SIERRA SEMICONDUCTOR

FEATURES

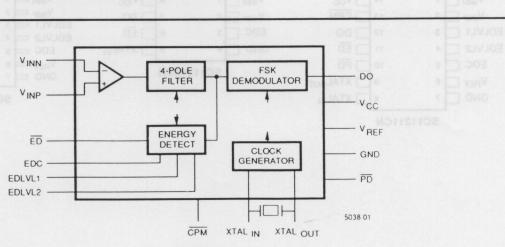
- □ 8 pin PDIP Version for Small Size
- Power Down Circuitry
- Selectable Energy Detection

GENERAL DESCRIPTION

The SC11210 and SC11211 are analog front ends which can be used to support the Caller Number Delivery (CND) feature in a General Switched Telephone Network (GSTN). This service is provided by the telephone company and is intended for residential and business telephone customers. It allows called customers to receive a calling party's number during the ringing cycle. The data corresponding to the caller number is transmitted to the customer premises when the telephone is on-hook and a voice path has been established. If power ringing is used to establish the voice path, then data transmission occurs during the silent interval between the first and second power ringing signal. Sierra's SC11210 and SC11211 are designed to interface to the signalling scheme that is

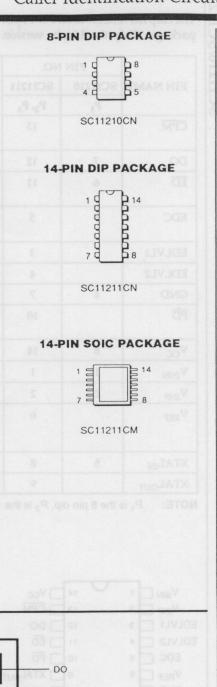
□ Energy Detection can be used as

Call Progress Filter


□ FSK Demodulator

shown in Table 1.

Link Type	Simplex, two wire
Transmission Scheme	Analog, phase-coherent frequency shift keying (FSK)
Logical 1 (Mark)	1200 ±12 Hz
Logical 0 (Space)	2200 ±22 Hz
Transmission Rate	1200 bps
Application of Data	Serial, binary, asynchronous
Transmission Level	-13.5 ± 1 dBm at the point of data application into a resistive load of 900 Ω
Insertion Loss @ 3KHz	10–14dB



BLOCK DIAGRAM

SC11210/SC11211 Caller Identification Circuit

SC11210/SC11211 Caller Identification Circuit

PIN DESCRIPTIONS

The chip is available in an 8 or 14 pin package. Only the 14 pin version

supports the power-down and call progress detect function and has

four energy detect levels. The following is a description of the pins.

	PIN	NO.	8 pin PDIP Version for Small L1 bnergy Defection can be used as
PIN NAME	SC11210	SC11211	DESCRIPTION
	P ₁	P ₂ , P ₃	Selectable Energy Detection
СРМ	sonard	13	Call progress control pin. When pulled low the input bandpass filter shifts center frequency and bandwidth.
DO	7.	12	The output of the FSK demodulator appears at this pin.
ED	6	11	Energy-Detect output. Goes low when inband energy is present and detected by the energy detect circuit.
EDC	3	5	Energy-Detect Capacitor. A $0.1 \mu\text{F}$ capacitor should be connected between this pin and ground.
EDLVL1	Br	3	Energy detect level control one.
EDLVL2		4	Energy detect level control two.
GND	4	7	Ground pin (0V).
PD		10	Power-down pin. When pulled low the chip will enter a sleep mode to reduce powe consumption.
V _{CC}	8	14	Positive power supply pin (4.5–5.5 Volts).
VINN	1	1	Negative input of differential input buffer.
VINP	2	2	Positive input of differential input buffer.
V _{REF}	ITST LOS	6	Reference ground pin. For improved performance a 1 μ F capacitor should b connected between this pin and ground. This voltage is nominally halfway between the positive and ground.
XTAL	5	8	The input pin of the oscillator.
XTALOUT		9	The output pin of the oscillator.
TAL _{OUT}	s the 8 pin c		The output pin of the oscillator. 14 pin dip, P ₃ is the 14 pin SOIC.
	s the 8 pin c		
	s the 8 pin c		14 pin dip, P ₃ is the 14 pin SOIC.
	s the 8 pin c		14 pin dip, P ₃ is the 14 pin SOIC.
OTE: P ₁ i		lip, P ₂ is the	14 pin dip, P ₃ is the 14 pin SOIC.
OTE: P ₁ i	U 14	lip, P ₂ is the	14 pin dip, P ₃ is the 14 pin SOIC. VINN 1 8 V_{CC} V_{INN} 1 14 V_{CC} V_{CC}
OTE: P ₁ i	14	lip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINN 1 14 V _{CC} VINP 2 7 DO VINP 2 13 CPM EDC 12 50 EDLVL1 3 12 DO
OTE: P ₁ i VINN 1 VINP 2 DLVL1 3	14 13 12	lip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINN 1 14 V _{CC} VINP 2 7 DO VINP 2 13 CPM EDC 3 6 ED EDLVL2 4 11 ED
VINN 1 VINP 2 DLVL1 3 DLVL2 4	14 13 12 11	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 14 VCC VINP 2 7 DO EDLVL1 3 12 DO EDC 3 6 ED EDLVL2 4 11 ED GND 4 5 XTALIN EDC 5 10 PD
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5	14 13 12 11 10	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINN 1 14 V _{CC} VINP 2 7 DO VINP 2 13 CPM EDC 3 6 ED EDLVL1 3 12 DO EDLVL2 4 11 ED GND 4 5 XTAL _{IN} EDC 5 10 PD SC11210CN V _{REF} 6 9 XTAL
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6	14 13 12 11 10 9	V _{CC} CPM DO ED PD XTAL _{OUT}	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 VINN 1 VINN 1 1 8 VCC VINN VINP 2 2 7 DO EDLVL1 3 6 EDC 3 GND 4 SC11210CN VREF GND 7 8 XTAL
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINN 1 14 V _{CC} VINP 2 7 DO VINP 2 13 CPM EDC 3 6 ED EDLVL1 3 12 DO EDLVL2 4 11 ED GND 4 5 XTAL _{IN} EDC 5 10 PD SC11210CN V _{REF} 6 9 XTAL
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9	V _{CC} CPM DO ED PD XTAL _{OUT}	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINP 2 7 DO EDC 3 6 ED GND 4 5 XTAL _{IN} SC11210CN VINP 2 7 DO EDLVL1 3 12 DO EDLVL2 4 11 ED SC11211CN SC11211CN
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8	V _{CC} CPM DO ED PD XTAL _{OUT}	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 1 4 VCC VINP 2 7 DO EDLVL1 3 12 DO EDC 3 6 ED EDLVL2 4 11 ED GND 4 5 XTALIN EDC 5 10 PD SC11210CN VREF 6 9 XTAL
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8	V _{CC} CPM DO ED PD XTAL _{OUT}	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 14 VCC VINP 2 7 DO EDLVL1 3 12 DO EDC 3 6 ED EDLVL1 3 12 DO GND 4 5 XTALIN EDC 5 10 PD SC11210CN VREF 6 9 XTALIN SC11211CM
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8 C11211CN	V _{CC} CPM DO ED PD XTAL _{OUT}	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 1 4 VCC VINP 2 7 DO EDLVL1 3 12 DO EDC 3 6 ED EDLVL2 4 11 ED GND 4 5 XTALIN EDC 5 10 PD SC11210CN VREF 6 9 XTALO SC11211CM SC11211CM
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8 C11211CN	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 V _{CC} VINP 2 7 DO EDC 3 6 ED GND 4 5 XTAL _{IN} SC11210CN VINN 1 1 4 V _{CC} VINN 2 13 EDL VL1 3 12 DO EDL VL2 4 11 ED SC11210CN VREF 6 9 XTAL _I SC11211CM
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8 C11211CN	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 1 4 VCC VINP 2 7 DO EDC 3 6 ED GND 4 5 XTALIN EDC 5 10 PD VREF 6 9 XTALI SC11210CN VINN 1 1 4 VCC VINN 2 13 0C EDLVL1 3 12 DO EDLVL2 4 11 ED VREF 6 9 XTALI SC11211CM
VINN 1 VINP 2 DLVL1 3 DLVL2 4 EDC 5 VREF 6 GND 7	14 13 12 11 10 9 8 C11211CN	Jip, P ₂ is the	14 pin dip, P_3 is the 14 pin SOIC. VINN 1 8 VCC VINN 1 1 4 VCC VINP 2 7 DO EDC 3 6 ED GND 4 5 XTALIN EDC 5 10 PD SC11210CN VREF 6 9 XTALI SC11211CM

SC11210/SC11211

1211 Caller Identification Circi

2

SC11210/SC11211

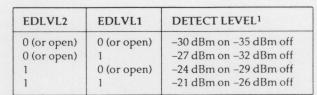
CIRCUIT DESCRIPTION

The Caller Identification Circuit is a CMOS device that operates with a single power supply over a range of 4.5-5.5 Volts. A block diagram of the chip is shown in Figure 1. It consists of an input differential buffer, a 4-pole bandpass filter, an FSK demodulator, a user selectable energy detect circuit, a clock generator, and a power down feature. The frequency response for the bandpass filter is shown in Figures 3a and 3b. In a typical application, the circuit accepts the incoming FSK signals through the differential input buffer, which in turn is passed through the 4 pole band pass filter. Depending on the setting of the energy detect pins (see Table 1), ED will go low when enough in-band energy is present or high when the energy level of the signal is insufficient. The chip accepts a 3.5795454 MHz clock or a crystal (see Figure 4) and uses it to generate timing for the internal blocks. The chip has a power-down mode which is controlled by the PD pin. When this pin is pulled low the power-down feature is activated. The device is available in an 8 or 14 pin package. The 8 pin version has one energy detect level and does not support the call progress detection function and the power down feature.

Analog Input Section

The analog input section accepts a differential signal which should be AC coupled to the V_{INN} and V_{INP} pins. Since the chip operates with a single power supply, an analog reference ground is generated internally which is nominally halfway between the positive supply and ground. To preserve approximately the same internal and external DC levels, the circuit of Figure 2 should be used for AC coupling the differential signal to the input pins.

Energy Detect Circuit


The energy detect circuit takes its input from the output of the bandpass filter. It rectifies the signal and uses an averaging circuit to determine the energy level. It needs an external capacitor for its operation. With the external capacitor equal to $0.1 \ \mu$ F, the on-to-off and off-to-on response times of the energy detect will nominally be 5 mS. The energy detect level has four distinct values and is controlled by the two EDLVL1 and EDLVL2 pins according to the listings in Table 2.

These levels are valid for the positive power supply equal to 5V DC. In the 8 pin package the EDLVL1 and EDLVL2 pins are not available and they are held low with internal pulldowns. Therefore in the 8 pin package the only available energy detect level is -30 dBm.

Power-Down Mode

In the 14 pin package the PD pin controls the power-down function. When this pin is pulled low the chip will be power-downed and the supply current will reach to its minimum level and the oscillator is inactive. In the 8 pin package this pin is not available and it is held high with an internal pullup.

NOTE 1: dBm = decibels above or below a reference power of 1 mW into a 600Ω load.

Table 2. Energy detection levels

*SC11211 Only

SC11210/SC11211

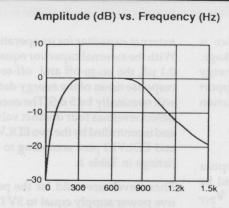


Figure 3a. Band Pass Filter in Call Progress **Monitor Mode**

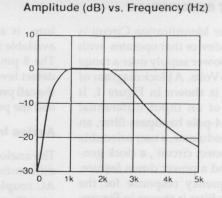
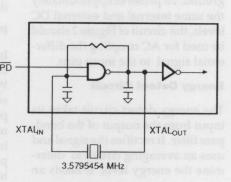
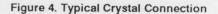
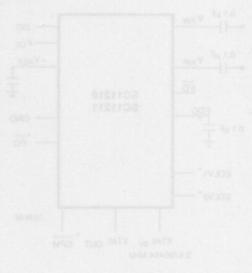





Figure 3b. Band Pass Filter in Caller Number **Delivery Mode**

PD -

Supply Voltage, V _{CC} – GND	ESCRIPTION MIN	+6V
Voltage on any Pin	£	GND - 0.3 to V _{CC} + 0.3 V
Current at any Pin		10 mA
Storage Temperature	027	-65 to +150°C
Power Dissipation (Note 3)		100 mW
Lead Temperature (Soldering 10 sec	Cos 1 - Cos due ador uños	300°C

OPERATING CONDITIONS (Note 4)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
T _A	Ambient Temperature	e Poek to Peak: 0.75 V	0	Olderents	70	°C
V _{CC}	Positive Supply Voltage		4.5	5.0	5.5	v
GND	Ground			0		v
F _C	Crystal Frequency		3.576	3.579545	3.583	MHz

NOTE 1: Absolute maximum ratings are those values beyond which damage to the device may occur.

NOTE 2: Unless otherwise specified all voltages are referenced to ground.

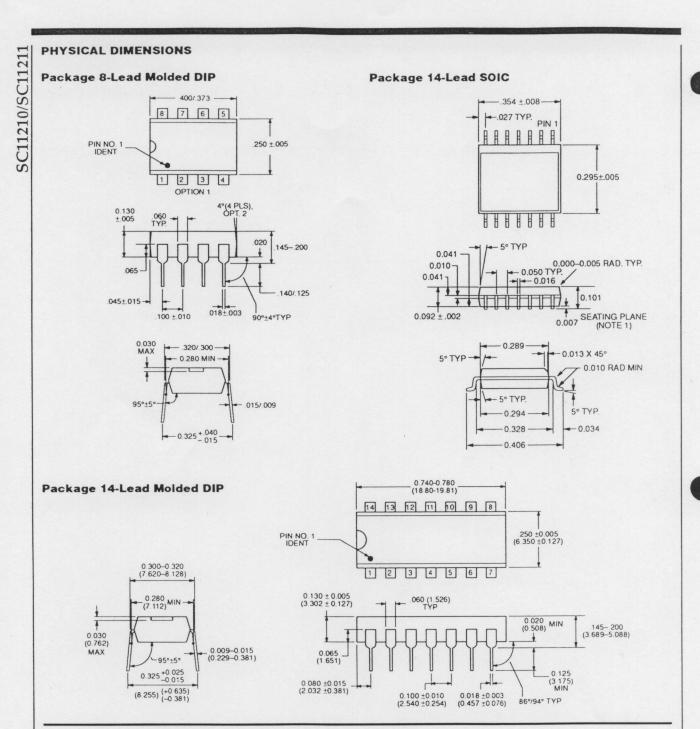
NOTE 3: Power dissipation temperature derating:

Plastic package: -12mW/C from 65°C to 85°C.

Ceramic package: -12mW/C from 100°C to 125°C.

NOTE 4: Min and max values are valid over the full temperature and operating voltage range. Typical values are for 25 °C and 5 V operations.

DC ELECTRICAL CHARACTERISTICS (Notes 1 and 2)


PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY						
V _{CC}	Operating Supply Voltage		4.5		5.5	V
I _{CC}	Operating Supply Current				7	mA
Po	Power Consumption $\overline{PD} = 1$	f = 3.579 MHz; V _{CC} = 5 V			35	mW
PD	Power Consumption $\overline{PD} = 0$				15	μA
INPUTS						
ν _π	Low Level Input Voltage				.8	V
V _{IH}	High Level Input Voltage		2			V
I _{IH} /I _{IL}	Input Leakage Current	$V_{IN} = GND \text{ or } V_{CC}$		0.1		μA
PD	Pull Up (Source) Current			100		μA
EDLVL	Pull Down (Sink) Current			100		μA
CLKIN	Load Capacitance			20		pF
CLKIN	High Level Input Leakage Current		3	50	μA	
CLKIN	Low Level Input Leakage Current		3	50	μA	
OUTPUTS						
lol	Output Low (Sink) Current	$V_{OUT} = 0.4 V$	1.0	2.5		mA
l _{он}	Output High (Source) Current	V _{OUT} = 4.6 V	0.4	0.8		mA
CLK _{OUT}	Driving Capacitance				100	μA
CLKOUT	High Level	$V_{OUT} = 2.8V$			200	μA
CLKOUT	Low Level	$V_{OUT} = 0.4V$			20	pF

NOTE 2: Unless otherwise specified all voltages are referenced to ground.

UNIT	MAX	TYP	MIN		IPTION	D			ETER	PARAME
kΩ	125	100	75			1)	$re(\overline{PD} =$	mpedano	SND I	V _{INT} to C
kΩ		3.3						mpedano		V _{INR} to C
kΩ	250	200	150			1)	$e(\overline{PD} =$	mpedan	o I	V _{INT} t
kΩ	and the second	6.6				0)	e ($\overline{PD} =$	mpedano	I	VINR
mV ¹	ine (Solda	01 gain	24.5		Input Imp. ($\overline{PD} = 1$)	ge on	al Voltag	Differenti		V _{INT} V _{INR}
dBm ¹			-30		$500\Omega (\overline{PD} = 1)$	Level	al Input	Differenti		V _{INT} V _{INR}
mVRM	nanoo I s	DESCE	600))	14 to 65 Hz) $(\overline{PD} =$	ip or	n either t	/oltage o	v	V _{INT} V _{INR}
	imA .	bient Ter	mulstoon		eak to Peak: 0.75 V	t Volta	tial Input	n Differer		
				C othe full ton other full fillences 1						
				C + the full ton + the full ton + the full +						
				0 v the full ton t (Rotea 1 v f						
				C the full ten t the full ten f (Stotes 1 f f f f f f f f f f f f f						
				C (Stotes 1 C (St						
				C (Stotes 1 C (St						
				0 4 the full ton 6 (Stotes 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
				6 4 (Notes 1 4 5 6 6 7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8						
				6 4 (Notes 1 4 5 6 6 7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8						
				C the full ten (the full ten (the full)))))))))))))						
				0 1 the full ten 1 (2005ea 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
				0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
				Corrent of the contract of the						
				0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
				C Current						
				C Current						
				C Current						
				C the bill ten t the bill ten f (blotes 1 e e c c c c c c c c c c c c c						

OTE 1: Absolute maximum ratings are tross values beyond which durings to the device may o

NOTE 2: Unless otherwise specified all voltages are referenced to ground.

Devices sold by Sierra Semiconductor Corp. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Sierra Semiconductor Corp. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Sierra Semiconductor Corp. makes no warranty of merchantability or fitness for any purpose. Sierra Semiconductor Corp. reserves the right to discontinue production and change specifications and prices at any time and without notice.

This product is intended for use in normal commercial applications. Applications requiring an extended temperature range, unusual environmental requirements, or high reliability applications, such as military and aerospace, are specifically not recommended without additional processing by Sierra Semiconductor Corp.

Sierra Semiconductor assumes no responsibility for the use of any circuitry other than circuitry embodied in a Sierra Semiconductor Corp. product. No other circuits, patents, licenses are implied.

Life Support Policy

Sierra Semiconductor Corporation's products are not authorized for use as critical components in life support devices or systems.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.