

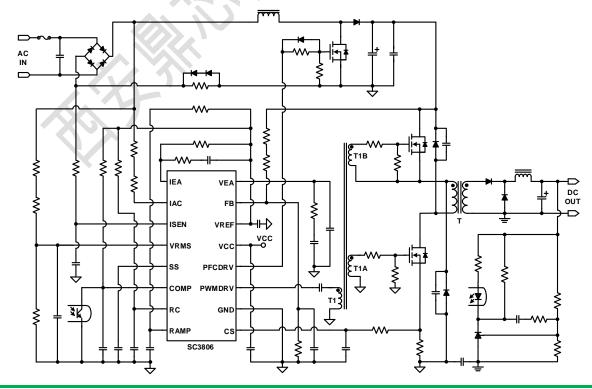
Description

The SC3806 is a controller for power factor correction, switched mode power supplies. Internally synchronized leading-edge PFC and trailing-edge PWM in one IC. Its input current shaping is close to the leading edge modulation average current topology.

SC3806 allows the use of smaller, lower cost bulk capacitors, reduces power line loading and stress on the switching FETs, and results in a power supply fully compliant to IEC1000-3-2 specifications.

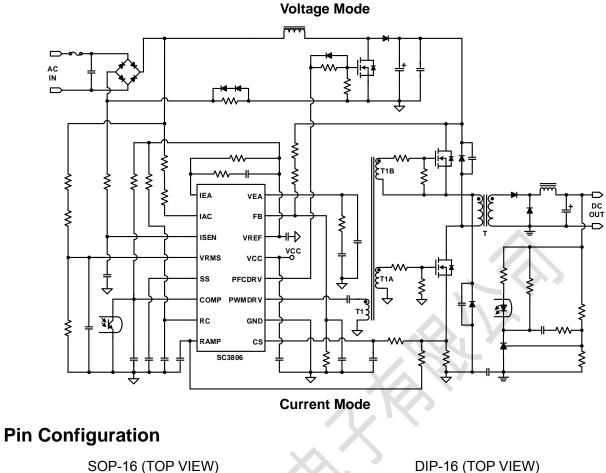
An over-voltage comparator shuts down the PFC section in the event of a sudden decrease in load. The PFC section also includes peak current limiting and input voltage brownout protection. The PWM section can be operated in current mode or voltage mode, at up to 200 KHz, and includes an accurate 50% duty cycle limit to prevent transformer saturation.

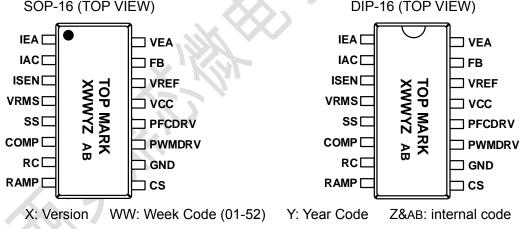
SC3806's PWM can be used in current or voltage mode. In voltage mode, feed-forward from the PFC output bus can reduce secondary out ripple.


Features

- Internally synchronized PFC and PWM
- Slew rate enhanced voltage error amplifier with advanced input current shaping technique
- Average current, continuous boost leading edge PFC
- PFC using Input Current Shaping Technique
- High PF with low total harmonic distortion
- Reduced ripple current in bulk capacitor between PFC and PWM sections
- Current-fed gain modulator for improved noise immunity
- Overvoltage and brown-out protection, UVLO, and soft start
- SOP16 and DIP-16 package

Applications


Offline AC/DC flyback converter for


- PC power supply
- Monitor power supply
- Internet server power supply

Typical Application

Safety-Chip

Ordering Information

Part number	Package		TOP MARK	Shipping
SC3806	SOP-16	Pb-free	SC3806	Tape & Reel
SC3806T	DIP-16	Pb-free	SC3806T	Tape & Reel

Pin Descriptions

Name	Pin	Description
IEA	1	Output of PFC Current Error Amplifier. The signal from this pin is compared with
		an internal sawtooth to determine the pulse width for the PFC gate drive.
IAC	2	Input AC Current for PFC Gain Controller. For normal operation, this input
IAC	2	provides a current reference for the multiplier.
ISEN	3	PFC Current Sense. The inverting input of the PFC current amplifier and the
ISEN	5	output of multiplier and PFC current sense comparator.
VRMS	4	Line-Voltage Detection. The pin is used for PFC line voltage compensation.
SS	5	PWM Soft-Start. During startup, the SS pin charges an external capacitor with a
	5	10µA constant current source.
COMP	6	PWM Feedback Input. The control input for voltage-loop feedback of PWM stage.
RC	7	Oscillator RC Timing Connection. Oscillator timing set by RT and CT.
RAMP	8	PWM RAMP Input. In Current Mode, this pin functions as the current-sense input.
RAMP	0	In Voltage Mode, it is the feed-forward sense input from PFC output.
CS	9	Peak Current Limit Setting for PWM. The peak current limit setting for PWM.
GND	10	Ground
PWMDRV	11	PWM Gate Drive. The totem-pole output drive for the PWM MOSFET.
PFCDRV	12	PFC Gate Drive. The totem-pole output drive for PFC MOSFET.
VCC	13	Power Supply.
VREF	14	Reference Voltage. Buffered output for the internal 7.5V reference.
	15	Voltage Feedback Input for PFC. The feedback input for PFC voltage loop. The
FB	15	inverting input of PFC error amplifier.
VEA	16	Output of PFC Voltage Amplifier. The error amplifier output for PFC voltage
VEA	10	feedback loop.

310

Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Unit
Vcc	VCC voltage		25.0	V
VIEA	IEA voltage	0	VREF+0.3	V
VIAC	IAC voltage	GND-0.3	7.0	V
VISEN	ISEN Voltage	-5.0	0.7	V
V _{VRMS}	VRMS voltage	GND-0.3	7.0	V
Vss	SS voltage	GND-0.3	18.0	V
VCOMP	COMP voltage	GND-0.3	18.0	V
V _{RC}	RC voltage	GND-0.3	7.0	V
VRAMP	RAMP voltage	GND-0.3	18.0	V
Vcs	CS voltage	GND-0.3	7.0	V
VPWMDRV	PWMDRV Voltage	GND-0.3	VCC + 0.3	V
VPFCDRV	PFCDRV Voltage	GND-0.3	VCC+ 0.3	V
VREF	VREF Voltage	0	18.0	V
V _{FB}	FB Voltage	GND-0.3	7.0	V
V _{EA}	VEA Voltage	GND-0.3	7.0	V
lcc	Icc Current (Average)	\mathbf{N}	10	mA
IPFCDRV	Peak PFCDRV Current, Source or Sink		0.5	Α
IPWMDRV	Peak PWMDRV Current, Source or Sink		0.5	Α
T _{STG}	Storage Temperature Range	-65	150	°C
TJ	Operating Temperature Range	-40	125	°C
ΤL	Lead Temperature (Soldering, 10 sec)		260	°C
Р	Thermal Desistance (0.14)	DIP16	80	°C/W
R _{JA}	Thermal Resistance (θJA)	SOP16	100	°C/W
	Human Body Model, JEDEC: JESD22-A114		2.5	KV
ESD	Machine Model, JEDEC:JESD22- A115		250	V


Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended period may affect device's reliability.

Recommended Operating Conditions

Symbol	Parameter		Max.	Unit
Vcc	DC Supply Voltage	10.0	21.0	V
TA	Operating Ambient Temperature	-40	125	°C

Safety-Chip

Block Diagram

Electrical Characteristics

$(T_A = 25^{\circ}C, V_{CC}=15.0V, unless otherwise n$	oted)
--	-------

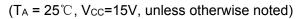
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
Supply Volta	age (VCC) Section					
Icc_st	Startup Current	VCC=V _{UVLO_OFF} -0.1V		10	20	μA
ICC_OP	Operating Current	VCC=15V, C∟=0		2.5	4.0	mA
$V_{\text{UVLO}_\text{OFF}}$	VCC Under Voltage Lockout Exit		11.2	12.0	12.8	V
Vuvlo_on	VCC Under Voltage Lockout Enter		9.2	10.0	10.8	V
Vcc_ovp	VCC Over Voltage Protection Voltage		22.0	23.0	24.0	V
Vcc_ovp_hy	VCC Over Voltage Protection Voltage Hysteresis			1.0		V
VREF Section	n					
V _{VREF}	Reference Voltage	I _{VREF} =0mA,C _{VREF} =0.1uF	7.35	7.5	7.65	V
$ riangle V_{VREF1}$	Load Regulation of Reference Voltage	C _{VREF} =0.1µF,I _{VREF} =0mA to 3.5mA		30	50	mV
$ riangle V_{VREF2}$	Line Regulation of Reference Voltage	C _{VREF} =0.1µF, V _{CC} =10V to16V			25	mV
$ riangle V_{VREF-DT}$	Temperature Stability	-40℃~105℃		0.4		%
Ivref-max	Maximum Current	V _{VREF} >7.35V	5.0			mA
RC(Oscillato	or) Section		Į	<u></u>		
Fs	Operation Frequency	R⊤=6.8K,C⊤=1000pf	60	64	67	KHz
Δ freq/V	Voltage Stability	10.0V <vcc<15.0v< td=""><td></td><td></td><td>2</td><td>%</td></vcc<15.0v<>			2	%
Δ freq/T	Temperature Stability				2	%
V _{PP_RC}	Ramp Voltage	Valley to Peak		2.8		V
losc-dis	Discharge Current	V _{RAMP} =0V,V _{RC} =2.5V	6.5		15.0	mA
TPFC-DEAD	PFC Dead Time			600		ns
Voltage Erro	or Amplifier Section					
V _{REF}	Reference Voltage		2.45	2.50	2.55	V
Av	Open Loop Gain			42		dB
Gmv	Transconductance	VNONINV=VINV, VVEA=3.75V	50	70	90	µmho
I _{FB_L}	Maximum Source Current	V _{FB} =2V,V _{VEA} =1.5V		50		μA
Ifb_h	Maximum Sink Current	VFB=3V,VVEA=6.0V		-50		μA
BIAS	Input Bias Current		-1		1	μA
Vvea_h	Output High Voltage			6.0		V
V _{VEA_L}	Output Low Voltage			0.1		V

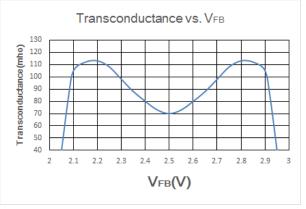
Safety-Chip

Gml Transconductance VMXMMV-VMX-A=3.75V M 88 mmho VGERET Input Offset Voltage V/xxA=0V,IAC open -10 10 mV A Open Loop Gain V/xxA=0V,IAC open -10 50 IA A Maximum Source Current V/xxA=0.5V,VxxA=1.5V 50 IA µA IsA_L Maximum Source Current V/xxA=0.6V,VxxA=6.0V IA 7.5 IA V VxA_L Output High Voltage V/xxA=0.6V,VxxA=1.5V IA V V Gain Modulat Current Multiplier Linear Range 0 A 65 µA IAC Input for AC Current Multiplier Linear Range 0 A 65 µA GAIN Ixc=251µA,Vrxx5=1.8V,Vrx5=2.5V 6.75 C IX IX GAIN Ixc=251µA,Vrxx5=3.8V,Vrx5=2.5V 0.68 C IX Vyrs=2.25V 0.68 C IX IX Vg(gm) Output Voltage IxxE=25V 0.68 IX <th>Current Erro</th> <th>r Amplifier Section</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Current Erro	r Amplifier Section					
A Open Loop Gain Sol dB IEA_L Maximum Source Current Vrs=2V,Vvz.=1.5V 50 µA IEA_H Maximum Sink Current Vrs=3V,Vvz.=6.0V -50 µA VeA,H Output High Voltage Vseh=0.6V,Viz.=4.0V 7.5 V VeA,H Output Low Voltage Vseh=0.6V,Viz.=4.0V 7.5 V Gain Modulator Section Hutiplier Linear Range 0 65 µA IAC Input for AC Current Multiplier Linear Range 0 6.75 IA IAC Input for AC Current Multiplier Linear Range 0 6.75 IA IAC Input for AC Current Multiplier Linear Range 0 6.75 IA IAC=20µA,Vens=1.08V, Ves=2.25V 6.75 IA IA IA IA IAC=51µA,Vens=3.8V, Ves=2.25V 0.68 IA Ves=2.25V 0.68 Ves=2.25V BW Bandwidth IAC=60µA,Vens=1.22V, Ves=2.25V 0.8 V SG Soft-Start Section Ves=2.25V 0	Gmi	Transconductance	VNONINV=VINV,VIEA=3.75V		88		µmho
IIEA_L Maximum Source Current VFB=2V,VFEA=1.5V 50 μA IIEA_H Maximum Sink Current VFB=3V,VFEA=6.0V -50 μA VEA_H Output High Voltage VIEN=0.6V,VIEA=6.0V 7.5 V VEA_H Output Low Voltage VIEN=0.6V,VIEA=1.5V 0.1 V GAIN Modulator Section Nume 1.0 V IAC Input for AC Current Multiplier Linear Range 0 65 μA IAC Input for AC Current Multiplier Linear Range 0 6.75 L IAC Input for AC Current Multiplier Linear Range 0 6.75 L IAC=25UA,VENS=1.08V, VFB=2.25V 6.75 L L L L GAIN IAC=25UA,VENS=1.2V, VFB=2.25V 0.94 L L L KHz Worgen Output Voltage IAC=50LA,VENS=3.8V, VFB=2.25V 0.88 V S BW Bandwidth IAC=50LA,VENS=1.22V, VFB=2.25V 0.8 V S Soft-Start Secti	VOFFSET	Input Offset Voltage	V _{VEA} =0V,IAC open	-10		10	mV
III.α.,H Maximum Sink Current Vrs=3V,VreA=6.0V -50 μA VieA,H Output High Voltage ViseN=0.6V,VieA=1.0V 7.5 V VieA,L Output Low Voltage ViseN=0.6V,VieA=1.5V 0.1 V Gain Modulacr Section Inc=171,A,VerMs=1.08V, Vrs=2.25V 7.94 V GAIN Inc=20µA,VerMs=1.08V, Vrs=2.25V 6.75 GAIN Inc=20µA,VerMs=1.5V, Vrs=2.25V 8.75 Inc=25µA,VerMs=3.0V, Vrs=2.25V 6.75 BW Bandwidth Inc=62µA,VerMs=3.8V, Vrs=2.25V 0.94 Soft-Start Section Vrs=2.25V 0.68 V BW Bandwidth Inc=63µA,VerMs=1.22V, Vrs=2.25V 0.88 V V Soft-Start Section Vrs=2.25V 0.8 V Vo(gm) Soft-Start Section Vrs=2.25V 0.8 V Soft-Start Section Vrs=2.25V 0.8	Ai	Open Loop Gain			50		dB
Vica_H Output High Voltage Visan=0.6V, Vica=4.0V 7.5 V Vica_L Output Low Voltage Visan=0.6V, Vica=1.5V 0.1 V Gain Modulator Section Inc=17µA, Vicas=1.5V 0.1 V IAC Input for AC Current Multiplier Linear Range 0 65 µA IAC Input for AC Current Multiplier Linear Range 0 675 IAC Input for AC Current Multiplier Linear Range 0 675 IAC=20µA, Vicas=1.2V, Vris=2.25V 6.75 GAIN IAc=25µA, Vicas=1.5V, Vris=2.25V 3.95 IAC=62µA, Vicas=3.8V, Vris=2.25V 0.68 BW Bandwidth Iac=40µA 2 KHz Vo(gm) Output Voltage= 5.7K 0 X(Isen-IorFiser) Vris=2.25V 0.8 V Soft-Start Section V 10.0 10.5 11.0 V Iss	I _{IEA_L}	Maximum Source Current	V _{FB} =2V,V _{VEA} =1.5V		50		μA
Vica_L Output Low Voltage ViseN=-0.6V,Vica=1.5V 0.1 V Gain Modulator Section Input for AC Current Multiplier Linear Range 0 65 μA IAC Input for AC Current Multiplier Linear Range 0 65 μA IAC Input for AC Current Multiplier Linear Range 0 655 μA IAC Input for AC Current Multiplier Linear Range 0 655 μA IAC=20µA,Views=1.22V, Vris=2.25V G.75 GAIN IAC=25µA,Views=1.5V, Vris=2.25V Bandwidth IAC=62µA,Views=3.8V, Vris=2.25V 0.68 V BW Bandwidth IAC=40µA 2 KHz Vo(gm) Output Voltage= 5.7K Ω X(IseN-IorFset) Vris=2.25V 0.88 V Soft-Start Section V Vise_2.25V 0.88 V Soft-Start Section U V Normal Operation	liea_h	Maximum Sink Current	V _{FB} =3V,V _{VEA} =6.0V		-50		μA
Gain Modulator Section Input for AC Current Multiplier Linear Range 0 65 μA IAC Input for AC Current Multiplier Linear Range 0 65 μA IAC Input for AC Current Multiplier Linear Range 0 65 μA IAC Inc=27µA, Virkes=1.08V, Vire=2.25V 7.94 1 1 1 GAIN IAc=25µA, Virkes=1.5V, Vire=2.25V 3.95 1	VIEA_H	Output High Voltage	VISEN=0.6V,VIEA=4.0V		7.5		V
IAC Input for AC Current Multiplier Linear Range 0 65 μA IAC=17μA, Vitws=1.08V, Vre=2.25V 7.94	V _{IEA_L}	Output Low Voltage	V _{ISEN} =-0.6V,V _{IEA} =1.5V		0.1		V
Image Image <th< td=""><td>Gain Modula</td><td>tor Section</td><td></td><td></td><td></td><td></td><td></td></th<>	Gain Modula	tor Section					
GAIN VFB=2.25V 7.94 IAC=20µA,VRMS=1.22V, VFB=2.25V 6.75 IAC=25µA,VRMS=1.5V, VFB=2.25V 3.95 IAC=51µA,VRMS=3.0V, VFB=2.25V 0.94 IAC=62µA,VRMS=3.0V, VFB=2.25V 0.94 IAC=62µA,VRMS=3.0V, VFB=2.25V 0.68 BW Bandwidth IAC=40µA 2 KHz V0(gm) Output Voltage= 5.7K Ω X(IsEN-IOFFBET) VFB=2.25V 0.8 V Soft-Start Section VFB=2.25V 0.8 V V Soft-Start Section VFB <	IAC	Input for AC Current	Multiplier Linear Range	0		65	μA
GAIN $V_{FB}=2.25V$ 6.75 Image: constraint of the section of the s			• •		7.94	>	
GAIN VFB=2.25V 3.95				Ny	6.75		
VFB=2.25V 0.94 0.94 IAc=62µA,VRMS=3.8V, VFB=2.25V 0.68 0.68 BW Bandwidth IAc=40µA 0.68 2 KHz Vo(gm) Output Voltage= 5.7K Ω X(IsEN-IOFFSET) IAc=50µA,VRMS=1.22V, VFB=2.25V 0.8 V V Soft-Start Section VrB=2.25V 0.8 V V Soft-Start Section IAc=50µA,VRMS=1.22V, VFB=2.25V 0.8 V V Soft-Start Section VrB=2.25V 0.8 V V Soft-Start Section IAc=50µA,VRMS=1.22V, VFB=2.25V 0.8 V V Soft-Start Section VrB=2.25V 0.8 V V Soft-Start Section IAc=50µA,VRMS=1.22V, VFB=2.25V 0.8 V V Soft-Start Section IAc=50µA,VRMS=1.22V, VFB=2.25V 0.8 1.0 V Vs Soft-Start Current IAc=50µA,VRMS=1.22V, VRMS_UVL VRMS Threshold Voltage LOW 1.0 1.0 V VrMS_UVL VRMS Threshold Voltage High 0.0.5 1.0 1.25 S	GAIN				3.95		
Image: state					0.94		
Vo(gm) Output Voltage= 5.7K Ω X(Isen-IoFFSET) I _{AC} =50μA,V _{RMS} =1.22V, V _{FB} =2.25V 0.8 V Soft-Start Section V Soft-Start Section 10.0 10.5 11.0 V Iss Soft-start Current 10.0 10.5 11.0 V Iss Soft-start Current 10.0 10.5 11.0 V Iss Soft-start Current 10.0 10.5 V V Brownout Section VRMS_threshold Voltage LOW 1.05 V V VRMS_UVL VRMS Threshold Voltage High 1.9 V TuvP Under Voltage Protection Delay 0.75 1.0 1.25 s Sagging Protection Section VRMS_SAG VRMS Threshold SAG LOW 0.85 V Tsag SAG Protection Delay Normal operation 2.70 2.75 2.80 V PFC OVP Section PFC OVP Hysteresis Normal operation 2.70 2.75 2.80 V Low Power Detect Section Normal operation 0.25 V <td></td> <td></td> <td></td> <td></td> <td>0.68</td> <td></td> <td></td>					0.68		
Vo(gm) 5.7K Ω X(Isen-IoFFSET) VFB=2.25V 0.8 V Soft-Start Section V VFB=2.25V 0.8 V Soft-Start Section V VFB=2.25V 0.8 V Soft-Start Section 10.0 10.5 11.0 V Iss Soft-start Current 10 10 µA Brownout Section V 1.05 V VRMS_UVL VRMS Threshold Voltage LOW 1.05 V VRMS_UVL VRMS Threshold Voltage High 1.9 V TuvP Under Voltage Protection Delay 0.75 1.0 1.25 s Sagging Protection Section V 0.85 V T sag SAG Protection Delay 0.85 V TsaG SAG Protection Delay Normal operation 2.70 2.75 2.80 V ΔVPFC_OVP PFC OVP Hysteresis 0.25 V V	BW	Bandwidth	I _{AC} =40μΑ			2	KHz
Soft-Start Section Vss_Max Maximum Voltage 10.0 10.5 11.0 V lss Soft-start Current 10 10 µA Brownout Section VRMS_UVL VRMS Threshold Voltage LOW 1.05 V VRMS_UVL VRMS Threshold Voltage High 1.9 V TuvP Under Voltage Protection Delay 0.75 1.0 1.25 s Sagging Protection Section VRMS_SAG VRMS Threshold SAG LOW 0.85 V VRMS_SAG VRMS Threshold SAG LOW 0.85 V T SAG Protection Delay 30 ms PFC OVP Section Normal operation 2.70 2.75 2.80 V ΔVPFC_OVP PFC OVP Hysteresis 0.25 V V	Vo(gm)				0.8		V
Iss Soft-start Current 10 μA Brownout Section VRMS Threshold Voltage LOW 1.05 V VRMS_UVL VRMS Threshold Voltage High 1.9 V TuvP Under Voltage Protection Delay 0.75 1.0 1.25 s Sagging Protection Section 0.75 1.0 1.25 s VRMS_SAG VRMS Threshold SAG LOW 0.85 V Tsag SAG Protection Delay 30 ms PFC OVP Section PFC Over Voltage Protection Delay 2.70 2.75 2.80 V ΔVPFC_OVP PFC OVP Hysteresis 0.25 V V ΔVPFC_OVP PFC OVP Hysteresis 0.25 V	Soft-Start Se			<u> </u>	J		
Brownout SectionVRMS_UVLVRMS Threshold Voltage LOW1.05VVRMS_UVLVRMS Threshold Voltage High1.9VTuvPUnder Voltage Protection Delay0.751.01.25sSagging Protection SectionVRMS_SAGVRMS Threshold SAG LOW0.85VTsAGSAG Protection Delay30msPFC OVP SectionVPFC_OVPPFC Over Voltage Protection ThresholdNormal operation2.702.752.80V△VPFC_OVPPFC OVP Hysteresis0.25VVLow Power Detect Section000.25V	Vss_max	Maximum Voltage		10.0	10.5	11.0	V
VRMS_UVLVRMS Threshold Voltage LOW1.05VVRMS_UVLVRMS Threshold Voltage High1.9VTuvPUnder Voltage Protection Delay0.751.01.25sSagging Protection SectionVRMS_SAGVRMS Threshold SAG LOW0.85VTsAGSAG Protection Delay30msPFC OVP SectionVPFC_OVPPFC Over Voltage Protection ThresholdNormal operation2.702.752.80V△VPFC_OVPPFC OVP Hysteresis0.25VVLow Power Detect SectionNormal operation0.25V	I _{SS}	Soft-start Current			10		μA
VRMS_UVLVRMS Threshold Voltage High1.9VTuvPUnder Voltage Protection Delay0.751.01.25sSagging Protection Section0.751.01.25sVRMS_SAGVRMS Threshold SAG LOW0.85VTsagSAG Protection Delay0.85VPFC OVP SectionNormal operation2.702.752.80V ΔV_{PFC_OVP} PFC OVP Hysteresis0.25V ΔV_{PFC_OVP} PFC OVP Hysteresis0.25V	Brownout S	ection					
Tuvp Under Voltage Protection Delay 0.75 1.0 1.25 s Sagging Protection Section VRMS_SAG VRMS Threshold SAG LOW 0.85 V TsAG SAG Protection Delay 0.85 V TsAG SAG Protection Delay 30 ms PFC OVP Section PFC Over Voltage Protection Delay 2.70 2.75 2.80 V ΔV_{PFC_OVP} PFC OVP Hysteresis Normal operation 2.70 2.75 2.80 V ΔV_{PFC_OVP} PFC OVP Hysteresis 0.25 V Low Power Detect Section Normal No	VRMS_UVL	VRMS Threshold Voltage LOW			1.05		V
Sagging Protection SectionVRMS_SAGVRMS Threshold SAG LOW0.85VTsAGSAG Protection Delay0.85VPFC OVP SectionVPFC_OVPPFC Over Voltage Protection ThresholdNormal operation2.702.752.80V△VPFC_OVPPFC OVP Hysteresis0.25VVLow Power Detect SectionImage: Colspan="4">Image: Colspan="4"VPImage: Colspan="4">Image: Colspan="4"VPImage: Colspan="4">Image: Colspan="4"Image: Colspan="4">Image: Colspan="4"Image: Colspan="4"Image: Colspan="4">Image: Colspan="4"Image: Colspan="4" <tr< td=""><td>VRMS_UVL</td><td>VRMS Threshold Voltage High</td><td></td><td></td><td>1.9</td><td></td><td>V</td></tr<>	VRMS_UVL	VRMS Threshold Voltage High			1.9		V
VRMS_SAG VRMS Threshold SAG LOW 0.85 V TsAG SAG Protection Delay 30 ms PFC OVP Section PFC Over Voltage Protection Threshold Normal operation 2.70 2.75 2.80 V $\triangle V_{PFC_OVP}$ PFC OVP Hysteresis 0.25 V Low Power Detect Section Image: Normal operation Image	T _{UVP}	Under Voltage Protection Delay		0.75	1.0	1.25	S
Tsag SAG Protection Delay 30 ms PFC OVP Section PFC Over Voltage Protection Threshold Normal operation 2.70 2.75 2.80 V △VPFC_OVP PFC OVP Hysteresis 0.25 V Low Power Detect Section Image: Component of the section	Sagging Pro	tection Section					
PFC OVP Section VPFC_OVP PFC Over Voltage Protection Threshold Normal operation 2.70 2.75 2.80 V △VPFC_OVP PFC OVP Hysteresis 0.25 V Low Power Detect Section Image: Comparison of the section of the secti	V _{RMS_SAG}	VRMS Threshold SAG LOW			0.85		V
VPFC_OVP PFC Over Voltage Protection Threshold Normal operation 2.70 2.75 2.80 V △VPFC_OVP PFC OVP Hysteresis 0.25 0.25 V Low Power Detect Section Image: Component of the section	Tsag	SAG Protection Delay			30		ms
VPFC_OVP Threshold Normal operation 2.70 2.75 2.80 V △VPFC_OVP PFC OVP Hysteresis 0.25 V Low Power Detect Section Image: Component of the section I	PFC OVP Se	ection					
Low Power Detect Section	Vpfc_ovp	•	Normal operation	2.70	2.75	2.80	V
	$\triangle V_{PFC}$ ovp	PFC OVP Hysteresis			0.25		V
VVEAOFF VEA Voltage OFF PFCDRV 0.2 0.3 0.4 V	Low Power	Detect Section					
	VVEAOFF	VEA Voltage OFF PFCDRV		0.2	0.3	0.4	V

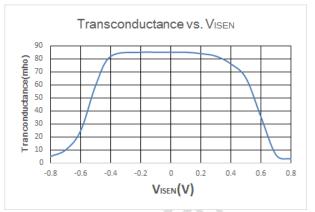
Safety-Chip

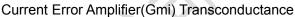
VIN OK Dete	ct Section					
Vin_ok	PWM ON Threshold Voltage		2.3	2.4	2.5	V
VIN_OFF	PWM OFF Threshold Voltage		1.2	1.3	1.4	V
PFC Current	Sense Section					
Vpfc_sen	Peak Current Limit Voltage Threshold		-1.2	-1.3	-1.4	V
PFC UVP Pro	tection Section					
Vpfc_uvp	PFC Under Voltage Protection Threshold		0.4	0.5	0.6	V
PWM CS Sen	se Section		-		_	
Vcs_pk	CS Peak Voltage Threshold		0.95	1.0	1.05	V
T _{PD}	Propagation Delay to Output			250	>	ns
T _{LEB}	Leading-Edge Blanking Time			250		ns
V _{PWM_LS}	PWM Comparator Level Shift		1.3	1.5	1.8	V
PFCDRV Sec	tion		-	-	-	
D_min	Minimum Duty Cycle	V _{IEA} >4.5V			0	%
D_max	Maximum Duty Cycle	V _{IEA} <1.2V	94	97		%
VLOW_PFC	Output Low Voltage	louτ=-100mA			1.5	V
VHIGH_PFC	Output High Voltage	I _{OUT} =100mA,VCC=15V	8.0			V
Vpfcdrv_clamp	PFCDRV Output Clamp Voltage	VCC=18.0V		15.0		V
T _{R_PFC}	Rise time	C∟=4.7nF, 2V~9V		65		ns
T _{F_PFC}	Fall time	C∟=4.7nF, 9V~2V		40		ns
PWMDRV See	ction			1		
D_maxpwm	Maximum Duty Cycle		49.0	49.5	50	%
VLOW_PWM	Output Low Voltage	I _{OUT} =-100mA			1.5	V
Vhigh_pwm	Output High Voltage	Iout=100mA,VCC=15V	8.0			V
Vpfcdrv_clamp	PFCDRV Output Clamp Voltage	VCC=18.0V		15.0		V
Tr_pwm	Rise time	C∟=4.7nF, 2V~9V		65		ns
T _{F_PWM}	Fall time	C∟=4.7nF, 9V~2V		40		ns

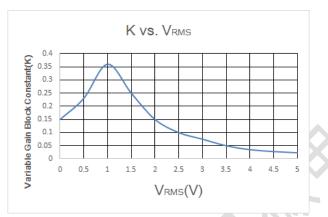

Note:

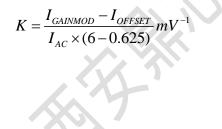

1. Limits are guaranteed by 100% testing, or correlation with worst-case test condition.

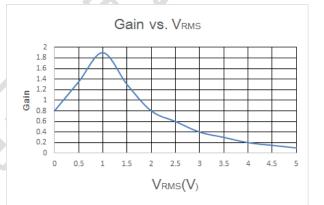
2. The gain is the maximum gain of modulation with a given V_{RMS} voltage when V_{VEA} is saturated to high.


3.
$$Gain = K \times 5.375V$$
; $K = \frac{(I_{SEN} - I_{OFFSET})}{I_{AC} \times (V_{EA} - 0.625)}$; $V_{EA(MAX)} = 6.0V$

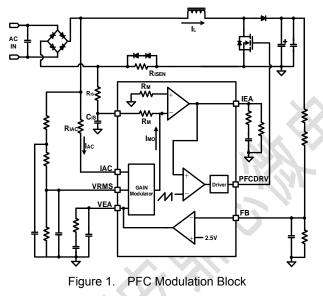

Typical Performance Characteristics

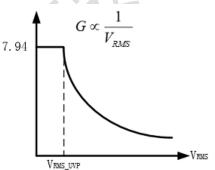



Voltage Error Amplifier(Gmv) Transconductance



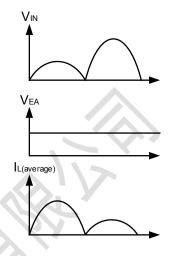
Gain modulator Transfer Characteristic(K)

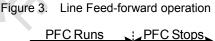

Gain vs. V_{RMS}


$$Gain = \frac{I_{SEN} - I_{OFFSET}}{I_{AC}}$$

Functional Description

Gain Modulator


Gain Modulator plays an important role in PFC section, because it provides the reference to the current control amplifier for the input current shaping, as show in figure 1, The gain modulator's output current is a function of V_{EA}, I_{AC} and V_{RMS}. The gain modulator's gain is given as a ratio between I_{MO} and I_{AC} with a given V_{RMS} when V_{EA} is saturated to high. The gain is inversely proportional to V_{RMS}², as shown in figure 2, to implement line feed-forward. This automatically adjusts the reference of current control error amplifier according to the line voltage, such that the input power of PFC converter is not changed with line voltage, as shown as Figure 3.



To sense the VRMS value of the line voltage, averaging circuit with two poles is typically employed, as shown in figure 1. Notice that the input voltage of PFC is clamped at the peak of the line voltage once the PFC stops switching because the junction capacitance of the bridge diode is not discharged, as shown in figure 4. Therefore, the voltage divider for V_{RMS} should be designed considering the brownout protection trip-point and minimum operation line voltage.

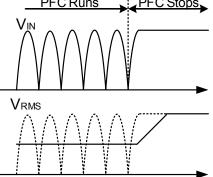


Figure 4. V_{RMS} According to the PFC Operation The rectified sinusoidal signal is obtained by the current flowing into the IAC pin. The resistor R_{IAC} should be large enough to prevent saturation of the gain modulator, calculating as:

$$\frac{\sqrt{2} \times V_{LINE_MIN}}{R_{IAC}} \times G_{MAX} < 135 uA$$

Where V_{LINE_MIN} is the line voltage that trips brownout protection, G_{MAX} is the maximum modulator gain when V_{RMS} is 1.08V (which can be found in the datasheet), and 135uA is the maximum output current of gain modulator.

Safety-Chip

Current control of boost stage

The SC3806 employs two control loops for power factor correction, as shown in figure 1: a current control loop and a voltage-control loop. The current-control loop shapes inductor current as shown in figure 5 based on the reference signal obtained at the IAC pin calculated as:

$$I_L \times R_{SEN} = I_{MO} \times R_M = I_{AC} \times G \times R_M$$

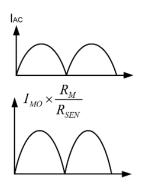


Figure 5. Inductor Current Shaping

The current-control feedback loop also has pulse-by-pulse current limit comparator that forces the PFC switch to turn off until the next switching cycle if the ISEN pin voltage drops below -1.3V.

Voltage control of boost stage

The voltage-control loop regulates PFC output voltage using an internal error amplifier such that the feedback voltage V_{FB} is the same as the internal reference voltage of 2.5V.

Brownout Protection

The build-in internal brownout protection comparator monitors the voltage of the VRMS pin. Once VRMS pin voltage is lower than 1.05V, the PFC stage is shut down to protect the system from over current. SC3806 starts up the boost stage once V_{RMS} voltage increase above 1.9V.

Oscillator

The internal oscillator frequency is determined by the timing resistor R_T and capacitor C_T on the RC pin as shown in Figure 6. The frequency of the internal oscillator is given:

$$F_{OSC} = \frac{1}{0.56 \times R_T \times C_T + 360 \times C_T}$$

Because the PWM stage generally uses a forward converter, it is necessary to limit the

maximum duty cycle at 50%. To have a small tolerance of the maximum duty cycle, a frequency divider with toggle flip-flops is used, as illustrated in Figure 6. The operation frequency of PFC and PWM stage is 1/4 of oscillator frequency.

The dead time for the PFC gate drive signal is determined by:

$$T_{DEAD} = 360 \times C_T$$

The dead time should be smaller than 2% of the switching period to minimize line current distortion around the line zero crossing.

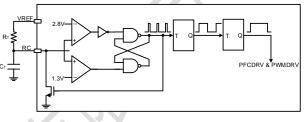


Figure 6. Oscillator Configuration

PWM stage

The PWM stage is capable of current mode or voltage mode operation. In current mode, the PWM ramp is usually derived directly from a current-sensing resistor or current transformer in the primary side of the output stage, and is thereby representative of the current flowing in the converter's output stage. CS, which provides cycle-by-cycle current limiting, is typically connected to RAMP in such applications.

For voltage mode operation, RAMP can be connected to a separate RC timing network to generate a voltage ramp against which the COMP voltage is compared. Under these conditions, the voltage feed-forward from the PFC bus can be used for better line transient response.

No voltage error amplifier is included in the PWM stage, as this function is generally performed by TL431, in the secondary side. To facilitate the design of opto-coupler feedback circuitry, an offset voltage is built into the inverting input of PWM comparator. This allows COMP to command a zero percent duty cycle when its pin voltage is below 1.5V.

PWM current limit

The CS pin is a direct input to the cycle-by-cycle current limiter for the PWM section. If the input

Safety-Chip

voltage at this pin exceeds 1V, the output of the PWM is disable until the start of the next PWM clock cycle.

PWM Soft-Start

PWM startup is controlled by the soft-start capacitor. A current source of 10uA supplies the charging current for the soft-start capacitor. PWM startup is prohibited until the soft-start capacitor voltage reached 1.5V.

VIN OK comparator

The V_{IN} OK comparator monitors the output of the PFC stage and inhibits the PWM stage if this voltage less than 2.4V. Once this voltage goes above 2.4V, the PWM stage begins soft-start. The PWM stage is shut down when FB voltage drops below 1.3V.

PFC Over-Voltage Protection

In the SC3806, the PFC OVP comparator serves to protect the power circuit from being subjected to excessive voltages if the load changes suddenly. A resistor divider from the high- voltage DC output of the PFC is fed to FB pin. When the voltage V_{FB} exceeds 2.75V, the PFC output driver is shut down. The PWM section continues to operate. The OVP comparator has 250mV of hysteresis and the PFC does not restart until the voltage V_{FB} drops below 2.50V.

Line sag protection

When the line sags below its normal operational range, the PFC part keeps operating until the brownout protection is triggered, which has 1s debounce time. Due to the low line voltage, the gain modulator for current loop is saturated and input current of PFC is limited, resulting in a drop of the PFC output voltage at heavy-load condition. Since the PWM section has a V_{IN} OK comparator that shuts down PWM operation when the FB voltage drops below 1.3V, the downstream DC/DC converter can stop operation while the PFC output voltage drops during line sag. Once the downstream converter stops operation, even the limited PFC input current can charge up the PFC output since the PFC part has no load current. Because this can cause repeated startup and shutdown of downstream converter during line sag. SC3806 has line sag protection.

There are two conditions that trigger line sag protection. The first condition is when V_{RMS} is lower than $V_{RMS_SAG}(0.85V)$, another condition is that V_{FB} is lower than Vin-off (1.3V). Once line sag protection is triggered, the PWM and the PFC stop operation until V_{RMS} increase above 1.9V.

Leading/Trailing Modulation

Conventional PWM techniques employ trailing-edge modulation, in which the switch turns on right after the trailing edge of the system clock. The error amplifier output is then compared with the modulating ramp up. The effective duty cycle of the trailing edge modulation is determined during the on-time of the switch. Figure 7 shows a typical trailing-edge control scheme.

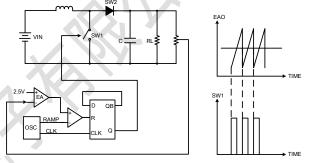


Figure 7. Typical Trailing-edge Control Scheme

In the case of leading-edge modulation, the switch is turned off exactly at the leading edge of the system clock. When the modulating ramp reaches the level of the error amplifier output voltage, the switch is turned on. The effective duty-cycle of the leading-edge modulation is determined during off-time of the switch. Figure 8 shows a leading-edge control scheme.

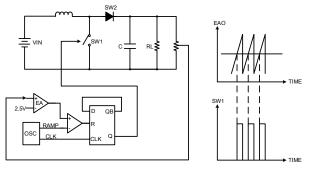
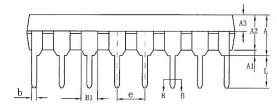


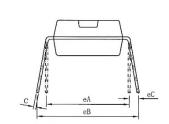

Figure 8. Typical Leading-edge Control Scheme One of the advantages of this control technique is that it requires only one system clock. Switch(SW1) turns off and Switch(SW2) turns on at the same instant to minimize the momentary no-load period, thus lowering ripple voltage

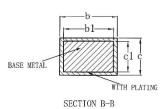
generated by the switching action. With such synchronized switching, the ripple voltage of the first stage is reduced. Calculation and evaluation have shown that the 120Hz component of the PFC's output ripple voltage can be reduced by as much as 30% using the leading-edge modulation method.

Package Information

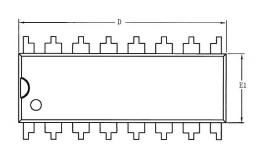
SOP-16 package


SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
Α	_	_	1.75	
A1	0.10	_	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	_	0.47	
b1	0.38	0.41	0.44	
с	0.20	_	0.24	
¢1	0.19	0.20	0.21	
D	9.80	9.90	10.00	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e	1	.27BSC	:	
h	0.25	-	0.50	
L	0.50	-	0.80	
L1	1.05REF			
8	0	_	8°	


Note:


- 1. All dimensions are in millimeters
- 2. Package length does not include mold flash protrusion or gate burr
- 3. Package WIDTH does not include mold flash protrusion
- 4. Drawing is not to scale

Safety-Chip


DIP-16 package

SYMBOL	M	MILLIMETER			
SIMBOL	MIN	NOM	MAX		
Α	3.60	3.80	4.00		
AI	0.51	_	_		
A2	3.20	3.30	3.40		
A3	1.47	1.52	1.57		
b	0.44	_	0.52		
b1	0.43	0.46	0.49		
B1	1	1.52RFE			
с	0.25	_	0.29		
c1	0.24	0.25	0.26		
D	19.00	19.10	19.20		
E1	6.25	6.35	6.45		
е	1	2.54BSC	2		
eA	7.62REF				
eB	7.62	_	9.30		
eC	0	_	0.84		
L	3.00	_	_		

Note:

- 1. All dimensions are in millimeters
- 2. Package length does not include mold flash protrusion or gate burr
- 3. Package WIDTH does not include mold flash protrusion
- 4. Drawing is not to scale

Important Notice

Right to Make Changes

Safety-Chip Micro reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Warranty Information

Safety-Chip Micro warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. Safety-Chip Micro assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Safety-Chip's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Life Support

Safety-Chip's products are not designed to be used as components in devices intended to support or sustain human life. Safety-Chip Micro will not be held liable for any damages or claims resulting from the use of its products in medical applications.

Military and Aerospace

Safety-Chip's products are not designed for use in Military and Aerospace applications. Safety-Chip Micro will not be held liable for any damages or claims resulting from the use of its products in Military and Aerospace applications.