

16-BIT CONSTANT CURRENT LED DRIVER

DESCRIPTION

SC6616 is a constant current LED driver. It includes shift register, data latches, constant current drivers and etc. There are 16-channel constant current output, with 1-35mA current available at each channel. This constant current can be set through an external resistor.

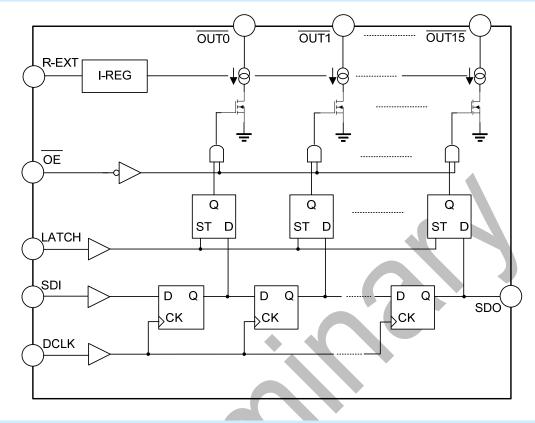
FEATURES

- Compatible with general driver IC
- Excellent low gray performance
- 16-channel CC(constant current) output
- Output current adjustable through external resistor
- Output current: 1-35mA@5V
- 1-25mA@3.3V
- Data serial-in/serial-out
- 30MHz DCLK frequency
- Fast output current response, OE min. width: 20ns
- Current accuracy

Accuracy					
Between channels (typ.)	Between ICs(typ.)				
±1%	±1.5%				

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SC6616P	SSOP-24-300-1.0	SC6616P	Halogen free	Tube
SC6616PTR	SSOP-24-300-1.0	SC6616P	Halogen free	Tape & Reel
SC6616S	SSOP-24-225-0.635	SC6616S	Halogen free	Tube
SC6616STR	SSOP-24-225-0.635	SC6616S	Halogen free	Tape & Reel



APPLICATION

LED screen

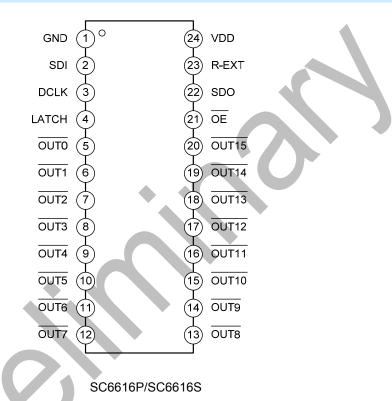
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Characteristics Symbol			Ratings	Unit		
Supply Voltage		V _{DD}	6	V		
Input Voltage		V _{IN}	-0.2~V _{DD} +0.2	V		
Output Current		IOUT	35	mA/ch		
Output withstand Voltage		V _{DS}	-0.2~ 10	V		
Power Dissipation	SC6616S	P _{D1}	1.79	W		
(T _{amb} =25°C)	SC6616P	P _{D2}	1.89	W		
Thermal Resistance SC6616S SC6616P		R _{th(j-a)1}	70	°C/W		
		R _{th(j-a)2}	66	°C/W		
Storage Temperature			-55~+150	°C		
Operating Temperature T _{opr}		T _{opr}	-40 ~ 85	°C		

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Tamb=25°C, VDD=5V)

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD}	-	3.0	-	5.5	V
		V _{DD} =5V, V _{OUT} =1V	1	-	35	mA/ch
CC output current	IOUT	V _{DD} =3.3V, V _{OUT} =1V	1	-	25	mA/ch



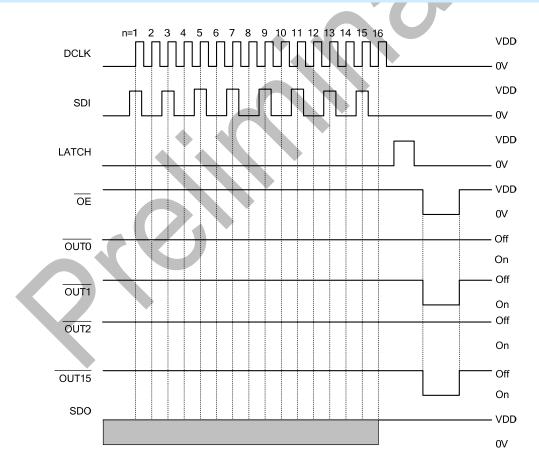
Characteristics	Symbol	Test Con	Min.	Тур.	Max.	Unit	
		Constant current source is off		-	-	9	V
Port voltage of CC source	V _{DS}	Constant current source is on					
		R _{EXT} =2.4KΩ		0.5	-	-	V
	I _{OUT1}	V _{DD} =5V, _{OUT} =1V	R _{EXT} =806Ω	-	23.2	-	mA
Output current	I _{OUT2}	V _{DD} =5V, _{OUT} =1V	R _{EXT} =9kΩ	-	2.08	-	mA
	Â	Between channels	V _{OUT} >0.7V	-	±1	±2.5	%
Output current difference	∆I _{OUT}	Between ICs	R _{EXT} <4.7KΩ	-	±1.5	±3	%
R-EXT voltage	V_{R-EXT}			1.235	1.255	1.275	V
Output leakage current	I _{LEAK}	Constant current V _{OUT} =9V	source is off	-	-	1	uA
		V_{DD} =3.3V, V_{SDO} =3V		0.8	1.17		mA
SDO high output voltage	I _{SDOH}	V_{DD} =5V, V_{SDO} =4.7V		0.9	1.28	-	mA
		V _{DD} =3.3V, V _{SDO} =0.3V		0.75	1.08	_	mA
SDO low output voltage		V _{DD} =5V, V _{SDO} =0.3V		0.8	1.15	-	mA
Output current regulation	%/V _{DD}	V _{DD} : 3.0V-5.0V			0.5	2	%
Pull-down resistance at LATCH	R _{PD}	-	400	500	600	ΚΩ	
Pull-up resistance at OE	R _{PU}	-	400	500	600	ΚΩ	
Operating current (shutdown)	I _{OFF}	R _{EXT} =806Ω	3.5	5	6.5	mA	
Operating current (on)	I _{ON}	R _{EXT} =806Ω		15	18	21	mA
SDI high input voltage	VIH	-		$0.8V_{DD}$	-	V _{DD} +0.15	V
SDI low input voltage	ViL	-		-0.15	-	$0.2V_{DD}$	V
DCLK frequency	FDCLK	-		-	-	30	MHz
LATCH set-up time	t _{su} (L)	-		10	-	-	nS
LATCH hold time	t _h (L)	-		10	-	-	nS
LATCH pulse width	t _{LATCH}	-		20	-	-	nS
DCLK pulse width	t _{DCLK}	-	15	-	-	nS	
\overline{OE} pulse width	t _{OE}	-	20	-	-	nS	
DCLK set-up time	t _{su} (C)	-	10	-	-	nS	
DCLK hold time	t _h (C)	-		10	-	-	nS
Transmission delay time	t _{pLH1}	LATCH - OUTn,C)E ="L"	25	30	35	ns
	t _{pLH2}	OE - OUTn		25	30	35	ns
("L" to "H")	t _{pLH3}	DCLK-SDO		20	25	30	ns

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Transmission delay time	t _{pHL1}	LATCH - OUTn , OE ="L"	25	30	35	ns
	t _{pHL2}	OE - OUTn	25	30	35	ns
("H" to "L")	t _{pHL3}	DCLK-SDO	20	25	30	ns
Max. DCLK rising time	t _r	-	-	-	500	ns
Max. DCLK falling time	t _f	-	-	-	500	ns

PIN CONFIGURATION

PIN DESCRIPTION

Pin No. SC6616P/S	Pin Name	I/O	Description
1	GND		Ground
2	SDI	I	Serial data input of shift register
3	DCLK	I	Clock input of shift register
4	LATCH	I	Data latch control pin of shift register
5 ~ 20	OUT0~OUT15	I/O	CC outputs 0~15
21	ŌĒ	Ι	16-channel CC output enable pin (active low)
22	SDO	0	Serial data output of shift register
23	R-EXT	I/O	The resistor is connected between this pin and ground for 16-channel current setting
24	VDD		Power supply



FUNCTION DESCRIPTION

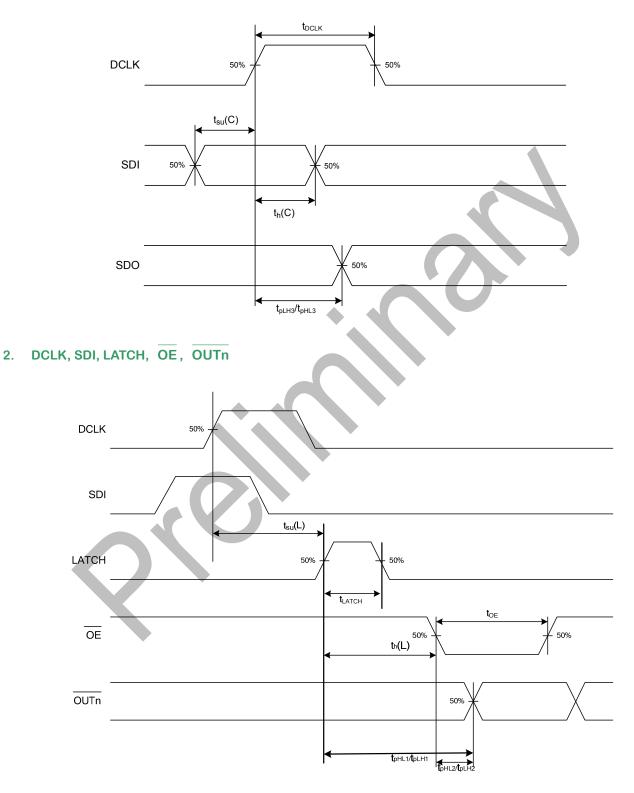
For LED display application, the serial data can be shifted from SDI to internal 16-bit shift register via DCLK riding edge and shifted out at SDO. And the SDO of previous SC6616 can be connected to SDI of the next SC6616 for cascade connection. The data in shift register can be written in data latch when LATCH is high, and data is latched when LATCH is low. The data in data latch is for controlling on/off of 16-channel constant current source. The constant current source is controlled by data latch when \overrightarrow{OE} is low, and constant current source is off when \overrightarrow{OE} is high, with high impedance output. The current of constant current source can be set through an external resistor connected to R-EXT.

Notes: there is only one ground pin shared as analog/digital/power ground. It is recommenced to adopting the routing with minimum inductance to reduce conversion noise caused by input signal and fault caused by output current. The proper output voltage is needed for better constant current output, and the minimum output voltage can be obtained according to the electrical characteristics. To avoid noise on current, the resistor should be placed near pin R-EXT with shortest routing from GND of resistor to PIN1 of SC6616.

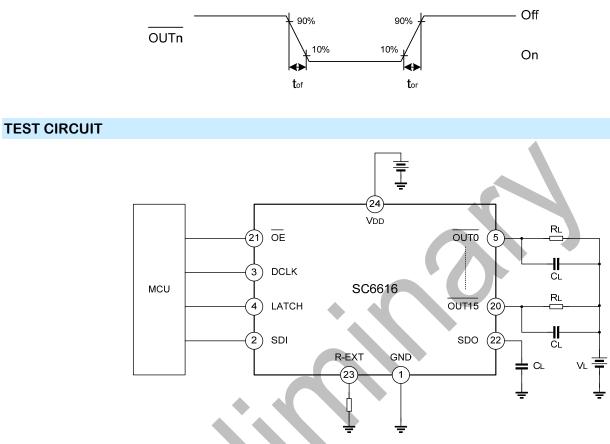
Time sequence DIAGRAM

Note: the data in shift register is shifted by DCLK rising edge.

The data in shift register is written in data latch when LATCH is high, and data is latched when LATCH is low.

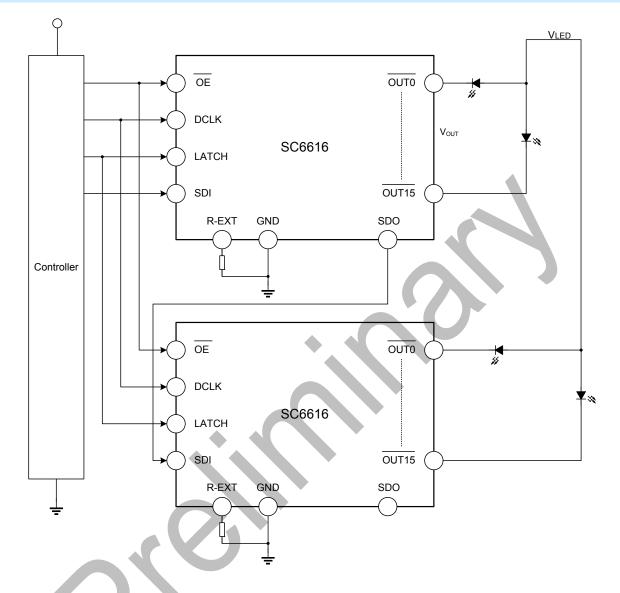

The output is enabled when \overline{OE} is low.

When OE is high, output is off, and the status is high impedance.


TIME SEQUENCE WAVEFORM

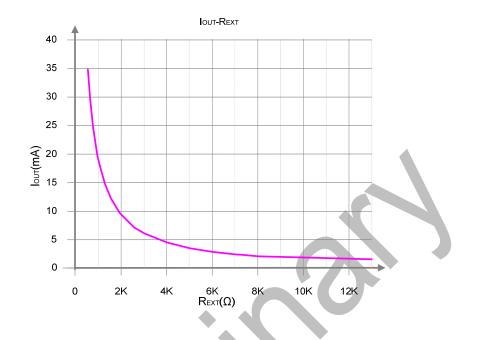
1. DCLK, SDI, SDO

3. OUTn

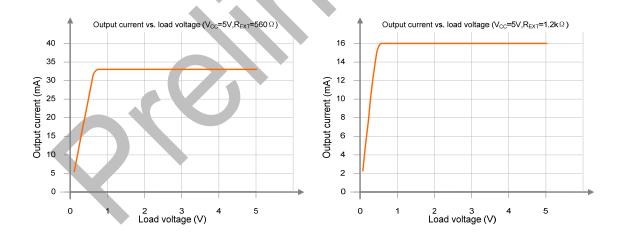


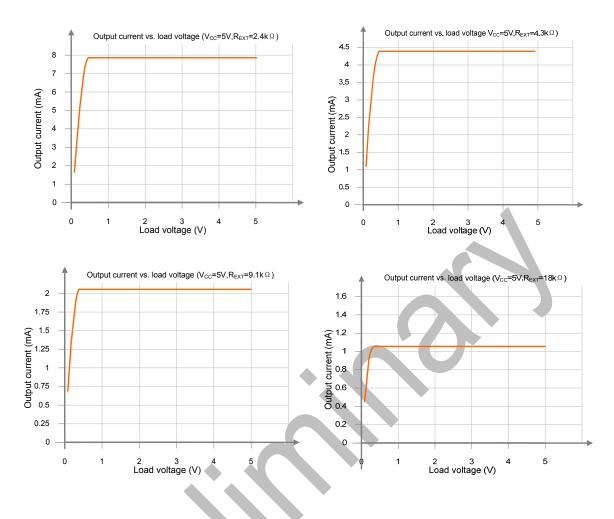
Test condition: just for circuit above

 $T_{opr}\text{=}25^{\circ}\text{C}, \text{ V}_{DD}\text{=}3.3\text{V or 5V}, \text{ R}_{\text{EXT}}\text{=}910\Omega, \text{ V}_{\text{L}}\text{=}5.0\text{V}, \text{ R}_{\text{L}}\text{=}180\Omega, \text{ C}_{\text{L}}\text{=}10\text{pF}$


TYPICAL APPLICATION CIRCUIT

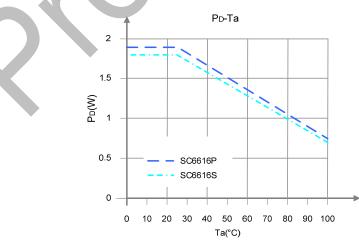
Note: the circuit and parameter above are only for reference, please set the parameter according to practical circuit.


CHARACTERISTIC CURVE

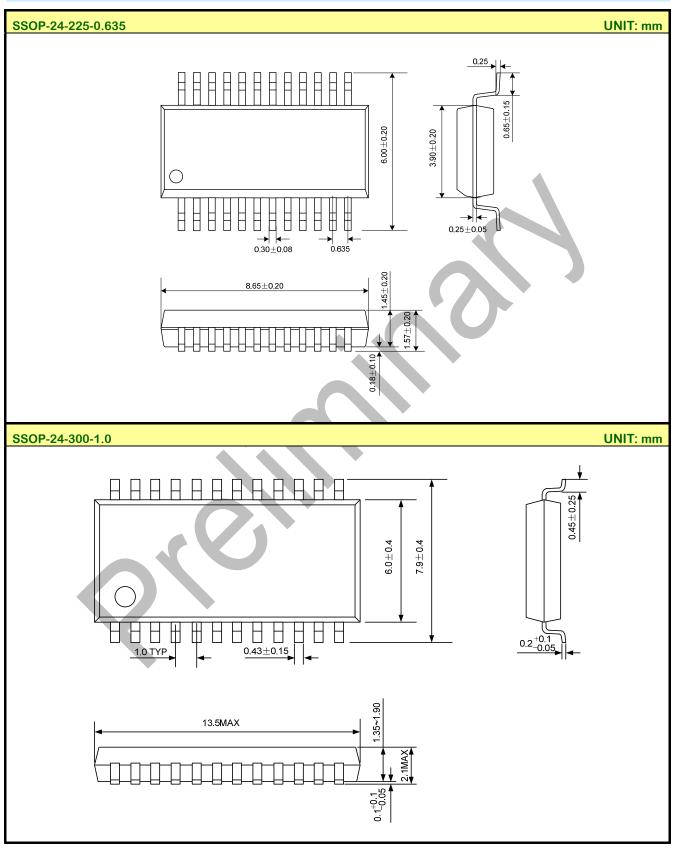

Formula:

```
I<sub>OUT</sub> = (V<sub>R-EXT</sub> /R<sub>EXT</sub>) × 15; V<sub>R-EXT</sub> = 1.255V
```

Where, $V_{R\text{-EXT}}$ is voltage at R-EXT, R_{EXT} is external resistance connected to R-EXT.



Power dissipation (PD)


The maximum power dissipation is given by: $P_{D(max)}=(T_j-T_a)/R_{th(j-a)}$. When 16-channel are all on, the actual power dissipation is given by: $P_{D(act)}=(I_{DD} \times V_{DD})+(I_{OUT} \times V_{CE} \times 16)$.

The maximum power is affected by various factors, such as ambient environment, humidity. The data above is tested the limit in special environment, and it is only for reference. The margin will be considered during mass production and the data will be tested.

PACKAGE OUTLINE

MOS DEVICES OPERATE NOTES:

Electrostatic charges may exist in many things. Please take following preventive measures to prevent effectively the MOS electric circuit as a result of the damage which is caused by discharge:

- The operator must put on wrist strap which should be earthed to against electrostatic.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed in antistatic/conductive containers for transportation.

Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without
 further notice! Customers should obtain the latest relevant information before placing orders and should verify that such
 information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products in
 system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards
 strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause
 loss of body injury or damage to property.
- Silan will supply the best possible product for customers!