Motherboard Example Schematic

VA+ VD+

AGND

PINC

PINA

LED1C

LED2C

RESET

TGND1 TGND2 DGND

EXTCLK

XTALIN

XTALOUT

RXD

FORM/BSY

TXD

D/C

PWRDN

CLKFR

8 12

5

7

6

1

4

19

17

18

13

16

14

15

10

9

2 3 20

0.1 mF
+

10 mF

+3V

0.1 mF
+

10 mF

+
47 mF

+3V

10 OHM

5.2 W (2)

5.2 W (2)

3.6864 MHz

CS8130

BPV23NF

TSHA5502

CIA-

CIA+

MAX562

VCC

CIB-

CIB+

T1OUT

T2OUT

R1IN

R2IN

V-

V+

GND

27

28

26

3

4

1

5

2

0.33 mF

+3V

0.33 mF

0.33 mF
C2+

C2-
24

25

0.33 mF

0.68 mF 0.33 mF

5

20

21

22

23

DTR

R1OUT

R2OUT

R3OUT

R5OUT

R4OUT

EN

SHDN 15

14

R3IN

R4IN

R5IN

T3OUT

T2IN

T1IN

T3IN16

17

18

19

9

8

7

6

13

12

11

10

RTS

TXD

RXD

DCD

RI

DSR

CTS
6

8

2

1

9

4

7

3

DTR

RTS

TXD

RXD

DCD

RI

DSR

CTS

SG

CD1284

RS-232/IR

SELECT

11

NOTES:
(1) This circuit has not yet been
 built and debugged.
(2) Choice of LED, power consumption,
 and physical positioning will affect R value.

DB9
Serial

Connector
(COM PORT)
172 Datasheet

Index

A
A_1284 19
AB[6:0] 19
abbreviations 15
acronyms 15
AkDaRq 19
asynchronous serial data protocol 50

B
baud rate

derivation 102
generation 72
tables 103

bit engines 50
BYTESWAP 19, 75

C
CCLK 20
CLK 19
CLK/2 19
common service acknowledge 42
compressed-data sequences 75
context 49
context switch 35
CPU interface 86
CS* 19
CTS* 55
CTS2* 20
CTS3* 20

D
daisy-chaining 41
DB[15:0] 19
detailed register descriptions 108
device reset 90
DGRANT* 19
diagnostic facilities 73

DMA
buffer 74
interface 34
transfers 74

DMAACK* 19
DMAREQ* 19
DPASS* 19
DS* 19
DSR* 55
DSR2* 20
DSR3* 20
DTACK* 19
DTR threshold 58
DTR* 55
DTR2* 20
DTR3* 20

E
EBDIR 19
ECP mode 74
embedded transmit commands (ETC) 67
endian 35
EPP mode 79, 83

F
failed negotiation 81
Fair Share 41
fairness override 43
FIFO threshold 50
flow control 55

G
general-purpose I/O port 83
global function initialization 93
GND 18
GP[7:0] 19
Datasheet 173

H
hardware-activated service examples 97
HstBsy 19
HstClk 19

I
ID request 82
IEEE Standards Department 73
IEEE STD 1284 73
Implied XON mode 57
in-band flow control 55
initialization 90
interface 74
interrupts 36

DirCh 48
EPPAW 44
IDReq 48
NegCh 44

invalid termination 81
IVR 79

L
line break 52
line discipline 61
Local Loopback mode 73
loopback testing 73

M
modem service 96, 99
modes

ECP 74
EPP 79, 83
Implied XON 57
Local Loopback 73
Manual 79
Remote Loopback 73
Reverse Byte 82
Reverse Nibble 82
Serial Poll, examples 94

multi-channel processing unit (MPU) 31

N
nDatAv 19
nInit 19
no new data time-out (NNDT) 51

O
odd-byte transfers 35
ODR 79
OUTEN 19
out-of-band flow control 55, 58

P
parallel channel service routines 99
parallel port

FIFO 74
PD[7:0] 19
PDBEN 19
PerBsy 19
PerClk 19
pins

descriptions 20
diagram 17
list 18

polling 40
protocol timing 83

R
R/W* 19
read cycles 33
receive direction 75
receiving compressed data 75
register summary 24
register usage 27
registers

Channel – Parallel
DER 26, 29
DMABUF (high) 26, 29
DMABUF (low) 26, 29
EAR 26, 29
HRSR 26, 29, 138
HTVR 26, 29
174 Datasheet

IVR 26, 29
LIVR 26, 29, 38
MDR 26, 29
NER 26, 29
NSR 26, 29
ODR 26, 29
OVR 26, 29
PACR 26, 29
PCIER 26, 29
PCISR 26, 29
PCR 26, 29
PCRR 26, 29
PFCR 26, 29
PFEP 26, 29
PFFP 26, 29
PFHR1 26, 29
PFHR2 26, 29
PFQR 26, 29
PFSR 26, 29
PFTR 26, 29
RLCR 26, 29
SCR 26, 30
SDTCR 26, 29
SDTPR 26, 29
SPR 27, 30
SSR 27, 30
ZDR 27, 30

Channel – Serial
CCR 25, 28
CCSR 25, 28
COR1 25, 28
COR2 25, 28
COR3 25, 28
COR4 25, 28
COR5 25, 28
LIVR 25, 28
LNC 25, 28
MCOR1 25, 28
MCOR2 25, 28
MSVR1 25, 28
MSVR2 25, 28
RBPR 25, 28
RCOR 25, 28

RDCR 25, 28
RTPR 25, 28
SCHR1 25, 28
SCHR2 25, 28
SCHR3 25, 28
SCHR4 25, 28
SCRH 25, 28
SCRL 25, 28
SRER 25, 28
TBPR 25, 28
TCOR 25, 28

Channel Control Status (CCSR) 56
Global

CAR 24, 27
GFRCR 24, 27
GPDIR 24, 27
GPIO 24, 27
MICR 24, 27
MIR 24, 27
PIR 24, 27
PPR 24, 27
RICR 24, 27
RIR 24, 27
SVRR 24, 27
TICR 24, 27
TIR 24, 27

Parallel Port
NSR 81
PCR 151
SCR 81, 152

Receive Data Count (RDCR) 51
Receive Data/Status (RDSR) 52
Virtual – All

EOSRR 24, 28
Virtual – Serial

MISR 24, 27
MIVR 24, 27
PIVR 24, 27
RDSR (data) 24, 27
RDSR (status) 24, 27
RIVR 24, 27
TDR 24, 27
TIVR 24, 27
Datasheet 175

Remote Loopback mode 73
RESET* 18, 54
RLE (run-length-encoding) 75
RTS* 55
RTS2* 20
RTS3* 20
RxD 73
RXD2 20
RXD3 20
RxFloff 56
RxFlon 56

S
scanning loop 94
SCHR1 55
SCHR2 55
Serial Poll mode 94
serial receive service 95, 97
serial transmit service 96, 98
service-request/acknowledge 35
special characters 61
SSR 79
stale data timer 76
start bit 50
stop bit 50
SVCACK* 37
SVCACKM* 19
SVCACKP* 19
SVCACKR* 19, 37
SVCACKT* 19, 37
SVCREQM* 19

SVCREQP* 19
SVCREQR* 19
SVCREQT* 19
SVRR 40
synchronous timing reference parameters 157,
164

T
timer 51, 55
Transmitter Holding register 50
Transmitter Shift register 50
TxD 73
TXD2 20
TXD3 19

U
units of measure used 15

W
write cycles 34

X
Xflag 19
XOFF 55
XON 55

Z
ZDR 79
176 Datasheet

	Figure 1. Functional Block Diagram
	1.0 Overview
	Figure 2. CD1284 Sample System Block Diagram

	2.0 Conventions
	2.1 Abbreviations
	2.2 Acronyms

	3.0 Pin Information
	3.1 Pin Diagram
	3.2 Pin List
	Table 1. Pin Descriptions (Sheet 1 of 4)

	4.0 Register Summary
	4.1 Register Summary Tables
	Table 2. Global Registers
	Table 3. Virtual Registers — Serial�
	Table 4. Virtual Registers — Serial and Parallel
	Table 5. Channel Registers — Serial�
	Table 6. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)�
	Table 7. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) (Sheet 1 of 2)

	4.2 Register Usage
	Table 8. Global Registers
	Table 9. Virtual Registers
	Table 10. Virtual Registers — Serial and Parallel
	Table 11. Channel Registers — Serial
	Table 12. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)
	Table 13. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) (Sheet 1 of 2)

	5.0 Functional Description
	5.1 Device Architecture
	Figure 3. CD1284 Functional Block Diagram
	Figure 4. Internal Address Generation

	5.2 CPU Interface
	5.2.1 Read Cycles
	5.2.2 Write Cycles
	5.2.3 Service-Acknowledge Cycles
	5.2.4 DMA Cycles

	5.3 Serial Port Service Requests
	5.3.1 Interrupts
	5.3.2 DMAREQ* as Parallel Interrupt Source
	5.3.2.1 Hardware-Activated Context Switch — Serial Channels
	Figure 5. Control Signal Generation
	Table 14. Request-Type Bit Assignments�

	5.3.2.2 Summary of Interrupt Driven Service Requests, Serial Channels
	5.3.2.3 Common Service Acknowledge
	5.3.2.4 Software-Activated Context Switch — Serial Channels

	5.3.3 Serial Service Request Polling
	5.3.3.1 Summary of Serial Poll-Mode Service Requests

	5.3.4 Daisy-Chaining Service Requests with CD1400s
	Figure 6. CD1284 Daisy-Chain Connections

	5.4 Parallel Port Service Requests
	Figure 7. Interrupt Generation Logic
	5.4.1 Hardware-Activated Context Switch, Parallel
	5.4.2 Software-Activated Context Switch, Parallel

	5.5 Serial Data Reception and Transmission
	5.5.1 Receiver Operation
	5.5.2 Receiver Timer Operations
	5.5.3 Receive Exceptions
	Figure 8. FIFO Timer Processing

	5.5.4 Transmitter Operation

	5.6 Flow Control
	5.6.1 In-Band Flow Control
	5.6.2 Receiver In-Band Flow Control
	Table 15. CCSR[6:5] Encoding
	5.6.2.1 Transmitter In-Band Flow Control
	Table 16. CCSR[2:1] Encoding
	Table 17. COR Control Bits

	5.6.3 Out-of-Band Flow Control
	5.6.3.1 Receiver Out-of-Band Flow Control
	5.6.3.2 Transmitter Out-of-Band Flow Control

	5.6.4 Modem Signals and General�Purpose I/O
	Table 18. Out-of-Band Pin Connections
	Table 19. Modem Control Pin Functions
	5.6.4.1 Generating Service Requests with Modem Pins
	5.6.4.2 Using Modem Pins as General�Purpose I/O

	5.7 Receive Special Character Processing
	5.7.1 UNIX‚ Character Processing
	5.7.1.1 Line-Terminating Characters
	5.7.1.2 Errored Character Processing
	5.7.1.3 LNext
	5.7.1.4 ISTRIP

	5.7.2 Non-UNIX‚ Receive Special Character Processing
	Figure 9. CD1284 Receive Character Processing

	5.8 Transmit Special Character Processing
	5.8.1 Line Terminating Characters
	5.8.2 Embedded Transmit Commands
	5.8.3 Send Special Character Command
	Figure 10. CD1284 Transmit Character Processing

	5.9 Baud Rate Generation
	5.10 Serial Diagnostic Facilities — Loopback
	5.11 Parallel Port FIFO and Data Pipeline Overview
	5.11.1 IEEE STD 1284 Protocols
	5.11.2 Bus Interface
	5.11.3 Parallel Port FIFO
	5.11.4 Receive Direction
	5.11.5 Receiving Compressed Data
	5.11.6 Stale Data (Stale, OneChar, and Timeout Status Bits)
	5.11.7 Transmit Direction

	5.12 CD1284 Parallel Port Overview
	5.12.1 Terminology
	5.12.2 Signal Names
	Table 20. Signal Names (Sheet 1 of 2)

	5.12.3 State Machine
	5.12.4 Configuration
	Figure 11. FIFO Data Path Functional Diagram — Receive

	5.12.5 Interrupts
	5.12.6 Manual Mode
	5.12.7 Control Signals
	Figure 12. FIFO Data Path Functional Diagram — Transmit

	5.12.8 Parallel Port Interface to the FIFO
	5.12.9 1284 Negotiations
	5.12.10 Data Transfers
	5.12.11 Compatible Mode Status

	5.13 1284 Parallel Protocol Support
	5.13.1 Compatibility Mode
	5.13.2 Reverse-Nibble and Reverse-Byte Modes
	5.13.3 ID Request
	5.13.4 ECP Mode
	5.13.5 EPP Mode

	5.14 Protocol Timing
	Table 21. System Clock Settings

	5.15 General-Purpose I/O Port
	5.16 Parallel Port Interface
	Figure 13. Cable Connection
	Figure 14. External Buffer Control

	5.17 Hardware Configurations
	5.17.1 Interfacing to an Intel‚ Microprocessor-Based System
	5.17.2 Interfacing to a Motorola‚ Microprocessor-Based System
	5.17.3 Interfacing to a National Semiconductor‚ Microprocessor-Based System
	Figure 15. Intel‚ 80x86 Family Interface
	Figure 16. Motorola‚ 68020 Interface
	Figure 17. National Semiconductor‚ 32000 Interface

	6.0 Programming
	6.1 Overview
	6.2 Initialization
	6.2.1 Device Reset
	Figure 18. Flow Diagram of CD1284 Master Initialization Sequence

	6.2.2 Global Function Initialization
	6.2.3 Serial Channel Initialization

	6.3 Serial Poll Mode Examples
	6.3.1 Polling Routine Examples
	6.3.1.1 Scanning Loop
	6.3.1.2 Serial Receive Service
	6.3.1.3 Serial Transmit Service
	6.3.1.4 Modem Service

	6.4 Hardware-Activated Service Examples
	6.4.1 Serial Receive Service
	6.4.2 Serial Transmit Service
	6.4.3 Modem Service

	6.5 Parallel Channel Service Routines
	Figure 19. Polling Flow Chart
	6.5.1 Software-Activated Service Examples (Poll)
	6.5.2 Hardware-Activated Service Examples

	6.6 Baud Rate Derivation
	6.7 Baud Rate Tables
	Table 22. Baud Rate Constants — CLK = 25 MHz
	Table 23. Baud Rate Constants — CLK = 20.2752 MHz�
	Table 24. Baud Rate Constants — CLK = 20.00 MHz (Sheet 1 of 2)
	Table 25. Baud Rate Constants — CLK = 18.432 MHz�
	Table 26. Baud Rate Constants — CLK = 16 MHz (Sheet 1 of 2)

	6.8 ASCII Code Tables
	6.8.1 Hexadecimal — Character
	6.8.2 Decimal — Character

	7.0 Detailed Register Descriptions
	7.1 Global Registers
	7.1.1 Channel Access Register
	7.1.2 Global Firmware Revision Code Register
	7.1.3 General-Purpose I/O Direction Register
	7.1.4 General-Purpose I/O Register
	7.1.5 Modem Interrupting Channel Register
	7.1.6 Modem Interrupt Register
	7.1.7 Parallel Interrupt Register
	7.1.8 Prescaler Period Register
	7.1.9 Receive Interrupting Channel Register
	7.1.10 Receive Interrupt Register
	7.1.11 Service Request Register
	7.1.12 Transmit Interrupting Channel Register
	7.1.13 Transmit Interrupt Register

	7.2 Virtual Registers
	7.2.1 Modem Interrupt Status Register
	7.2.2 Modem Interrupt Vector Register
	7.2.3 Parallel Interrupt Vector Register
	7.2.4 Receive Data/Status Registers
	7.2.5 Receive Interrupt Vector Register
	7.2.6 Transmit Data Register
	7.2.7 Transmit Interrupt Vector Register
	7.2.8 End of Service Request Register

	7.3 Channel Registers
	7.3.1 Channel Command Register
	7.3.1.1 Format 1 — Reset Channel Command
	7.3.1.2 Format 2 — Channel Option Register Change Command
	7.3.1.3 Format 3 — Send Special Character Command
	7.3.1.4 Format 4 — Channel Control Command

	7.3.2 Channel Control Status Register

	7.4 Channel Registers — Parallel Pipeline
	7.4.1 Channel Option Register 1
	7.4.2 Channel Option Register 2
	7.4.3 Channel Option Register 3
	7.4.4 Channel Option Register 4
	7.4.5 Channel Option Register 5
	7.4.6 Local Interrupt Vector Register
	7.4.7 LNext Character Register

	7.5 Modem Change Option Registers
	7.5.1 Modem Change Option Register 1
	7.5.2 Modem Change Option Register 2
	7.5.3 Modem Signal Value Register 1
	7.5.4 Modem Signal Value Register 2
	7.5.5 Receive Baud Rate Period Register
	7.5.6 Receive Clock Option Register
	7.5.7 Received Data Count Register
	7.5.8 Receive Timeout Period Register

	7.6 Special Character Registers
	7.6.1 Special Character Register 1
	7.6.2 Special Character Register 2
	7.6.3 Special Character Register 3
	7.6.4 Special Character Register 4
	7.6.5 Received Character Range Detection
	7.6.6 Special Character Range — High
	7.6.7 Special Character Range — Low
	7.6.8 Serial Service Request Enable Register
	7.6.9 Transmit Baud Rate Period Register
	7.6.10 Transmit Clock Option Register

	7.7 Channel Registers — Parallel Pipeline
	7.7.1 Data Error Register
	7.7.2 DMA Buffer Data Register — High
	7.7.3 DMA Buffer Data Register — Low
	7.7.4 Firmware Revision Code Holding Register Status Register
	7.7.5 Local Interrupt Vector Register
	7.7.6 Parallel Auxiliary Control Register
	7.7.7 Parallel Channel Reset Register
	7.7.8 Parallel FIFO Control Register
	7.7.9 Parallel FIFO Empty Pointer Register
	7.7.10 Parallel FIFO Fill Pointer Register
	7.7.11 Parallel FIFO Holding Register 1
	7.7.12 Parallel FIFO Holding Register 2
	7.7.13 Parallel FIFO Quantity Register
	7.7.14 Parallel FIFO Status Register
	7.7.15 Parallel FIFO Threshold Register
	7.7.16 Run Length Count Register
	7.7.17 Stale Data Timer Count Register
	7.7.18 Stale Data Timer Period Register

	7.8 Channel Registers — Parallel Port
	7.8.1 EPP Address Register
	7.8.2 Host Timeout Value Register
	7.8.3 Input Value Register
	7.8.4 Manual Data Register
	7.8.5 Negotiation Enable Register
	7.8.6 Negotiation Status Register
	7.8.7 Ones Detect Register
	7.8.8 Output Value Register
	7.8.9 Parallel Channel Interrupt Enable Register
	7.8.10 Parallel Channel Interrupt Status Register
	7.8.11 Parallel Configuration Register
	7.8.12 Special Command Register
	7.8.13 Short Pulse Register

	7.9 Pin Control Registers
	7.9.1 Signal Status Register
	7.9.2 Zeros Detect Register

	8.0 Electrical Specifications
	8.1 Absolute Maximum Ratings
	8.2 Recommended Operating Conditions
	8.3 AC Characteristics
	8.3.1 Asynchronous Timing
	Table 27. Asynchronous Timing Reference Parameters (Sheet 1 of 2)
	Figure 20. Reset Timing
	Figure 21. Clock Timing
	Figure 22. Asynchronous Read Cycle Timing
	Figure 23. Asynchronous Write Cycle Timing
	Figure 24. Asynchronous Service Acknowledge Cycle Timing
	Figure 25. Asynchronous DMA Read Cycle Timing
	Figure 26. Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)
	Figure 27. Asynchronous DMA Write Cycle Timing
	Figure 28. Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)

	8.3.2 Synchronous Timing
	Table 28. Synchronous Timing Reference Parameters�
	Figure 29. Synchronous Read Cycle Timing
	Figure 30. Synchronous Write Cycle Timing
	Figure 31. Synchronous Service Acknowledge Cycle Timing
	Figure 32. Synchronous DMA Write Cycle Timing (Two Back-to-Back 3-Cycle DMA Writes)
	Figure 33. Synchronous DMA Read Cycle Timing (Two Back-to-Back 3-Cycle DMA Reads)

	9.0 Package Dimensions
	10.0 Ordering Information
	11.0 Appendix A
	11.1 Commonly Asked Questions

	12.0 Appendix B
	Figure 34. UART to RS232 and IR Port Interface Motherboard Example Schematic

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

