22-S3-C3410X-062001

USER'S MANUAL

S3C3410X

16-Bit CMOS
Microcontrollers
Revision 2

ELECTRONICS

NOTIFICATION OF REVISIONS

ORIGINATOR: Samsung Electronics, SOC Development Group, Ki-Heung, South Korea
PRODUCT NAME: S3C3410X RISC Microcontroller
DOCUMENT NAME: S3C3410X User's Manual, Revision 2

DOCUMENT NUMBER: 22-S3-C3410X-06-2001
EFFECTIVE DATE: June, 2001

SUMMARY: As a result of additional product testing and evaluation, to correct the errata and
to add more detailed explanations, some specifications published in the
S3C3410X User's Manual, Revision 1, have been changed. These changes for
S3C3410X microcontroller, which are described in detail in the Revision
Descriptions section below, are related to the followings:

— Chapter 1. Pin Descriptions
— Chapter 4. EXTCONx, EXTPORT, EXTDATx and Timing Diagrams
— Chapter 5. Cache Disable Operation

— Chapter 7. Port 7 and Port 9 Control Registers
— Chapter 11. Interrupt Priority Register (INTPRIXx)
— Chapter 14. Multi-Master [IC-Bus Status Register (ICSTAT)

DIRECTIONS: Please note the changes in your copy (copies) of the S3C3410X User's Manual,
Revision 1. Or, simply attach the Revision Descriptions of the next page to
S3C3410X User's Manual, Revision 1.

REVISION HISTORY

Revision Date Remark
0 - There is no preliminary spec.
1 August, 2000 Reviewed by Gwang-Su Han.
2 June, 2001 Reviewed by Gwang-Su Han.

REVISION DESCRIPTIONS

1. PIN DESCRIPTIONS:

1) Pin descriptions about A[23:0], D[15:0], nCS[7:0] nECS[1:0], nWAIT and nWREXP, are changed and the
content of RP[7:0] are added.

S3C3410X User's Manual reference: Table 1-3, page 1-11

2) The following errata should be corrected:
RXD ® URXD, TXD ® UTXD, SIOCK[1:0] ® SIOCLKJ1:0], EXTAIO ® EXTALO, SYSCFGO0 ® SYSCFG,
MEMCONx ® BANKCONx, EDVCONx ® EXTCONx, EXTDATAX ® EXTDATx , UTXHW ® UTXH_W,
URXHW ® URXH_W, IICADD(0xe002) ® [ICADD(0xe003), ICDS(0xe003) ® 1ICDS(0xe002)

S3C3410X User's Manual reference: Table 1-3, page 1-11
2. EXTCONX, EXTPORT, EXTDATX AND TIMING DIAGRAMS:

1) Contents about EXTCONx, EXTPORT, and EXTDATX are changed.
S3C3410X User's Manual reference: page 4-14 and page 4-15

2) "Multiplexed Address Mode Timing Diagrams", "nCS Timing Diagram with nWAIT", and “nECS Timing
Diagram with nWAIT" are added.

3) External Device Interface Diagram is changed.
S3C3410X User's Manual reference: Figure 4-21, page 4-30

3. CACHE DISABLE OPERATION:

1) More detailed explanations about the internal SRAM address (when the cache is disabled) is added.
S3C3410X User's Manual reference: page 5-4

4. PORT 7 AND PORT 9 CONTROL REGISTERS:
1) The contents of P7BR(0xB0OO0B) is added in PORT 7 and the pin descriptions of P7.x are changed to P7.x
(RPX).

S3C3410X User's Manual reference: page 7-20

2) More detailed explanations about P9.0(LP) and P9.1(DCLK) are added.
S3C3410X User's Manual reference: page 7-25

(Continued to the next page)

5. INTERRUPT PRIORITY REGISTER:

1) The contents about the INTPRIx are changed .
S3C3410X User's Manual reference: page 11-10

6. MULTI-MASTER IIC-BUS STATUS REGISTER:

1) The contents of INTFLAG is added to IICSTAT register.
S3C3410X User's Manual reference: page 14-7

2) The prescaler value (4~ (prescaler value + 1)) is changed to (16 * (prescaler value + 1)) in IICPS.
S3C3410X Useris Manual reference: page 14-9

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

PRODUCT OVERVIEW

INTRODUCTION

Samsung's S3C3410X 16/32-bit RISC microcontroller is a cost-effective and high-performance microcontroller
solution for PDA and general purpose application.

An outstanding feature of the S3C3410X is its CPU core, a 16/32-bit RISC processor(ARM7TDMI) designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose, microprocessor macro-
cell, which was developed for the use in application-specific and customer-specific integrated circuits. Its simple,
elegant, and fully static design is particularly suitable for cost-sensitive and power-sensitive application.

The S3C3410X has been developed by using the ARM7TDMI core, CMOS standard cell, and a data path
compiler. Most of the on-chip function blocks have been designed using an HDL synthesizer. The S3C3410X has
been fully verified in SAMSUNG ASIC test environment including the internal Qualification Assurance Process.

By providing a complete set of common system peripherals, the S3C3410X can minimize the overall system cost
and eliminates the need to configure additional components, externally.

The integrated on-chip functions which are described in this document include:

Integrated external memory controller (ROM/SRAM and FP/EDO DRAM/SDRAM controller)
2-channel general DMA controller

Internal 4K-byte memory can be configured as (4KB Cache only), (2KB Cache and 2KB SRAM), or (4KB
SRAM only).

1-channel UART with IrDA 1.0, 1-channel IIC, and 2-channel SIO(Synchronous serial 10)

3-channel 16-bit timers and 2-channel 8-bit timers

Real time clock with calendar function.

Crystal/Ceramic oscillator or external clock can be used as the clock source.

Power control: Normal, Idle, and Stop mode

1-channel 8-bit basic timer and 3-bit watch-dog timer

Interrupt controller: 35 interrupt sources, interrupt priority control logic and interrupt vector generation by H/W.
8-channel 10-bit ADC

10 programmable 1/0O port group (Total 74 1/O ports including the multiplexed 1/O)

ELECTRONICS 1-1

PRODUCT OVERVIEW

S3C3410X RISC MICROPROCESSOR

FEATURES

Architecture

Integrated system for hand-held and general
embedded application.

Fully 16/32-bit RISC architecture(32-bit ARM
instruction as well as 16-bit Thumb instruction).

ARM7TDMI CPU core, supporting the efficient
and powerful instruction set.

On-chip ICEBreaker™ debug support by JTAG-
based solution.

4KB Unified Cache (Instruction/Data Cache
Memory)

System Manager

Address space: 16Mbytes per each bank
(Total 128Mbyte)

Support 8-bit/16-bit data bus width for external
memory/device access.

The bank can support ROM/SRAM/Flash,
External I/O device or FP/EDO/SDRAM.

Among total 8 memory banks, bank0,1,2,3,4
and 5 can be mapped to ROM/SRAM/Flash,
while bank6 and 7 can be mapped to
FP/EDO/SDRAM as well as ROM/SRAM/Flash.

Fully programmable access cycle for all memory
banks

Supports self-refresh/auto-refresh mode to
retain the data in the DRAM.

Two external I/O banks can be mapped to the
SFR (Special Function Register) region.

Unified(Instruction/Data) Cache Memory &
Internal SRAM

Two-way set associative 4KB cache.

Pseudo LRU (Least Recently Used)
replacement policy.

Four depth write buffer.

Programmable configuration of
(4KB cache, only), (2KB cache and 2KB SRAM),
or (4KB SRAM, only).

DMA Controller

Two-channel general purposed DMA(Direct
Memory Access) controller.

The data transfer of Memory-to-memory, serial
port-to-memory, memory-to-serial port, memory-
to-SFR(Special Function Register), SFR-to-
memory, internal SRAM-to-memory, and
memory-to-internal SRAM without CPU
intervention

Initiated by the software or external DMA
request

Increment or decrement source or destination
addresses.

Supports 8-bit(byte), 16-bit(half-word), and 32-
bit(word) of data transfer size.

I/O Ports

10 Programmable Input, Output, and 1/O port
group (74 1/0O ports including the multiplexed
I/1O)

One programmable Output port (2-bit
multiplexed output ports)

One programmable Input port(8-bit multiplexed
input ports)

Eight programmable I/O port group.

16-bit Timer/Counters (TO, T1, T2)

Three-channel programmable 16-bit
timer/counter

Interval, capture, match & overflow, or DMA
mode operation

Internal or external clock source

8-bit Timer/Counters (T3, T4)

Two-channel programmable 8-bit timer/counter

Interval, capture, PWM, or DMA mode operation
(T4 PWM with 5-byte FIFO buffer, which can
provide the sound generation capability)

Internal or external clock source

1-2

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

PRODUCT OVERVIEW

UART & SIO

One-channel UART with DMA-based or
interrupt-based operation

Programmable baud rates

Supports 5-bit, 6-bit, 7-bit and 8-bit serial data
transmit/receive frame in UART

Programmable accessible 8-byte transmitter
FIFO and 8-byte receiver FIFO in UART

Two-channel synchronous SIO with DMA-based
or interrupt-based operation

Support the serial data transmit/receive
operation by 8-bit frame.

Interrupt Controller

35 interrupt sources (12 External interrupt, 2
DMA, 3 UART, 11 Timer, ADC, IIC, 2 SIO,
Basic Timer, 2 RTC)

H/W interrupt priority logic and vector
generation

Normal or fast interrupt modes (IRQ, FIQ)

A/D Converter
Eight-channel multiplexed ADC
Successive approximation conversion
10-bit ADC

WDT(Watch-Dog Timer) and Basic Timer

8-bit Counter (Basic Timer) and 3-bit counter
(Watchdog Timer)

The overflow signal of 8-bit counter can
generate a basic timer interrupt and should be
input clock for 3-bit counter(Watchdog Timer).

The overflow signal of 3-bit counter makes a
system reset

IIC Bus Interface
One-channel multi-master [IC-bus

Support 8-bit, bi-directional, and serial data
transfer up to 100kbit/s.

RTC (Real Time Clock)

Full clock function : second, minute, hours, day,
week, month, and year

32.768KHz operation

Alarm interrupt for CPU wake-up

Power Down Mode
Power mode: Idle, Slow and Stop mode

System clock division ratio in slow mode: 1, 1/2,
1/8, 1/16, and 1/1024

Operating Voltage Range
30V ito 36V

Temperature Range
0°C to 70°C

Operating Frequency
up to 40MHz

Package Type
128-pin QFP

ELECTRONICS

1-3

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

BLOCK DIAGRAM

System Clock 1 Crystal_/
CPU Uni Circuit [Ceramic
nit | T Oscillator
Write _
Buffer Basic Timer
& P
ARM7TDMI E: WDT
CPU Core
A/D
Cache - ——p
4 Kbyte P / Converter
)
AI\ o
Interrupt)
SYSTEM BUS Controller o
DMAO,1 T
—> \,7 .
S
T o
\| Real Time Clock i
o / Generator o)
& UART <
3 |- > S
o 7
T \| - i
& /\— Timer 0,1,2,3,4 >
3 Serial I/0 0,1 ﬁ/
wn I
o \1* o
= T [
@)
S an — - >
= GPIO
o [P
7 Controller \,1;/ IIC BUS
SYSTEM BUS CONTROLLER BUS ARBITRATION
BUS ROM/ FP/DRAM/
INTERFACE FLASH/SRAM SDRAM
CONTROLLER CONTROLLER

Figure 1-1. S3C3410X Block Diagram

1-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

PIN ASSIGNMENTS

0
<~ A ©
N I
a®dN~NQp~Q
B Se®, 44 8 ko NQ RSESFSSA
ﬁﬁﬁﬁumJHoHomgoEE EQ:I:Q.Q:&EQ
saSsUWUZ<I>EFFEFNnIT IR L>pez3S20
Z%ZZQ:U|—<ommu_||—<|\<o agBOxg=axXbE s
s> OXFEEWUWEXEALL a0 A AFQOZ0E =
II<I<IIC<IUXEFFFCcWX@XE>S>SCFcRRRL®
naonnonooaononononoooooonoonmon
ON~NOILTONAOOODOMNOISS MO NTAODONOWS M
AN ANANANANANANANNAAAAAAA A A A O OO OOCOO
T A
AIN4/EINT8/P8.4 T 1 102 [SIOCLK1/P6.5
AINS/EINTO/P8.5] 2 101 [SIORXD1/P6.4
AING6/EINT10/P8.6] 3 100 @ SIORDY/nWAIT/P6.3
AIN7/EINT11/P8.7] 4 99 [SIOTXDO0/P6.2
ADCVpD (& 5 98 [SIOCLKO/P6.1
TCLKO/TCAPO/P0.0 . 6 97 3 SIORXDO0/P6.0
TCLK1/TCAP1/P0O.1 EH 7 96 3 UTXD/P5.7
TCLK2/TCAP2P0.2] 8 95 3 URXD/P5.6
Vss] 9 94 [VbDp
Vpop] 10 93 [Vss
TCLK3/P0.3 ™ 11 92 [IICSCK/P5.5
TCLK4/P0.4 T 12 91 3 IICSDA/P5.4
TCAP3/TOUT3/PWMO/P0.5] 13 90 = nDACK1/P5.3
TCAP4/TOUT4/PWM1/P0.6 T 14 89 1 nDREQ1/P5.2
EINTO/nWREXP/P0.7] 15 88 [nDACKO/P5.1
A0 ™ 16 87 |3 nDREQO/P5.0
Al O 17 86 [D15/A23/P4.7
A2] 18 85 = D14/A22/P4.6
Ves O 19 S3C3410X 01 5 Voo
Vop] 20 83 1 Vss
A3 21 (128-QFP-1420) 82 1 D13/A21/P4.5
A4 T 22 81 = D12/A20/P4.4
A5 ™ 23 80 | D11/A19/P4.3
A6] 24 79 B3 D10/A18/P4.2
A7 & 25 78 |3 D9/A17/P4.1
A8/A16] 26 77 =3 D8/A16/P4.0
A9/Al7 O 27 76 A D7
Al10/A18] 28 75 B3 D6
Vss & 29 74 3 VbD
Voo] 30 73 B Vss
Al11/A19 O 31 72 B D5
Al12/A20] 32 71 B D4
Al13/A21] 33 70 B3 D3
Al4/A22] 34 69 /P D2
A15/A23] 35 68 = D1
A16/P1.0] 36 67 B DO
Al7/P1.1] 37 66 = DCLK/P9.1
Al18/P1.2] 38 65 =3 LP/P9.0
DO T ANMTUHLONDOOOANMTULOMNODIO AdANMS
MU ITTTATITTTTTOOOOOWOWOWOLO L O OO OO
guobduobotututuootbtouototduotooouobovuuon
MYIOWONQOANMITI BAONWNOANMTO QN
HwiwiPiPinNNNNC\]ggNNO<«j«5(V)M(Y5mmm
fooaoonoQoooann [N N s M M W Y Y
SIPNOR “"aqAMIDBS R SS0ANWU a3
GSEEEE OO ND nn S><<=xa0
<zzzz QOQOQO [ON®) oOO0XOZOOO
WWww ccCccCccoccCc % % |_|C_| A A % %) ()] |_|C_|
O " NM g = S = =
AN NN e il nDwd N
CC << % % E o 2 2 =
c cu S % % w
3 < o
b B mm
Q Q ==
o c cC

Figure 1-2. S3C3410X Pin Assignments

ELECTRONICS 1-5

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR
Table 1-1. 128-Pin QFP Pin Assignment

Pin No Function I/O State @Initial I/O Type Reset
1 AIN4/EINT8/P8.4 I piseuc P8.4
2 AIN5/EINT9/P8.5 I piseuc P8.5
3 AIN6/EINT10/P8.6 I piseuc P8.6
4 AIN7/EINT11/P8.7 I piseuc P8.7
5 ADCVDD P vddt
6 TCLKO/TCAPO/P0.0 10 pbseuct4 P0.0
7 TCLK1/TCAP1/P0.1 10 pbseuct4 PO.1
8 TCLK2/TCAP2/P0.2 10 pbseuct4 P0.2
9 VSS P VSS
10 VDD P vdd
11 TCLK3/P0.3 10 pbseuct4 P0.3
12 TCLK4/P0.4 10 pbseuct4 P0.4
13 TCAP3/TOUT3/PWMO/PO0.5 10 pbseuct4 P0.5
14 TCAP4/TOUT4/PWM1/P0.6 10 pbseuct4 P0.6
15 EINTO/nWREXP/PO0.7 10 pbseuct8 PO.7
16 A0 O pob8 A0
17 Al O pob8 Al
18 A2 O pob8 A2
19 VSS P VSS
20 VDD P vdd
21 A3 0 pob8 A3
22 A4 O pob8 A4
23 A5 O pob8 A5
24 A6 0 pob8 A6
25 A7 O pob8 A7
26 AB/AL16 O pob8 A8
27 A9/AL7 O pob8 A9
28 A10/A18 O pob8 A10
29 VSS P VSS
30 VDD P vdd
31 A11/A19 O pob8 All
32 A12/A20 O pob8 Al12

1-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset
33 A13/A21 O pob8 Al13
34 A14/A22 0] pob8 Al4
35 A15/A23 O pob8 Al5
36 A16/P1.0 10 pbcedct8 P1.0
37 Al17/P1.1 10 pbcedct8 P1.1
38 A18/P1.2 10 pbcedct8 P1.2
39 A19/P1.3 10 pbcedct8 P1.3
40 A20/EINT4/P1.4 10 pbsedct8 P1.4
41 A21/EINT5/P1.5 10 pbsedct8 P1.5
42 A22/EINT6/P1.6 10 pbsedct8 P1.6
43 A23/EINT7/P1.7 10 pbsedct8 P1.7
44 nCS0 0 pob8 nCS0
45 nCS1/P2.0 10 pbceuct8 P2.0
46 nCS2/P2.1 10 pbceuct8 P2.1
47 nCS3/P2.2 o) pbceuct8 pP2.2
48 nCS4/P2.3 o) pbceuct8 P2.3
49 nCS5/P2.4 o) pbceuct8 P2.4
50 nCS6:nRAS0:nSCS0/P2.5 o) pbceuct8 P2.5
51 VSS P VSS
52 VDD P vdd
53 NCS7:nRAS1:nSCS1/P2.6 10 pbceuct8 P2.6
54 EINT1/nECS0/P2.7 10 pbseuct8 pP2.7
55 nOE O pob8 nOE
56 nAS O pob8 nAS
57 nWBEOQO:nBEO:DQMO/P3.0 10 pbceuct8 P3.0
58 nWBE1:nBE1:DQM1/P3.1 10 pbceuct8 P3.1
59 NCAS0:nSRAS/P3.2 o) pbceuct8 P3.2
60 NnCAS1:nSCAS/P3.3 o) pbceuct8 P3.3
61 nWE/P3.4 o) pbceuct8 P3.4
62 SCKE/P3.5 10 pbceuct8 P3.5
63 SCLK/P3.6 10 pbceuct8 P3.6
64 EINT2/nECS1/P3.7 10 pbseuct8 P3.7

ELECTRONICS 1-7

PRODUCT OVERVIEW

S3C3410X RISC MICROPROCESSOR

Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset
65 LP/P9.0 O pob8 LP
66 DCLK/P9.1 0] pob8 DCLK
67 DO 10 pbcedct8 DO
68 D1 10 pbcedct8 D1
69 D2 10 pbcedct8 D2
70 D3 10 pbcedct8 D3
71 D4 10 pbcedct8 D4
72 D5 10 pbcedct8 D5
73 VSS P VSS
74 VvDD P vdd
75 D6 10 pbcedct8 D6
76 D7 10 pbsedct8 D7
77 D8/A16/P4.0 10 pbcedct8 P4.0
78 D9/A17/P4.1 10 pbcedct8 P4.1
79 D10/A18/P4.2 10 pbcedct8 P4.2
80 D11/A19/P4.3 10 pbcedct8 P4.3
81 D12/A20/P4.4 10 pbcedct8 P4.4
82 D13/A21/P4.5 10 pbcedct8 P4.5
83 VSS P VSS
84 VDD P vdd
85 D14/A22/P4.6 10 pbcedct8 P4.6
86 D15/A23/P4.7 10 pbcedct8 P4.7
87 NnDREQO/P5.0 10 pbceuct4 P5.0
88 nDACKO/P5.1 10 pbceuct4 P5.1
89 NDREQ1/P5.2 o) pbceuct4 P5.2
90 nDACK1/P5.3 o) pbceuct4 P5.3
91 IICSDA/P5.4 o) pbceuct8 P5.4
92 [ICSCK/P5.5 10 pbceuct8 P5.5
93 VSS P VSS
94 VDD P vdd
95 URXD/P5.6 10 pbceuct4 P5.6
96 UTXD/P5.7 10 pbceuct4 P5.7

1-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-1. 128-Pin QFP Pin Assignment (Continued)

Pin No Function I/O State @Initial I/O Type Reset
97 SIORXDO0/P6.0 10 pbseuct4 P6.0
98 SIOCLKO/P6.1 10 pbseuct4 P6.1
99 SIOTXDO0/P6.2 10 pbseuct4 P6.2
100 SIORDY/nWAIT/P6.3 10 pbseuct4 P6.3
101 SIORXD1/P6.4 10 pbseuct4 P6.4
102 SIOCLK1/P6.5 10 pbseuct4 P6.5
103 SIOTXD1/P6.6 10 pbseuct4 P6.6
104 EINT3/P6.7 10 pbseuct4 P6.7
105 TCK/RPO/P7.0 10 pbceuct4 P7.0
106 TMS/RP1/P7.1 10 pbceuct4 P7.1
107 TDI/RP2/P7.2 10 pbceuct4 pP7.2
108 NTRST/RP3/P7.3 10 pbceuct4 P7.3
109 TDO/RP4/P7.4 10 pbceuct4 P7.4
110 RP5/P7.5 10 pbceuct4 P7.5
111 VSS P VSS
112 VDD P vdd
113 RP6/P7.6 10 pbceuct4 P7.6
114 RP7/P7.7 10 pbceuct4 P7.7
115 XTALO I oscm XTALO
116 EXTALO @] oscm EXTALO
117 | RESET I pisu RESET
118 TESTO I pis TESTO
119 TEST1 I pis TEST1
120 RTCVDD P vddt
121 XTAL1 I oscm XTAL1
122 EXTAL1 @] oscm EXTAL1
123 ADCVSS P vsst
124 AVREF A apad AVREF
125 AINO/P8.0 I piseuc P8.0
126 AIN1/P8.1 I piseuc P8.1
127 AIN2/P8.2 I piseuc P8.2
128 AIN3/P8.3 I piseuc P8.3

ELECTRONICS

1-9

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

Table 1-2. /0O Type Description

I/O Type Description
vdd, vss 3.3V vdd/Vss
vddt, vsst 3.3V Vdd/Vss for analog circuitry
pbceuct4 bi-direction pad, CMOS level, pull-up resister with control, tri-state, 1o = 4mA
pbseuct4 bi-direction pad, CMOS schmitt-trigger, pull-up resister with control, tri-state, 1o = 4mA
pbceuct8 bi-direction pad, CMOS level, pull-up resister with control, tri-state, lo = 8mA
pbseuct8 bi-direction pad, CMOS schmitt-trigger, pull-up resister with control, tri-state, lo = 8mA
pbcedct8 bi-direction pad, CMOS level, pull-down resister with control, tri-state, lo = 8mA
pbsedct8 bi-direction pad, CMOS schmitt-trigger, pull-down resister with control, tri-state, lo = 8mA
pob8 output pad, lo = 8mA
pis input pad, CMOS schmitt-trigger
pisu input pad, CMOS schmitt-trigger, pull-up resister
piceuc input pad, CMOS level, pull-up resister with control
piseuc input pad, CMOS schmitt-trigger, pull-up resister with control
apad pad for analog pin
oscm pad for x-tal oscillation

1-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

PIN DESCRIPTIONS

Table 1-3. S3C3410X Pin Descriptions

Pin | 1o |

Description

BUS CONTROLLER

TEST[1:0]

The TESTI[1:0] can configure the data bus size for bank 0 in normal or MDS mode.
The normal mode is for CPU to start its operation by fetching the instruction from
external memory. The MDS mode is for CPU to be debugged by the external
Emulator, EmbeddedICE, etc.

00 = Normal mode with 8-bit data bus size for bank 0 access.

01 = Normal mode with 16-bit data bus size for bank 0 access.

10 = MDS mode with 8-bit data bus size for bank 0 access.

11 = MDS mode with 16-bit data bus size for bank 0 access.

A[23:0]

A[23:0] (address bus) generate the address when external memory access.

D[15:0]

I/0

D[15:0] (Data bus) input the data during memory read and output the data during
memory write. The data bus width can be programmable for 8-bit or 16-bit by the
BANKCONX register option.

nCS[7:0]

nCS[7:0] (Chip Select) selectively generate the chip select signal of each bank when
the external memory access address is within the address range of each bank. The
number of access cycle and the bank size can be programmable by the BANKCONXx
register option.

nECS[1:0]

nECS[1:0] (External Chip Select) generate the external chip select signal for the
extra device (External 1/0 device).

nOE

nOE (Output Enable) indicates that the current bus cycle is a read cycle.

NWE (Write Enable for x16 SRAM or SDRAM) indicates that the current bus cycle is
a write cycle. To support the byte write to external memory, the byte to be accessed
can be determined by nBE[1:0], which is the selection on upper byte or lower byte.
For example, in case of 16-bit SRAM, nBE[1:0] should play it role as UB(Upper
Byte)/LB(Lower Byte) to select the upper byte or lower byte. In case of SDRAM,
NWBE][1:0] should play it role as DQM[1:0] to select the upper byte or lower byte. For
16-bit access, not 8-bit access, both nWBE[1:0] should be activated at same time. In
certain case, no more byte access is needed. For example, x16 Flash Memory does
not need byte access through 16-bit bus when user need the programming in the
flash memory. In this case, please use nWBE[0] instead of nWE to indicate that the
current bus cycle is a write cycle. Summarizing, NnWE should be used to indicate the
write bus cycle in case of x16 SRAM and x16/x8 SDRAM. In case of x16 with two x8
SRAM, nWBE[0] and nWBE[1] should be connected to the WE of SRAM,
respectively. For more detail information, please refer the chapter 4.

nWBE[1:0]

NWBE[1:0] (Write Byte Enable). In case of Flash or ROM access, nWBE[0] should
be connected to the WE of memory. For the access to the non-volatile memory, we
do not need the selection on bytes because the 8-bit write cycle via 16-bit bus is no
more necessary. To program the data into the non-volatile memory, we should
always use the 16-bit access. In this configuration, please use nWBE[Q] instead of
NWE to indicate that the current bus cycle is a write cycle. Summarizing, nWBE[O]
should be used to indicate the current write bus cycle in case of X8 SRAM, x8/x16
ROM, EDODRAM or Flash memory. For more detail information, please refer the
chapter 4.

ELECTRONICS

1-11

PRODUCT OVERVIEW

S3C3410X RISC MICROPROCESSOR

Table 1-3. S3C3410X Signal Descriptions (Continued)

Pin /0 Description

nAS O | nAS generates an address strobe signal for latch device in multiplexed address
mode which generate A[23:16] and A[15:8] address in A[15:8] pins.

NWAIT I | NWAIT receives request signal to prolong a current bus cycle. As long as nWAIT is
"Low", the current bus cycle cannot be completed.

NWREXP O | NWREXP outputs write strobe signal for external device, when you write any data
into EXTPORT register to interface external device.

DRAM/SDRAM

NRAS[1:0] O | Row Address Strobe

nCAS[1:0] O [Column Address Strobe

nSCS[1:0] O | SDRAM Chip Select

NSRAS O | SDRAM Row Address Strobe

nSCAS O | SDRAM Column Address Strobe

DQM[1:0] O | SDRAM Data Mask

SCLK O | SDRAM Clock

SCKE O | SDRAM Clock Enable

16-bit/8-bit Timer

TCLKJ[4:0] | | External clock input for Timer

TCAP[4:0] | | Capture input for Timer

TOUTI[4:3] O [Timer 3, 4 output or PWM output

DMA

NDREQ[1:0] | | External DMA request

nDACK][1:0] O | External DMA acknowledge

Interrupt Controller

EINT[12:0] | | | External interrupt request
UART

URXD I | UART receives data input
UTXD O | UART transmits data output
SIO

SIOCLK][1:0] I/O | SIO external clock
SIORXDI[1:0] I | SIO receives data input
SIOTXDI[1:0] O | SIO transmits data output
SIORDY I/O | SIO handshakes signal when SIO operation is done by DMA
lIC-BUS

IICSDA I/O | lIC-bus data

IICSCK I/O | lIC-bus Clock

1-12

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

Table 1-3. S3C3410X Signal Descriptions (Continued)

Pin | /0 | Description

ADC

AIN[7:0] A | ADC input

AVREF A | ADC Vref

General Purpose I/O

Pn.x I/0O | General purpose input/output ports

RP[7:0] O | Real time buffer output ports (refer to P7)

RESET & Clock

RESET || RESET is the global reset input for the S3C3410X. For a system reset, RESET must
be held to "Low" level for at least 1us.

XTALO A | Crystal input for internal oscillation circuit for system clock

EXTALO A | Crystal output for internal oscillation circuit for system clock. It's the inverted output
of XTALO.

XTAL1 A | 32.768KHz crystal input for RTC

EXTAL1 A | 32.768KHz crystal output for RTC. It's the inverted output of XTALL.

LCD Interface

LP O | LCD Line Pulse (Inversion of nECSO0)

DCLK O | LCD Clock (Inversion of N\WREXP)

JTAG Test Logic

NTRST | | NTRST (TAP Controller Reset) can reset the TAP controller at power-up. A 100K
pull-up resistor is connected to nTRST pin, internally. If the debugger(BlackICE) is
not used, NnTRST pin should be "Low" level or low active pulse should be applied
before CPU running. For example, RESET signal can be tied with nTRST.

TMS | | TMS (TAP Controller Mode Select) can control the sequence of the state diagram of
TAP controller. A 100K pull-up resistor is connected to TMS pin, internally.

TCK | | TCK (TAP Controller Clock) can provide the clock input for the JTAG logic. A 100K
pull-up resistor is connected to TCK pin, internally.

TDI | | TDI (TAP Controller Data Input) is the serial input for JTAG port. A 100K pull-up
resistor is connected to TDI pin, internally.

TDO O | TDO (TAP Controller Data Output) is the serial output for JTAG port.

POWER

VDD P | Power supply pin

VSS P | Ground pin

RTCVDD P | RTC power supply

ADCVDD P | ADC power supply

ADCVSS P | ADC ground & RTC ground

ELECTRONICS 1-13

PRODUCT OVERVIEW S3C3410X RISC MICROPROCESSOR

S3C3410X SPECIAL FUNCTION REGISTER

Table 1-4. S3C3410X Special Function Register

Group Register Offset R/W Description Acces | Reset Value
S
System SYSCFGO 0x1000 R/W | System Configuration Register wW Oxfffl
Manager BANKCONO 0x2000 R/W | Memory Bank 0 Control Register W 0x00200070
BANKCON1 0x2004 R/W | Memory Bank 1 Control Register W 0x0
BANKCON2 0x2008 R/W | Memory Bank 2 Control Register W 0x0
BANKCON3 0x200c R/W | Memory Bank 3 Control Register W 0x0
BANKCON4 0x2010 R/W | Memory Bank 4 Control Register W 0x0
BANKCON5 0x2014 R/W | Memory Bank 5 Control Register W 0x0
BANKCONG6 0x2018 R/W | Memory Bank 6 Control Register W 0x0
BANKCON7 0x201c R/W | Memory Bank 7 Control Register W 0x0
REFCON 0x2020 R/W | DRAM Refresh Control Register W Ox1
EXTCONO 0x2030 R/W | Extra device control register O W 0x0
EXTCON1 0x2034 R/W | Extra device control register 1 W 0x0
EXTPORT 0x203e R/W | External port data register B/H 0x0
EXTDATO 0x202c R/W | Extra chip selection data register 0 B/H 0x0
EXTDAT1 0x202e R/W | Extra chip selection data register 1 B/H 0x0
DMA DMACONO 0x300c R/W | DMA 0 control register W 0x0
DMASRCO 0x3000 R/W | DMA 0 source address register W 0x0
DMADSTO 0x3004 R/W | DMA 0 destination address register W 0x0
DMACNTO 0x3008 R/W | DMA 0 transfer count register W 0x0
DMACON1 0x400c R/W | DMA 1 Control Register W 0x0
DMASRC1 0x4000 R/W | DMA 1 source address register W 0x0
DMADST1 0x4004 R/W | DMA 1 destination address register W 0x0
DMACNT1 0x4008 R/W | DMA 1 transfer count register W 0x0
I/O Port PDATO 0xb000 R/W | Port O data register B 0x0
PDAT1 0xb001 R/W | Port 1 data register B 0x0
PDAT2 0xb002 R/W | Port 2 data register B 0x0
PDAT3 0xb003 R/W | Port 3 data register B 0x0
PDAT4 0xb004 R/W | Port 4 data register B 0x0
PDATS 0xb005 R/W | Port 5 data register B 0x0
PDAT6 0xb006 R/W | Port 6 data register B 0x0
PDAT7 0xb007 R/W | Port 7 data register B 0x0
PDATS 0xb008 R Port 8 data register B 0x0

1-14 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW
Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access | Reset Value
I/O Port PDAT9 0xb009 | R/W | Port 9 data register B 0x0
P7BR 0xb00b | R/W | Port 7 buffer register B 0x0
PCONO 0xb010 | R/W | Port O control register H 0x0
PCON1 0xb012 | R/W | Port 1 control register H 0x0
PCON2 0xb014 | R/W | Port 2 control register H 0x0
PCON3 0xb016 | R/W | Port 3 control register H 0x0
PCON4 0xb018 | R/W | Port 4 control register H 0x0
PCON5 0xb01lc | R/W | Port 5 control register W 0x0
PCONG6 0xb020 | R/W | Port 6 control register W 0x0
PCON7 0xb024 | R/W | Port 7 control register H 0x0
PCONS8 0xb026 | R/W | Port 8 control register B 0x0
PCON9 0xb027 | R/W | Port 9 control register B 0x0
PURO 0xb028 | R/W | Port O pull-up control register B 0x80
PDR1 0xb029 | R/W | Port 1 pull-down control register B Oxff
PUR2 0xb02a | R/W | Port 2 pull-up control register B Oxff
PUR3 0xb02b | R/W | Port 3 pull-up control register B Oxff
PDR4 0xb02c | R/W | Port 4 pull-down control register B Oxff
PUR5 0xb02d | R/W | Port 5 pull-up control register B 0x0
PURG6 0xb02e | R/W | Port 6 pull-up control register B 0x0
PUR7 Oxb02f | R/W | Port 7 pull-up control register B 0x0
PURS8 0xb03c | R/W | Port 8 pull-up control register B 0x0
EINTPND 0xb031 | R/W | External interrupt pending register B 0x0
EINTCON | 0xb032 | R/W | External interrupt control register H 0x0
EINTMOD | 0xb034 | R/W | External interrupt mode register W 0x0
Timer O TDATO 0x9000 | R/W | Timer O data register H Oxffff
TPREO 0x9002 | R/W | Timer O prescaler register B 0x0
TCONO 0x9003 | R/W | Timer O control register B 0x0
TCNTO 0x9006 R Timer O counter register H 0x0
Timer 1 TDAT1 0x9010 | R/W | Timer 1 data register H Oxffff
TPRE1 0x9012 | R/W | Timer 1 prescaler register B 0x0
TCON1 0x9013 | R/W | Timer 1 control register B 0x0
TCNTL1 0x9016 R Timer 1 counter register H 0x0

ELECTRONICS

1-15

PRODUCT OVERVIEW

S3C3410X RISC MICROPROCESSOR

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access | Reset Value
Timer 2 TDAT2 0x9020 | R/W | Timer 2 data register H Oxffff
TPRE2 0x9022 | R/W | Timer 2 prescaler register B 0x0
TCON2 0x9023 | R/W | Timer 2 control register B 0x0
TCNT2 0x9026 R Timer 2 counter register H 0x0
Timer 3 TDAT3 0x9031 | R/W | Timer 3 data register B Oxff
TPRE3 0x9032 | R/W | Timer 3 prescaler register B 0x0
TCONS3 0x9033 | R/W | Timer 3 control register B 0x0
TCNT3 0x9037 R Timer 3 counter register B 0x0
Timer 4 TDAT4 0x9041 | R/W | Timer 4 data register B Oxff
TPRE4 0x9042 | R/W | Timer 4 prescaler register B 0x0
TCON4 0x9043 | R/W | Timer 4 control register B 0x0
TCNT4 0x9047 R Timer 4 counter register B 0x0
TFCON 0x904f | R/W | FIFO control register of Timer 4 B 0x0
TESTAT 0x904e R FIFO status register of Timer 4 B 0x0
TFB4 0x904b | R/W | Timer 4 FIFO register @ byte B 0x0
TFHWA4 0x904a | R/W | Timer 4 FIFO register @ half-word H 0x0
TFW4 0x9048 | R/W | Timer 4 FIFO register @ word W 0x0
UART ULCON 0x5003 | R/W | UART line control register B 0x0
UCON 0x5007 | R/W | UART control register B 0x0
USTAT 0x500b R UART status register B 0x0
UFCON 0x500f | R/W | UART FIFO control register B 0x0
UFSTAT 0x5012 R UART FIFO status register B 0x0
UTXH 0x5017 | R/W | UART transmit holding register B 0x0
UTXH_B 0x5017 | R/W | UART transmit FIFO register @ byte B 0x0
UTXH_HW | 0x5016 | R/W | UART transmit FIFO register H 0x0
@ half-word
UTXH_W 0x5014 | R/W | UART transmit FIFO register @ word W 0x0
URXH 0x501b [R/W | UART receive buffer register B 0x0
URXH_B 0x501b | R/W | UART receive FIFO register @ byte B 0x0
URXH_HW | 0x50la | R/W | UART receive FIFO register H 0x0
@ half-word
URXH_W 0x5018 | R/W | UART receive FIFO register @ word W 0x0
UBRDIV 0x501e | R/W | Baud rate divisor register for UART H 0x0

1-16

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PRODUCT OVERVIEW

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access | Reset Value
SIOO0 ITVCNTO 0x6000 | R/W | SIO 0 interval counter register B 0x0
SBRDRO 0x6001 | R/W | SIO 0 baud rate prescaler register B 0x0
SIODATO 0x6002 | R/W | SIO 0 data register B 0x0
SIOCONO | 0x6003 | R/W | SIO 0 control register B 0x0
SIO 1 ITVCNT1 0x7000 | R/W | SIO 1 interval counter register B 0x0
SBRDR1 0x7001 | R/W | SIO 1 baud rate prescaler register B 0x0
SIODAT1 0x7002 | R/W | SIO 1 data register B 0x0
SIOCON1 | 0x7003 | R/W | SIO 1 control register B 0x0
Interrupt INTMOD 0xc000 | R/W | Interrupt mode register W 0x0
INTPND 0xc004 | R/W | Interrupt pending register W 0x0
INTMSK 0xc008 | R/W | Interrupt mask register W 0x0
INTPRIO 0xc00c | R/W | Interrupt priority register O W 0x03020100
INTPRI1 0xc010 | R/W | Interrupt priority register 1 W 0x07060504
INTPRI2 0xc014 | R/W | Interrupt priority register 2 wW 0x0b0a0908
INTPRI3 0xc018 | R/W | Interrupt priority register 3 wW 0x0f0e0dOc
INTPRI4 OxcO1lc | R/W | Interrupt priority register 4 W 0x13121110
INTPRIS 0xc020 | R/W | Interrupt priority register 5 W 0x17161514
INTPRI6 0xc024 | R/W | Interrupt priority register 6 W 0x1b1a1918
INTPRI7 0xc028 | R/W | Interrupt priority register 7 W Ox1fleldilc
ADC ADCCON 0x8002 | R/W | A/D Converter control register H 0x140
ADCDAT 0x8006 R A/D Converter data register H 0x0
Basic BTCON 0xa002 | R/W | Basic Timer control register H 0x0
Timer BTCNT 0xa007 R Basic Timer count register B 0x0
lc IICCON 0xe000 | R/W | lIC-bus control register B 0x0
ICSTAT 0xe001 | R/W | lIC-bus status register B 0x0
IICDS 0xe002 | R/W | IIC-Bus transmit/receive data shift B 0x0
register
IICADD 0xe003 | R/W | IIC-Bus transmit/receive address B 0x0
register
IICPS 0xe004 | R/W | lIC-Bus Prescaler register B 0x0
ICPCNT 0xe005 | R/W | lIC-Bus Prescaler Counter register B 0x0
SYSON 0xd003 | R/W | System control register B 0x0

ELECTRONICS 1-17

PRODUCT OVERVIEW

S3C3410X RISC MICROPROCESSOR

Table 1-4. S3C3410X Special Function Register (Continued)

Group Register Offset R/W Description Access | Reset Value
RTC RTCCON 0xa013 | R/W | RTC control register B 0x0
RTCALM 0xa012 | R/W | RTC alarm control register B 0x0
ALMSEC 0xa033 | R/W | Alarm second data register B 0x59
ALMMIN 0xa032 | R/W | Alarm minute data register B 0x59
ALMHOUR | 0xa031 | R/W | Alarm hour data register B 0x23
ALMDAY 0xa037 | R/W | Alarm day data register B 0x31
ALMMON 0xa036 | R/W | Alarm month data register B 0x12
ALMYEAR | Oxa035 | R/W | Alarm year data register B 0x99
BCDSEC 0xa023 | R/W | BCD second data register B -
BCDMIN 0xa022 | R/W | BCD minute data register B -
BCDHOUR | 0xa021 | R/W | BCD hour data register B -
BCDDAY 0xa027 | R/W | BCD day data register B -
BCDDATE | 0xa020 | R/W | BCD date data register B -
BCDMON | 0xa026 | R/W | BCD month data register B -
BCDYEAR | 0xa025 | R/W | BCD year data register B -
RINTPND 0xa010 | R/W | RTC time interrupt pending register B 0x0
RINTCON | 0xa011l | R/W | RTC time interrupt control register B 0x0

1-18

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

PROGRAMMER'S MODEL

OVERVIEW

S3C3410X was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd.
ARM7TDMI supports big-endian and little-endian memory formats, but the S3C3410X supports only the big-
endian memory format.

PROCESSOR OPERATING STATES
From the programmer's point of view, the ARM7TDMI can be in one of two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State
Entry into ARM state happens:

On execution of the BX instruction with the state bit clear in the operand register.

On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

ELECTRONICS 2-1

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

Higher Address Word Address
31 24 23 16 15 7
8 9 10 11 8
4 5 6 7 4
0 1 2 3 0

Lower Address » Most significant byte is at lowest address.

»Word is addressed by byte address of most significant byte.

Figure 2-1. Big-Endian Addresses of Bytes within Words

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

Higher Address Word Address

31 24 23 16 15 7

11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

Lower Address - Least significant byte is at lowest address.

»Word is addressed by byte address of least significant byte.

Figure 2-2. Little-Endian Addresses of Bytes whthin Words

INSTRUCTION LENGTH
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARMT7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

2-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

OPERATING MODES
ARM7TDMI supports seven modes of operation:

User (usr): The normal ARM program execution state

FIQ (fig): Designed to support a data transfer or channel process
IRQ (irq): Used for general-purpose interrupt handling

Supervisor (svc): Protected mode for the operating system

Abort mode (abt): Entered after a data or instruction prefetch abort
System (sys): A privileged user mode for the operating system
Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: RO to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch
and Link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14 irq,
R14 fig, R14_abt and R14_und are similarly used to hold the return values of R15
when interrupts and exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.
Register 16 is the CPSR (Current Program Status Register). This contains condition code flags

and the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14_fig). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

ELECTRONICS 2-3

PROGRAMMER'S MODEL

S3C3410X RISC MICROPROCESSOR

ARM State General Registers and Program Counter

User/System FIQ Supervisor Abort IRQ Undefined

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8_fiq R8 R8 R8 R8

R9 R9_fiq R9 R9 R9 R9

R10 R10_fiq R10 R10 R10 R10

R11 R11 fig R11 R11 R11 R11

R12 R12_fiq R12 R12 R12 R12

R13 R13_fiq R13_svc R13_abt R13_irq R13_und

R14 R14 fiq R14 svc R14_abt R14_irq R14_und

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

ARM State Program Status Registers
A\ CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR irq SPSR_und

B: banked register

Figure 2-3. Register Organization in ARM State

2-4

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0O-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

THUMB State General Registers and Program Counter

User/System FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
SP SP_fiq SP_svc SP_abt SP_und SP_fiq
LR LR_figq LR_svc LR_abt LR_und LR_figq
PC PC PC PC PC PC

THUMB State Program Status Registers

| CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR _irq SPSR_und

Il: banked register

Figure 2-4. Register Organization in THUMB state

ELECTRONICS 2-5

PROGRAMMER'S MODEL

S3C3410X RISC MICROPROCESSOR

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

THUMB state RO-R7 and ARM state RO-R7 are identical

THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical
THUMB state SP maps onto ARM state R13
THUMB state LR maps onto ARM state R14
The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

THUMB state

RO EE——

R1 >

R2 EEE—

R3 ————»

R4 >

R5 >

R6 ————»

R7 EEE—

Stack Pointer (SP) ——»

Link register (LR) [——»

Program Counter (PC) [——mm»

CPSR EE——

SPSR >

ARM state

RO

R1

R2

R3

R4

R5

Lo-registers

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Hi-registers

Link register (R14)

Program Counter (R15)

CPSR

SPSR

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

2-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

Accessing Hi-Registers in THUMB State
In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

Hold information about the most recently performed ALU operation
Control the enabling and disabling of interrupts
Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

Condition Code Flags (Reserved) Control Bits
[I [I [I
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N VA C \% | F T [M4| M3 | M2]| M1| MO
it T T
Overflow I— Mode bits
Carry/Borrow/Extend State bit
Zero . FIQ disable
Negative/Less Than IRQ disable

Figure 2-6. Program Status Register Format

ELECTRONICS 2-7

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.
In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in THUMB
state, otherwise it is executing in ARM state. This is reflected on the TBIT external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The | and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and MO bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-1. Not all combinations of the mode bits
define a valid processor mode. Only those explicitly described shall be used. The user
should be aware that if any illegal value is programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this occurs, reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control bits,
you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or
zero.

2-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

PROGRAMMER'S MODEL

Table 2-1. PSR Mode Bit Values

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..RO, R14..R0,

LR, SP PC, CPSR

PC, CPSR
10001 FIQ R7..RO, R7..RO,

LR_fiq, SP_fiq R14 fig..R8_fiq,

PC, CPSR, SPSR_fiq PC, CPSR, SPSR_fiq
10010 IRQ R7..RO, R12..RO,

LR_irg, SP_irq R14 irq, R13_irq,

PC, CPSR, SPSR_irq PC, CPSR, SPSR_irq
10011 Supervisor R7..RO, R12..R0,

LR_svc, SP_svc, R14 svc, R13_svc,

PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
10111 Abort R7..RO, R12..RO,

LR_abt, SP_abt, R14_abt, R13_abt,

PC, CPSR, SPSR_abt PC, CPSR, SPSR_abt
11011 Undefined R7..RO R12..R0,

LR_und, SP_und, R14 und, R13_und,

PC, CPSR, SPSR_und PC, CPSR
11111 System R7..RO, R14..R0,

LR, SP PC, CPSR

PC, CPSR

Reserved bits

The remaining bits in the PSR's are reserved. When changing a PSR's flag or control bits,

you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or

Zero.

ELECTRONICS

2-9

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception
When handling an exception, the ARM7TDMI:

1.

Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14 svc will always return to the next instruction regardless of whether the SWiI
was executed in ARM or THUMB state.

Copies the CPSR into the appropriate SPSR
Forces the CPSR mode bits to a value which depends on the exception
Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1.

Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

Copies the SPSR back to the CPSR
Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

2-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes
ARM R14 x THUMB R14 x
BL MOV PC, R14 PC +4 PC+2 1
SWI MOVS PC, R14_svc PC +4 PC+2 1
UDEF MOVS PC, R14 und PC +4 PC+2 1
FIQ SUBS PC, R14 fiq, #4 PC +4 PC +4 2
IRQ SUBS PC, R14 irq, #4 PC +4 PC +4 2
PABT SUBS PC, R14 _abt, #4 PC +4 PC +4 1
DABT SUBS PC, R14_abt, #8 PC +8 PC+8 3
RESET NA - - 4

NOTES:

1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.

2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.

4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

ELECTRONICS 2-11

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the | bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch abort: occurs during an instruction prefetch.
Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

The swap instruction (SWP) is aborted as though it had not been executed.

Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is
prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14 abt#4 ; for a prefetch abort, or
SUBS PC,R14 abt#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

2-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

PROGRAMMER'S MODEL

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or

Thumb):

MOV

PC,R14 svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM

or Thumb):

MOVS

PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software Interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ
ELECTRONICS 2-13

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

Exception Priorites

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

Reset
Data abort
FIQ

IRQ

Prefetch abort

o M~ 0P

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

2-14 ELECTRONICS

S3C3410X RISC MICROPROCESSOR PROGRAMMER'S MODEL

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfig). At the end of this time ARM7TDMI will be executing the
instruction at Ox1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfig.
This is 4 processor cycles.

RESET

When the RESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When RESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.
Forces M[4:0] to 10011 (Supervisor mode), sets the | and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

Execution resumes in ARM state.

ELECTRONICS 2-15

PROGRAMMER'S MODEL S3C3410X RISC MICROPROCESSOR

NOTES

2-16 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

313029282726252423222120191817161514131211109876543210
Cond |0|0]|!I| Opcode |S Rn Rd Operand2
Cond |0|0|0|0|0|O|A[S Rd Rn Rs 1{o|of1] Rm
Cond |0|0|0|O|1|U[A|S| RdHI RdLo Rn 1{o|of1] Rm
Cond |(O|O|Of1(0|B|O]|O Rn Rd o|0|0ofof1f{0f0|1 Rm
Cond |O|OfO|1]0f0Of1]|0 111(1(1f{1)1f{1j2{1{1|2|]0|0|0|1 Rn
Cond (O|O(O|P{U|O|W]|L Rn Rd 0|0|0f0[1[S|H|1 Rm
Cond [(0|OfO|P|U|1|W|L Rn Rd Offset |1|S|H|1| Offset
Cond [O(1]|I|P|U|B[W|L Rn Rd Offset
Cond [O]1f!I 1
Cond (1]|0|0|P|U|B|W|L Rn Register List
Cond (1(0]1(L Offset
Cond |[1(1]|0|P|U|B[W|L Rn CRd CP# Offset
Cond [1]|1|1|0f CP Opc CRn CRd CP# CP |g| CRm
Cond |[1(1]1|0|] CP |L CRn Rd CP# CP 1 CRm
Opc
Cond [1]1]1(121 Ignored by processor
313029282726252423222120191817161514131211109876543210

Data/Processing/
PSR Transfer

Multiply

Multiply Long

Single Data Swap
Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immendiate offset

Single Data Transfer
Undefined

Block Data Transfer
Branch

Coprocessor Data Transfer

Coprocessor Data Operation

Coprocessor Register Transfer

Software Interrupt

Figure 3-1. ARM Instruction Set Format

ELECTRONICS

3-1

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action
ADC Add with carry Rd: = Rn + Op2 + Carry
ADD Add Rd: = Rn + Op2
AND AND Rd: = Rn AND Op2
B Branch R15: = address
BIC Bit Clear Rd: = Rn AND NOT Op2
BL Branch with Link R14: = R15, R15: = address
BX Branch and Exchange R15: = Rn, T bit: = Rn[0]
CDP Coprocessor Data Processing (Coprocessor-specific)
CMN Compare Negative CPSR flags: = Rn + Op2
CMP Compare CPSR flags: = Rn — Op2
EOR Exclusive OR Rd: = (Rn AND NOT Op2)

OR (Op2 AND NOT Rn)
LDC Load coprocessor from memory Coprocessor load
LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from memory Rd: = (address)
MCR Move CPU register to coprocessor cRn: = rRn {<op>cRm}
register
MLA Multiply Accumulate Rd: =(Rm~ Rs) +Rn
MOV Move register or constant Rd: = Op2
3-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

MRC Move from coprocessor register to Rn: = cRn {<op>cRm}
CPU register

MRS Move PSR status/flags to register Rn: = PSR
MSR Move register to PSR status/flags PSR: =Rm
MUL Multiply Rd:=Rm~ Rs
MVN Move negative register Rd: =0 FFFFFFFF EOR Op2
ORR OR Rd: = Rn OR Op2
RSB Reverse Subtract Rd: =0p2 - Rn
RSC Reverse Subtract with Carry Rd: = Op2 —Rn -1 + Carry
SBC Subtract with Carry Rd: =Rn-0p2 -1 + Carry
STC Store coprocessor register to memory address: = CRn
STM Store Multiple Stack manipulation (Push)
STR Store register to memory <address>: = Rd
SUB Subtract Rd: = Rn — Op2
SWI Software Interrupt OS call
SWP Swap register with memory Rd: =[Rn], [Rn] := Rm
TEQ Test bit wise equality CPSR flags: = Rn EOR Op2
TST Test bits CPSR flags: = Rn AND Op2

ELECTRONICS

3-3

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal”,
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning
0000 EQ Z set equal

0001 NE Z clear not equal

0010 CSs C set unsigned higher or same
0011 cC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
Cond 00O01j0 0 1 02 21 212 1 1 11 1 1 140 0 0 1 Rn

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequential (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behavior is undefined.

ELECTRONICS 3-5

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

Examples

ADR RO, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX RO ; Branch and change to THUMB
; state.
CODEL16 ; Assemble subsequent code as
Into_ THUMB ; THUMB instructions
ADR R5, Back_to_ARM ; Generate branch target to word aligned address
;- hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

3-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 28 27 25 24 23 0
Cond 101 L Offset
[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/— 32Mbytes. The branch offset
must take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/— 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!{..PC} if the link register has been saved onto a stack pointed to by Rn.
INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

ELECTRONICS 3-7

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

ASSEMBLER SYNTAX

Items in {} are optional. Iltems in <> must be present.

B{L}cond} <expression>

{L}
{cond}

<expression>

EXAMPLES

here BAL
CMP
BEQ
BL
ADDS

BLCC

Used to request the Branch with Link form of the instruction. If absent, R14 will not be

affected by the instruction.

A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be

used.

The destination. The assembler calculates the offset.

here
there
R1,#0

fred
sub+ROM
R1,#1

sub

Assembles to OXEAFFFFFE (note effect of PC offset).
Always condition used as default.

Compare R1 with zero and branch to fred

if R1 was zero, otherwise continue.

Continue to next instruction.

Call subroutine at computed address.

Add 1 to register 1, setting CPSR flags

on the result then call subroutine if

the C flag is clear, which will be the

case unless R1 held OXFFFFFFFF.

3-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 28 27 26 25 24 21 20 19 16 15 12 11 0
Cond 00 JL] OpCode |S Rn Rd Operand2

[15:12] Destination register
0 = Branch 1 = Branch with link

[19:16] 1st operand register
0 = Branch 1 = Branch with link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation codes

0000 = AND-Rd: = Op1 AND Op2

0001 = EOR-Rd: = Opl1 EOR Op2

0010 = SUB-Rd: = Op1-Op2

0011 = RSB-Rd: = Op2-Op1

0100 = ADD-Rd: = Op1+Op2

0101 = ADC-Rd: = Op1+0p2+C

0110 = SBC-Rd: = OP1-Op2+C-1

0111 = RSC-Rd: = Op2-Op1+C-1

1000 = TST-set condition codes on Opl AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+0Op2
1100 = ORR-Rd: = Opl1 OR Op2

1101 = MOV-Rd: =0Op2

1110 = BIC-Rd: = Op1 AND NOT Op2

1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate value

[11:0] Operand 2 type selection

11 3 4 0
Shift Rm
[3:0] 2nd operand register [11:4] Shift applied to Rm
11 8 7 0
Rotate Imm
[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

[31:28] Condition field

Figure 3-4. Data Processing Instructions

ELECTRONICS 3-9

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the | bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

3-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action
AND 0000 Operandl AND operand?2
EOR 0001 Operandl EOR operand?2
WuB 0010 Operandl — operand2
RSB 0011 Operand2 operandl
ADD 0100 Operandl + operand2
ADC 0101 Operandl + operand?2 + carry
SBC 0110 Operandl — operand2 + carry — 1
RSC 0111 Operand2 — operandl + carry — 1
TST 1000 As AND, but result is not written
TEQ 1001 As EOR, but result is not written
CMP 1010 As SUB, but result is not written
CMN 1011 As ADD, but result is not written
ORR 1100 Operandl OR operand2
MOV 1101 Operand?2 (operandl is ignored)
BIC 1110 Operand1l AND NOT operand?2 (Bit clear)
MVN 1111 NOT operand2 (operandl is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ELECTRONICS 3-11

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-5.

11 7 6 5 4 11 8 7 6 5 4

0 RS 0 1
[6:5] Shift type [6:5] Shift type
00 = logical left 01 = logical right 00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right 10 = arithmetic right 11 = rotate right
[11:7] Shift amount [11:8] Shift register
5 bit unsigned integer Shift amount specified in bottom-byte of Rs

Figure 3-5. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26 0

Contents of Rm

Value of Operand 2 00 O0O00O

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

3-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

31 5 4 0

Contents of Rm
w out

00 O0O0O Value of Operand 2

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure
3-8.

31 30 5 4 0

w out

Contents of Rm

Value of Operand 2

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ELECTRONICS 3-13

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9.

Contents of Rm

L |
carry out

Value of Operand 2

Figure 3-9. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of the
barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-10.

31 10
Contents of Rm

C \ carry out

Value of Operand 2

Figure 3-10. Rotate Right Extended

3-14 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

Register specified shift amount
Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

LSL by 32 has result zero, carry out equal to bit O of Rm.

LSL by more than 32 has result zero, carry out zero.

LSR by 32 has result zero, carry out equal to bit 31 of Rm.

LSR by more than 32 has result zero, carry out zero.

ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

N o o M e Ddh PR

ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ELECTRONICS 3-15

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERANDY

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged
mode and to do nothing if in User modify

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles
Normal data processing 1S
Data processing with register specified shift 1S +1li
Data processing with PC written 2S + 1IN
Data processing with register specified shift and PC written 2S + 1IN +1I

NOTE: S, N and | are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

3-16 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

ASSEMBLER SYNTAX

MOV,MVN (single operand instructions).
<opcode>{cond{S} Rd,<Op2>

CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,0RR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2>

{cond}

{S}

Rd, Rn and Rm

<#expression>

<shift>

Rm{,<shift>} or,<#expression>

A two-character condition mnemonic. See Table 3-2.
Set condition codes if S present (implied for CMP, CMN, TEQ, TST).
Expressions evaluating to a register number.

If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<Shiftname> <register> or <shifthame> #expression, or RRX (rotate right one bit with

extend).
<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)
EXAMPLES
ADDEQ R2,R4,R5 If the Z flag is set make R2:=R4+R5
TEQS R4.#3 Test R4 for equality with 3.
(The S is in fact redundant as the
assembler inserts it automatically.)
SUB R4,R5,R7,LSR R2 Logical right shift R7 by the number in
the bottom byte of R2, subtract result
from R5, and put the answer into R4.
MOV PC,R14 Return from subroutine.
MOVS PC,R14 Return from exception and restore CPSR
from SPSR_mode.
ELECTRONICS 3-17

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS
In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

You must not specify R15 as the source or destination register.
Also, do not attempt to access an SPSR in User mode, since no such register exists.

3-18 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

MRS (transfer PSR contents to a register)
31 28 27 232221 16 15 12 11

Cond 00010 IPS 001111 Rd 000000000000

[15:21] Destination Register

[19:16] Source PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

MRS (transfer register contents to PSR)

31 28 27 232221 12 11 4 3

Cond 00010 [Pd] 101001111 00000000

Rm

[3:0] Source Register

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

MRS (transfer register contents or immediate value to PSR flag bits only)
31 28 27 26 25 24 23 22 21 12 11

Cond 00 10 IPdI 101001111 Source operand

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[25] Immediate Operand

0 = Source operand is a register

1 = SPSR_<current mode>

[11:0] Source Operand

11 4 3 0
00000000 Rm

[3:0] Source Register
[11:4] Source operand is an immediate value

11 8 7 0

Rotate Imm

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[31:28] Condition Field

Figure 3-11. PSR Transfer

ELECTRONICS

3-19

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

The reserved bits should be preserved when changing the value in a PSR.

Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

EXAMPLES

The following sequence performs a mode change:

MRS RO,CPSR ; Take a copy of the CPSR.

BIC RO,RO,#0x1F ; Clear the mode bits.

ORR RO,RO,#new_mode ; Select new mode

MSR CPSR,R0O ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

3-20 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

ASSEMBLY SYNTAX

MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolize a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:
{cond}
Rd and Rm

<psr>

<psrf>

<#expression>

EXAMPLES

Two-character condition mnemonic. See Table 3-2.

Expressions evaluating to a register number other than R15
CPSR, CPSR _all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR

and SPSR_all)
CPSR_flg or SPSR_flg

Where this is used, the assembler will attempt to generate a shifted immediate 8-bit field
to match the expression. If this is impossible, it will give an error.

In User mode the instructions behave as follows:

MSR
MSR
MSR
MRS

In privileged modes the instructions behave as follows:

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0xA0000000
Rd,CPSR

CPSR[31:28] <- Rm[31:28]
CPSR[31:28] <- Rm[31:28]
CPSR[31:28] <- OxA (set N,C; clear Z,V)
Rd[31:0] <- CPSRJ[31:0]

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm 7 SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- OXC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
ELECTRONICS 3-21

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0
Cond 00O0O0O0O0]A]IS Rd Rn Rs 1001 Rm

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not after condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm” Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd:=Rm” Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits -
the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits
of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
OxFFFFFFF6 0x0000001 OxFFFFFF38

3-22 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

If the Operands Are Interpreted as Signed

Operand A has the value —10, operand B has the value 20, and the result is -200 which is correctly represented
as OxFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as Ox13FFFFFF38, so the least significant 32 bits are OXFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

ELECTRONICS 3-23

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + ml and MLA 1S + (m+1)I cycles to execute, where S and | are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

If bits [32:8] of the multiplier operand are all zero or all one.
If bits [32:16] of the multiplier operand are all zero or all one.
If bits [32:24] of the multiplier operand are all zero or all one.

A W DN P

In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2.
{S} Set condition codes if S present
Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2"R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2" R3+R4, Setting condition codes.

3-24 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 28 27 232221 20 19 16 15 12 11 8 7 4 3 0
Cond 000O01 |JUJALS RdHi RdLo Rs 1001 Rm

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi,RdLo := Rm ~ Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm ~ Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

ELECTRONICS 3-25

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

OPERAND RESTRICTIONS

R15 must not be used as an operand or as a destination register.
RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)l and MLAL 1S + (m+2)l cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL.:
If bits [31:8] of the multiplier operand are all zero or all one.
If bits [31:16] of the multiplier operand are all zero or all one.
If bits [31:24] of the multiplier operand are all zero or all one.
In all other cases.

For Unsigned Instructions UMULL, UMLAL.:
If bits [31:8] of the multiplier operand are all zero.
If bits [31:16] of the multiplier operand are all zero.
If bits [31:24] of the multiplier operand are all zero.
In all other cases.

S and | are defined as sequential (S-cycle) and internal (I-cycle), respectively.

3-26 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose
UMULL{condKS} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32x32=64
UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32x32 +64 =64
SMULL{condH{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32x32=64
SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32x32 +64 =64

where:
{cond} Two-character condition mnemonic. See Table 3-2.
{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2"R3
UMLALS R1,R5R2,R3 ; R5,R1:=R2" R3+R5,R1 also setting condition codes

ELECTRONICS 3-27

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address

used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11

Cond

01

P

u

B|W]L Rn Rd

Offset

[15:12] Source/Destination Registers
[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value

[11:0] Offset
11 0

Immediate

[11:0] Unsigned 12-bit immediate offset
11 4 3 0

Shift Rm

[3:0] Offset register [11:4] Shift applied to Rm

[31:28] Condition Field

Figure 3-14. Single Data Transfer Instructions

3-28

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits O through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ELECTRONICS 3-29

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

memory register
A > A
A+3 24 24
B »| B
A+2 16 16
C »>| C
A+l 8 8
D »| D
A 0 0

LDR from word aligned address

memory register
A A
A+3 24 24
B B
A+2 16 16
C C
A+l 8 8
D D
A 0 0

LDR from address offset by 2

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
Please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of O or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

3-30 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.
EXAMPLE:

LDR RO,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1l and LDR PC take 2S + 2N +1I incremental cycles, where S,N and |
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ELECTRONICS 3-31

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

ASSEMBLER SYNTAX

<LDR|STR>{cond{BHT} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will

subtract 8 from
the offset value to allow for ARM7TDMI pipelining. In this case base write-back should
not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{} offset of +/— contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[RN],{+/-}Rm{,<shift>} offset of +/— contents of index register, shifted

as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

{1 Writes back the base register (set the W bit) if! is present.

3-32 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

EXAMPLES

STR

STR
LDR
LDR
LDREQB

STR
PLACE

R1,[R2,R4]!

R1,[R2],R4
R1,[R2,#16]
R1,[R2,R3,LSL#2]
R1,[R6,#5]

R1,PLACE

Store R1 at R2+R4 (both of which are registers)

and write back address to R2.

Store R1 at R2 and write back R2+R4 to R2.

Load R1 from contents of R2+16, but don't write back.
Load R1 from contents of R2+R3" 4.

Conditionally load byte at R6+5 into

R1 bits 0 to 7, filling bits 8 to 31 with zeros.

Generate PC relative offset to address PLACE.

ELECTRONICS

3-33

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
Cond 000 PJUO|W]L Rn Rd 0000 1|S|H]1 Rm

[3:0] Offset Register

[6][5] SH

0 0= SWP instruction

0 1 = Unsigned halfword
1 1=Signed byte

1 1 = Signed halfword

[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

3-34 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
Cond 000 PJUI1|W]L Rn Rd Offset 1|S|H]1 Offset

[3:0] Immediate Offset (Low Nibble)

[6][5] SH

0 0= SWP instruction

0 1 = Unsigned halfword
1 1=Signed byte

1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)
[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

Figure 3-17. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

ELECTRONICS 3-35

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

HALFWORD LOAD AND STORES
Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit O of the address is HIGH this will cause unpredictable
behavior.

3-36 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to O if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit O of the address is HIGH this will cause unpredictable
behavior.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 11. LDR(H,SH,SB) PC take 2S + 2N + 1l incremental cycles.
S,N and | are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ELECTRONICS 3-37

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.
H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)
Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
[Rn {+/-}Rm]{!} offset of +/— contents of index register
3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/— contents of index register.
4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the

assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{1 Writes back the base register (set the W bit) if ! is present.

3-38 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

EXAMPLES
LDRH R1,[R2,—-R3]! ; Load R1 from the contents of the halfword address
; contained in R2—-R3 (both of which are registers)
; and write back address to R2
STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte
; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[RO] ; Conditionally load R11 with the sign extended contents
; of the halfword address contained in RO.
HERE ; Generate PC relative offset to address FRED.
STRH RS, [PC #(FRED-HERES)]; Store the halfword in R5 at address FRED
FRED

ELECTRONICS 3-39

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit O of the register field will cause RO to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 28 27 25 24 23 22 21 20 19 16 15 0
Cond 100 PJUIS|W]L Rn Register list

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit

0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

Figure 3-18. Block Data Transfer Instructions

3-40 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

0x100C 0x100C
Rn —» 0x1000 R1 0x1000
OxOFF4 OxOFF4
1 2
0x100C Rn —» 0x100C
R7
R5 R5
R1 0x1000 R1 0x1000
OxOFF4 O0XOFF4
3 4

Figure 3-19. Post-Increment Addressing

ELECTRONICS 3-41

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

0x100C 0x100C
R1
Rn —» 0x1000 0x1000
OxOFF4 O0XOFF4
1 2
0x100C Rn —» R7 0x100C
R5 R5
R1 R1
0x1000 0x1000
OxOFF4 OxOFF4
3 4

Figure 3-20. Pre-Increment Addressing

0x100C 0x100C
Rn —» 0x1000 0x1000
R1
OxOFF4 O0XOFF4
1 2
0x100C 0x100C
0x1000 R7 0x1000
R5 R5
R1 R1
OxOFF4 Rn —» OxOFF4
3 4

Figure 3-21. Post-Decrement Addressing

3-42 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

0x100C 0x100C
Rn —» 0x1000 0x1000
OxOFF4 R1 OxOFF4
1 2
0x100C 0x100C
0x1000 0x1000
R7
R5 R5
R1 OxOFF4 Rn —» R1 OxOFF4
3 4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV RO, RO after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ELECTRONICS 3-43

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1l and LDM PC takes (n+1)S + 2N + 1l incremental cycles, where S,N
and | are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

3-44 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{"}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{1 If present requests write-back (W=1), otherwise W=0.

"} If present set S bit to load the CPSR along with the PC, or force transfer of user bank

when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit
Pre-Increment Load LDMED LDMIB 1 1 1
Post-Increment Load LDMFD LDMIA 1 0 1
Pre-Decrement Load LDMEA LDMDB 1 1 0
Post-Decrement Load LDMFA LDMDA 1 0 0
Pre-Increment Store STMFA STMIB 0 1 1
Post-Increment Store STMEA STMIA 0 0 1
Pre-Decrement Store STMFD STMDB 0 1 0
Post-Decrement Store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, 1B, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

ELECTRONICS 3-45

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

EXAMPLES

LDMFD
STMIA

LDMFD
LDMFD

STMFD

SP!{RO,R1,R2}
RO,{RO-R15}
SP! {R15}
SP!{R15}"

R13,{RO-R14}"

Unstack 3 registers.

Save all registers.

R15 - (SP), CPSR unchanged.
R15 - (SP), CPSR <- SPSR_mode
(allowed only in privileged modes).
Save user mode regs on stack
(allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling

routine:

STMED

BL
LDMED

SP!,{R0-R3,R14}

somewhere

SP!{R0O-R3,R15}

Save RO to R3 to use as workspace
and R14 for returning.

This nested call will overwrite R14
Restore workspace and return.

3-46

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

SINGLE DATA SWAP (SWP)

31 28 27 232221 20 19 16 15 12 11 8 7 4 3 0
Cond 00010 Bl 00 Rn Rd 0000 1001 Rm

[3:0] Source Register
[15:12] Destination Register
[19:16] Base Register

[22] Byte/Word Bit

0 = Swap word quantity

1 = Swap word quantity

[31:28] Condition Field

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

ELECTRONICS 3-47

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and | are defined as sequential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{condK{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.
{B} If B is present then byte transfer, otherwise word transfer
Rd,Rm,Rn Expressions evaluating to valid register numbers
EXAMPLES
SWP RO,R1,[R2] ; Load RO with the word addressed by R2, and
; store R1 at R2.
SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.
SWPEQ RO,R0,[R1] ; Conditionally swap the contents of the

; word addressed by R1 with RO.

3-48 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 28 27 24 23 0

Cond 1111 Comment Field (Ignored by Processor)

[31:28] Condition Field

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ELECTRONICS 3-49

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.
<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).
EXAMPLES

SWI ReadC ; Get next character from read stream.

SWI Writel+"K” ; Output a "k" to the write stream.

SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; Addresses of supervisor routines
DCD ZeroRtn

DCD ReadCRtn

DCD WritelRtn

Zero EQU 0O

ReadC EQU 256
Writel EQU 512
Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0—7. Assumes R13_svc points to a suitable stack
STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR RO,[R14,#-4] ;. Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WritelRtn ;. Enter with character in RO bits 0-7.
LDMFD R13,{R0-R2,R15" ; Restore workspace and return,

; restoring processor mode and flags.

3-50 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C41000, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the KS32C41000.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external
coprocessor can not be connected to the KS32C41000, the coprocessor instructions are still described here in full
for completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0
Cond 1110 CP Opc CRn CRd Cp# Cp 0 CRm

[3:0] Coprocessor operand register
[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register
[19:16] Coprocessor operand register
[23:20] Coprocessor operation code

[31:28] Condition Field

Figure 3-25. Coprocessor Data Operation Instruction

Only bit 4 and bits 24 to 31 The coprocessor fields are significant to ARM7TDMI. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular coprocessors may redefine the use
of all fields except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to

15) for each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the

CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

ELECTRONICS 3-51

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bl incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and | are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.
p# The unique number of the required coprocessor
<expressionl> Evaluated to a constant and placed in the CP Opc field
cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
EXAMPLES

CDP pl1,10,c1,c2,c3 ; Request coproc 1 to do operation 10

; on CR2 and CRS3, and put the result in CR1.
CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)

; on CR2 and CRS3, and put the result in CR1.

3-52 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor's registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 0
Cond 110 PJUIN|W]L Rn CRd CP# Offset

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register
[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

ELECTRONICS 3-53

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address

one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS
If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly

responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES
Coprocessor data transfer instructions take (n—1)S + 2N + bl incremental cycles to execute, where:

The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and | are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

3-54 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{1 write back the base register (set the W bit) if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE
If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES
LDC pl,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; Conditionally store ¢3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ELECTRONICS 3-55

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0
Cond 1110 CPOpc|L CRn Rd CP# CP 1 CRm

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register
[20] Load/Store Bit

0 = Store to coprocessor

1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

3-56 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES
MRC instructions take 1S + (b+1)l +1C incremental cycles to execute, where S, | and C are defined as sequential

(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bl +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)
MCR Move from ARM7TDMI register to coprocessor (L=0)
{cond} Two character condition mnemonic. See Table 3-2
p# The unique number of the required coprocessor
<expressionl> Evaluated to a constant and placed in the CP Opc field
Rd An expression evaluating to a valid ARM7TDMI register number
cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
EXAMPLES
MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
;on R4 and place the result in c6.
MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to

; perform operation 9 (type 2) on c5 and
; €6, and transfer the result back to R3.

ELECTRONICS 3-57

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 28 27 2524 5 4 3 0
Cond 011 XXXXXXXXXXXXXXXXXXXX 1 XXXX

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 11 + 1N cycles, where S, N and | are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

3-58 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they

just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn.#p
BEQ Label
CMP Rm, #q
BEQ Label

This can be replaced by

CMP Rn.#p
CMPNE Rm,#q
BEQ Label

Absolute Value

TEQ RN, #0
RSBMI Rn,RN,#0

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2
CMP Rb,#5
ADDCS Rc,Rc,Ra
ADDHI Rc,Rc,Ra

Combining Discrete and Range Tests

TEQ Rc,#127
CMPNE Rc#""-1
MOVLS Rc#™

If Rn=p OR Rm=q THEN GOTO Label.

If condition not satisfied try other test.

Test sign
and 2's complement if necessary.

Multiply by 4,

Test value,

Complete multiply by 5,
Complete multiply by 6.

Discrete test,

Range test

IF Rc<="" OR Rc=ASCII(127)
THEN Rc:="."

ELECTRONICS

3-59

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide

routine follows.

MOV
Divl CMP
CMPCC
MOVCC
MOVCC
BCC
MOV
Div2 CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

Rent,#1
Rb,#0x80000000
Rb,Ra
Rb,Rb,ASL#1
Rcnt,Rent, ASL#1
Divl

Rc,#0

Ra,Rb

Ra,Ra,Rb
Rc,Rc,Rcnt
Rcnt,Rent,LSR#1
Rb,Rb,LSR#1
Div2

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL
TEQ
BNE

2. Overflow in signed multiply with a 32-bit result

SMULL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

Rd,Rt,Rm,Rn
Rt,Rd ASR#31
overflow

Enter with numbers in Ra and Rb.
Bit to control the division.
Move Rb until greater than Ra.

Test for possible subtraction.
Subtract if ok,

Put relevant bit into result
Shift control bit

Halve unless finished.

Divide result in Rc, remainder in Ra.

3 to 6 cycles
+1 cycle and a register

3 to 6 cycles
+1 cycle and a register

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

4to 7 cycles
+1 cycle and a register

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,Rd, ASR#31

overflow

4to 7 cycles
+1 cycle and a register

3-60

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL RI,Rh,Rm,Rn ; 3to 6 cycles

ADDS RI,RI,Ral ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ;1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL RI,Rh,Rm,Rn ; 3to 6 cycles

ADDS RI,RI,Ral ; Lower accumulate

ADC Rh,Rh,Ra2 ; Upper accumulate

BVS overflow ;1 cycle and 2 registers
NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2*32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bitin Rb Isb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry

MOVS Rc,Ra,RRX ;33 bit rotate right

ADC Rb,Rb,Rb ; Carry into Isb of Rb

EOR Rc,Rc,Ra,LSL#12 ; (involved!)

EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER
Multiplication by 2”n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n
Multiplication by 2*n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n
Multiplication by 2”n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ELECTRONICS 3-61

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb ;= Ra’” C, C a constant:

1. If C even, say C = 2”"n" D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra’ D}
MOV Rb,Rb,LSL #n

2. 1fCMOD 4 =1, say C =2”n" D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra’ D}
ADD Rb,Ra,Rb,LSL #n

3. 1fC MOD 4 = 3, say C = 2"n" D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra’" D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4" 3-1 =11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4" 11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5" 9 =45

3-62 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

BIC
LDMIA
AND
MOVS
MOVNE
RSBNE
ORRNE

Rb,Ra,#3
Rb{Rd,Rc}
Rb,Ra,#3
Rb,Rb,LSL#3
Rd,Rd,LSR Rb
Rb,Rb,#32
Rd,Rd,Rc,LSL Rb

Enter with address in Ra (32 bits) uses

Rb, Rc result in Rd. Note d must be less than c e.g. 0,1
Get word aligned address

Get 64 bits containing answer

Correction factor in bytes

...now in bits and test if aligned

Produce bottom of result word (if not aligned)

Get other shift amount

Combine two halves to get result

ELECTRONICS

3-63

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are

reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decomposer inside the ARM7TDMI

core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format

instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1/]010]|O0 Op Offset5 Rs Rd Move Shifted register

2 10(0]0|2]1]|1 |Op| Rnloffset3 Rs Rd Add/subtract

31001 Op Rd Offset8 Move/compare/add/
subtract immediate

4 |of1({0ofo0of0O0foO Op Rs Rd ALU operations

5]1]0(12]0(0]0|1 Op |H1|H2 Rs/Hs Rd/Hd Hi register operations
/branch exchange

6 |0(1]|]0f[0]1 Rd Word8 PC-relative load

710(2)j]0(2|L|BJ|O Ro Rb Rd Load/store with register
offset

8|0|1|0|12|H|S]|1 Ro Rb Rd Load/store sign-extended
byte/halfword

9 10(1]1|B|L Offset5 Rb Rd Load/store with immediate
offset

10|10 |0|O0]|L Offset5 Rb Rd Load/store halfword

11100 1]|L Rd Word8 SP-relative load/store

12| 1|10|1)0(SP Rd Word8 Load address

13|1)0|1]1]0]0|]O0OfO0O]|S SWord7 Add offset to stack pointer

1411|1011 |L|1]0]|R Rlist Push/pop register

1511)1|0]|0]|L Rb Rlist Multiple load/store

16| 1|1(0]1 Cond Softset8 Conditional branch

171111011111 Value8 Software interrupt

18| 1|1]1|0]|0O0 Offset11 Unconditional branch

19|1|1(1|1|H Offset Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Figure 3-29. THUMB Instruction Set Formats

3-64 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction

please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register Hi-Register Condition
Operand Operand Codes Set
ADC Add with Carry Y - Y
ADD Add Y Y Y D
AND AND Y - Y
ASR Arithmetic Shift Right Y - Y
B Unconditional branch Y - -
Bxx Conditional branch Y - -
BIC Bit Clear Y - Y
BL Branch and Link - - -
BX Branch and Exchange Y Y -
CMN Compare Negative Y - Y
CMP Compare Y Y Y
EOR EOR Y - Y
LDMIA Load multiple Y - -
LDR Load word Y - -
LDRB Load byte Y - -
LDRH Load halfword Y - -
LSL Logical Shift Left Y - Y
LDSB Load sign-extended byte Y - -
LDSH Load sign-extended halfword Y - -
LSR Logical Shift Right Y - Y
MOV Move register Y Y Y @
MUL Multiply Y - Y
MVN Move Negative register Y - Y

ELECTRONICS

3-65

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register Hi-Register Condition

Operand Operand Codes Set
NEG Negate Y - Y
ORR OR Y - Y
POP Pop register Y - -
PUSH Push register Y - -
ROR Rotate Right Y - Y
SBC Subtract with Carry Y - Y
STMIA Store Multiple Y - -
STR Store word Y - -
STRB Store byte Y - -
STRH Store halfword Y - -
SWI Software Interrupt - - -
SUB Subtract Y - Y
TST Test bits Y - Y

NOTES:

1. The condition codes are unaffected by the format 5, 12, and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

3-66

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 1: MOVE SHIFTED REGISTER

15 14 13 12 11 10 6 5 3 2 0
0 0 0 Op Offset5 Rs Rd

[2:0] Destination Register
[5:3] Source Register
[10:6] Immediate Vale
[12:11] Opcode

0=LSL

1=LSR
2=ASR

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OoP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #0ffset5 MOVS Rd, Rs, LSL #Offset5 | Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #0ffset5 MOVS Rd, Rs, LSR #Offset5 | Perform logical shift right on Rs by

a 5-bit immediate value and store
the result in Rd.

10 ASR Rd, Rs, #0Offset5 MOVS Rd, Rs, ASR Perform arithmetic shift right on Rs
#0Offsets by a 5-bit immediate value and
store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ELECTRONICS 3-67

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 2: ADD/SUBTRACT

15 14 13 12 11 10 9 8 6 5 3 2 0
0 0 0 1 1 1 Op Rn/Offset3 Rs Rd

[2:0] Destination Register
[5:3] Source Register

[8:6] Register/Immediate Vale
[9] Opcode

0 =ADD

1=SUB

[10] Immediate Flag

0 = Register operand
1 = Immediate oerand

Figure 3-31. Format 2
OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OoP I THUMB Assembler ARM Equipment Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 [ADDS Rd, Rs, #Offset3 | Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 | SUBS Rd, Rs, #Offset3 | Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD RO, R3, R4 ;RO := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ;. R6 := R2 — 6 and set condition codes.

3-68 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15

14 13 12 11

10 8 7

Rd

Offset8

[7:0] Immediate Vale

[10:8] Source/Destination Register

[12:11] Opcode
0 =MOV
1=CMP
2 =ADD
3=SUB

OPERATIONS

Figure 3-32. Format 3

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OoP

THUMB Assembler

ARM Equipment

Action

00

MOV Rd, #Offset8

MOVS Rd, #0Offset8

Move 8-bit immediate value into Rd.

01

CMP Rd, #Offset8

CMP Rd, #Offset8

Compare contents of Rd with 8-bit
immediate value.

10

ADD Rd, #0Offset8

ADDS Rd, Rd, #Offset8

Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11

SUB Rd, #Offset8

SUBS Rd, Rd, #Offset8

Subtract 8-bit immediate value from
contents of Rd and place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV RO, #128
CMP R2, #62

ADD R1, #255
SUB R6, #145

RO := 128 and set condition codes

Set condition codes on R2 — 62

R1 := R1 + 255 and set condition codes
R6 := R6 — 145 and set condition codes

ELECTRONICS

3-69

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 4: ALU OPERATIONS

15 14 13 12 11 10 9 6 5 3 2 0
0 0 0 0 0 0 Op Rs Rd

[2:0] Source/Destination Register
[5:3] Source Register 2

[9:6] Opcode

Figure 3-33. Format 4

OPERATION
The following instructions perform ALU operations on a Lo register pair.

NOTE
All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OoP THUMB Assembler ARM Equipment Action
0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs
0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs
0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd :=Rd << Rs
0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd :=Rd >> Rs
0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs
0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit
0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd — Rs — NOT C-bit
0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs
1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs
1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd =-Rs
1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd — Rs
1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs
1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs
1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd:=Rs” Rd
1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs
1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

3-70 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
EOR R3, R4 ; R3:= R3 EOR R4 and set condition codes
ROR R1, RO ; Rotate Right R1 by the value in RO, store
; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,
; Store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 — R6
MUL RO, R7 ; RO :=R7 " RO and set condition codes

ELECTRONICS 3-71

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 0 0 0 0 0 Op H1 | H2 Rs/Hs Rd/Hd

[2:0] Destination Register
[5:3] Source Register
[6] Hi Operand Flag 2
[7] Hi Operand Flag 1

[9:8] Opcode

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE
In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not
be used.

Table 3-12. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7

with a register in the range 8-15. Set
the condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15
with a register in the range 0-7. Set
the condition code flags on the result.

3-72 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler

ARM equivalent

Action

01 1 1 CMP Hd, Hs

CMP Hd, Hs

Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs

MOV Rd, Hs

Move a value from a register in the
range 8-15 to a register in the range
0-7.

10 1 0 MOV Hd, Rs

MOV Hd, Rs

Move a value from a register in the
range 0—7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs

MOV Hd, Hs

Move a value between two registers in
the range 8-15.

11 0 0 BX Rs

BX Rs

Perform branch (plus optional state
change) to address in a register in the
range 0—7.

11 0 1 BX Hs

BX Hs

Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit0=0 Causes the processor to enter ARM state.
Bit0=1 Causes the processor to enter THUMB state.
NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ELECTRONICS

3-73

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

EXAMPLES

Hi-Register Operations

ADD PC, R5 ;. PC :=PC + R5 but don't set the condition codes.
CMP R4, R12 ;. Set the condition codes on the result of R4 — R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

: Switch from THUMB to ARM state.

ADR R1,outof THUMB ;. Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ;. Transfer the contents of R11 into the PC.

;. Bit 0 of R11 determines whether
;. ARM or THUMB state is entered, ie. ARM state here.

ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit O cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

3-74 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 6: PC-RELATIVE LOAD

15 14 13 12 11 10 8 7 0
0 0 0 0 0 Rd Word 8

[7:0] Immediate Value

[10:8] Destination Register

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #lmm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #lmm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
;211 as the Word8 value.

ELECTRONICS 3-75

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

15

14

13

12

11

10 9 8 6 5

B 0 Ro Rb

Rd

[2:0] Source/Destination Register
[5:3] Base Register
[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

Figure 3-36. Format 7

3-76

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0—7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

THUMB assembler

ARM equivalent Action

0 |STRRd, [Rb, Ro]

STR Rd, [Rb, RO] Pre-indexed word store:

Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the
address.

0 1 | STRBRd, [Rb, RO]

STRB Rd, [Rb, RO] Pre-indexed byte store:

Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the
resulting address.

1 0 |LDRRd, [Rb, Ro]

LDR Rd, [Rb, RO] Pre-indexed word load:

Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro]

LDRB Rd, [Rb, RO] Pre-indexed byte load:

Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6]

LDRB R2, [RO,R7]

; Store word in R3 at the address

; formed by adding R6 to R2.

; Load into R2 the byte found at

; the address formed by adding R7 to RO.

ELECTRONICS

3-77

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

15 14 13 12 11

10

1 Ro Rb Rd

[2:0] Destination Register
[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag

0 = Operand not sing-extended

1 = Operand sing-extended

[11] H Flag

OPERATION

Figure 3-37. Format 8

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler

syntax is shown below.

Table 3-15. Summary of format 8 instructions

THUMB assembler

ARM equivalent Action

0 |STRHRAd, [Rb, Ro]

STRH Rd, [Rb, R0] Store halfword:

Add Ro to base address in Rb. Store bits
0-15 of Rd at the resulting address.

0 1 |LDRH Rd, [Rb, Ro]

LDRH Rd, [Rb, RO] Load halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16—31 of Rd to 0.

1 0 |LDSB Rd, [Rb, Ro]

LDRSB Rd, [Rb, RO] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0—7 of Rd from the resulting address,
and set bits 8-31 of Rd to bit 7.

1 1 | LDSH Rd, [Rb, Ro]

LDRSH Rd, [Rb, RO] Load sign-extended halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16—31 of Rd to bit 15.

3-78

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STRH R4, [R3, RO] ; Store the lower 16 bits of R4 at the
; address formed by adding RO to R3.
LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.
LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword

; found at the address formed by adding R2 to R4.

ELECTRONICS 3-79

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

15

14

13

12

11

10 6 5

Offsetb

Rb

Rd

[2:0] Source/Destination Register
[5:3] Base Register
[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

Figure 3-38. Format 9

3-80

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

THUMB assembler ARM equivalent Action

0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #lmm] Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

0 1 STRB Rd, [Rb, #imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #lmm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.
STRB R1, [RO,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to RO.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

ELECTRONICS 3-81

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 10: LOAD/STORE HALFWORD

15 14 13 12 11 10 6 5 3 2 0
0 1 0 0 L Offset5 Rb Rd

[2:0] Source/Destination Register
[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag

0 = Store to memory
1 = Load from memory

Figure 3-39. Format 10

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Halfword Data Transfer Instructions

THUMB assembler ARM equivalent Action
STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #lmm to base address in Rb and store
bits 0-15 of Rd at the resulting address.
1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #lmm to base address in Rb. Load bits
0-15 from the resulting address into Rd and
set bits 16—-31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit O set to 0) since the assembler places
#lmm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
;28 as the Offset5 value.
LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by

; adding 4 to R7. Note that the THUMB opcode will contain
;2 as the Offsetb value.

3-82 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 11: SP-RELATIVE LOAD/STORE

15 14 13 12 11 10 8 7 0
1 0 0 1 L Rd Word 8

[7:0] Immediate Value
[10:8] Destination Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

THUMB assembler ARM equivalent Action

STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #lmm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
;123 as the Word8 value.

ELECTRONICS 3-83

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 12: LOAD ADDRESS

15 14 13 12 11 10 8 7 0
1 0 1 0 SP Rd Word 8

[7:0] 8-bit Unsigned Constant
[10:8] Destination Register
[11] Source

0=PC
1=SP

Figure 3-41. Format 12
OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

THUMB assembler ARM equivalent Action
ADD Rd, PC, #lmm ADD Rd, R15, #lmm Add #Imm to the current value of the program
counter (PC) and load the result into Rd.
1 ADD Rd, SP, #imm ADD Rd, R13, #lmm Add #lmm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #lmm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #lmm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.
INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2:=PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.
ADD R6, SP, #212 ; R6:=SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

3-84 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 13: ADD OFFSET TO STACK POINTER

15 14 13 12 11 10 9 8 7 6 0
1 0 1 1 0 0 0 0 S SWord 7

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit sighed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

L THUMB assembler ARM equivalent Action
0 |ADD SP, #lmm ADD R13, R13, #lmm Add #lmm to the stack pointer (SP).
1 ADD SP, # -Imm SUB R13, R13, #lmm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to —/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #lmm to an 8-bit sign + magnitude number before placing it in field SWord?7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 7 SP (R13) := SP — 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
;26 as the Word7 value and S=1.

ELECTRONICS 3-85

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

FORMAT 14: PUSH/POP REGISTERS

15 14 13 12 11

10

Rlist

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

OPERATION

Figure 3-43. Format 14

The instructions in this group allow registers 0—7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Table 3-21. PUSH and POP Instructions

THUMB assembler ARM equivalent Action
0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!, Push the Link Register and the registers

{ Rlist, R14 } specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist. Update the
stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} | Pop values off the stack and load into
the registers specified by Rlist. Pop the
PC off the stack. Update the stack
pointer.

3-86

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {RO-R4,LR} ; Store RO,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.
POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

ELECTRONICS 3-87

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

FORMAT 15: MULTIPLE LOAD/STORE

15 14 13 12 11 10 8 7 0
1 1 0 0 L Rb Rlist

[7:0] Register List
[10:8] Base Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

THUMB assembler ARM equivalent Action

STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA RO!, {R3—-R7} ; Store the contents of registers R3—R7

; starting at the address specified in
RO, incrementing the addresses for each word.
; Write back the updated value of RO.

3-88 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 16: CONDITIONAL BRANCH

15 14 13 12 11 8 7 0
1 1 0 1 Cond SOffset 8

[7:0] 8-bit Signed Immediate

[11:8] Condition

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 2-23. The Conditional Branch Instructions

L THUMB assembler ARM equivalent Action
0000 | BEQ label BEQ label Branch if Z set (equal)
0001 | BNE label BNE label Branch if Z clear (not equal)
0010 | BCS label BCS label Branch if C set (unsigned higher or same)
0011 | BCC label BCC label Branch if C clear (unsigned lower)
0100 | BMI label BMI label Branch if N set (negative)
0101 | BPL label BPL label Branch if N clear (positive or zero)
0110 | BVS label BVS label Branch if V set (overflow)
0111 | BVC label BVC label Branch if V clear (no overflow)
1000 | BHI label BHI label Branch if C set and Z clear (unsigned higher)

ELECTRONICS 3-89

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

Table 2-23. The Conditional Branch Instructions (Continued)

L THUMB assembler ARM equivalent Action

1001 | BLS label BLS label Branch if C clear or Z set (unsigned lower or
same)

1010 | BGE label BGE label Branch if N set and V set, or N clear and V
clear (greater or equal)

1011 | BLT label BLT label Branch if N set and V clear, or N clear and V
set (less than)

1100 | BGT label BGT label Branch if Z clear, and either N set and V set
or N clear and V clear (greater than)

1101 |BLE label BLE label Branch if Z set, or N set and V clear, or N
clear and V set (less than or equal)

NOTES

1. While label specifies a full 9-bit two's complement address, this must always be halfword-aligned (ie with bit O set to 0)
since the assembler actually places label >> 1 in field SOffset8.

2. Cond =1110 is undefined, and should not be used.
Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
CMP RO, #45 ; Branch to over-if RO > 45,
BGT over ; Note that the THUMB opcode will contain
: ; the number of halfwords to offset.

over : ; Must be halfword aligned.

3-90 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ARM INSTRUCTION SET

FORMAT 17: SOFTWARE INTERRUPT

15 14 13 12 11 10 9 0
1 1 0 1 1 1 1 Value 8
[7:0] Comment Field
Figure 3-46. Format 17
OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB assembler

ARM equivalent

Action

SWI Value 8

SWI Value 8

Perform Software Interrupt:

Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(0x8) into the PC. Switch to ARM state and enter
SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18

Take the software interrupt exception.
Enter Supervisor mode with 18 as the
requested SWI number.

ELECTRONICS

3-91

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

FORMAT 18: UNCONDITIONAL BRANCH

15 14 13 12 11 10 0
1 1 1 0 0 Offsetll
[10:0] Immediate Value
Figure 3-47. Format 18
OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current

instruction.

Table 3-25. Summary of Branch Instruction

THUMB assembler

ARM equivalent

Action

B label

BAL label (halfword offset) | Branch PC relative +/— Offsetll << 1, where label

is PC +/— 2048 bytes.

NOTE: The address specified by label is a full 12-bit two's complement address,
but must always be halfword aligned (ie bit O set to 0), since the assembler places label >> 1 in the Offsetl1 field.

EXAMPLES

here B here
B jimmy

jimmy

Branch onto itself. Assembles to OXE7FE.

(Note effect of PC offset).

Branch to ‘jimmy".

Note that the THUMB opcode will contain the number of

halfwords to offset.
Must be halfword aligned.

3-92

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 19: LONG BRANCH WITH LINK

15 14 13 12 11 10 0
1 1 1 1 H Offset

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

Figure 3-48. Format 19

OPERATION
This format specifies a long branch with link.

The assembler splits the 23-bit two's complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit O of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

ELECTRONICS 3-93

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

THUMB assembler

ARM equivalent Action

BL label

none

LR := PC + OffsetHigh << 12

temp := next instruction address
PC := LR + OffsetLow << 1
LR:=temp|1

EXAMPLES

BL faraway
next

faraway

; Unconditionally Branch to 'faraway’

; and place following instruction

; address, ie "next", in R14,the Link
;register and set bit 0 of LR high.

; Note that the THUMB opcodes will

; contain the number of halfwords to offset.
; Must be Half-word aligned.

3-94

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.
MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2*n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2*n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2"n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by —2"n (-2, -4, -8, ...)

LSL Ra, Rb, #n ;. MOV Ra, Rb, LSL #n
MVN Ra, Ra ;. RSB Ra, Ra, #0

5. Multiplication by —2”~n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2”n+1, 2”"n-1, —2”n or —2"n-1} ~ 2"n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) 7 (2..5)
LSL Ra, Ra, #n ;. MOV Ra, Ra, LSL #n

ELECTRONICS 3-95

ARM INSTRUCTION SET S3C3410X RISC MICROPROCESSOR

GENERAL PURPOSE SIGNED DIVIDE
This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by RO: returns quotient in RO,
; remainder in R1

:Get abs value of RO into R3

ASR R2, RO, #31 ; Get 0 or -1 in R2 depending on sign of RO
EOR RO, R2 ; EOR with =1 (0" FFFFFFFF) if negative
SUB R3, RO, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by zero

;Get abs value of R1 by xoring with OxFFFFFFFF and adding 1 if negative

ASR RO, R1, #31 ; Get 0 or—1in R3 depending on sign of R1
EOR R1, RO ; EOR with =1 (0" FFFFFFFF) if negative
SUB R1, RO ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in RO & R2) for later use in determining ; sign of quotient & remainder.
PUSH {RO, R2}

;Justification, shift 1 bit at a time until divisor (RO value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR RO, R1, #1
MOV R2, R3
B %FTO
just_| LSL R2, #1
0 CMP R2, RO
BLS just_|
MOV RO, #0 ; Set accumulator to O
B %FTO ; Branch into division loop
div_| LSR R2, #1
0 CMP R1, R2 ; Test subtract
BCC %FTO
SUB R1, R2 ; If successful do a real subtract
0 ADC RO, RO ; Shift result and add 1 if subtract succeeded
CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_| ; tested subtracting the ‘ones' value).

3-96 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ARM INSTRUCTION SET

Now fixup the signs of the quotient (RO) and remainder (R1)

ARM Code

POP
EOR
EOR
suB

EOR
suB

MOV

signed_divide

;ip bit 31 = sign of result

ANDS
RSBMI
EORS

;ip bit 30 = sign of a2

RSBCS

{R2, R3} ; Get dividend/divisor signs back

R3, R2 ; Result sign

RO, R3 ; Negate if result sign=-1

RO, R3

R1, R2 ; Negate remainder if dividend sign = -1
R1, R2

pc, Ir

; Effectively zero a4 as top bit will be shifted out later
a4, al, #&80000000
al, al, #0
ip, a4, a2, ASR #32

a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)

just_|

div_|

MOVS
BEQ

CMP
MOVLS
BLO

CMP
ADC
SUBCS
TEQ
MOVNE
BNE
MOV
MOVS
RSBCS
RSBMI
MOV

a3, al
divide_by zero

; Justification stage shifts 1 bit at a time
a3, a2, LSR #1
a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
s_loop

a2, a3

a4, a4, a4
a2, a2, a3
a3, al

a3, a3, LSR #1
s_loop2

al, a4

ip, ip, ASL #1
al, al, #0
az, a2, #0
pc, Ir

ELECTRONICS

3-97

ARM INSTRUCTION SET

S3C3410X RISC MICROPROCESSOR

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and

ARM code.

Thumb Code

udivlo

ARM Code
udivl0

MOV
LSR
SUB
LSR
ADD
LSR
ADD
LSR
ADD
LSR
ASL
ADD
ASL
SUB
CMP
BLT
ADD
SUB

MOV

SUB
SUB
ADD
ADD
ADD
MOV
ADD
SUBS
ADDPL
ADDMI
MOV

a2, al
a3, al, #2
al, a3
a3, al, #4
al, a3
a3, al, #8
al, a3
a3, al, #16
al, a3
al, #3
a3, al, #2
a3, al
a3, #1
az, a3
az, #10
%FTO
al, #1
az, #10

pc, Ir

az, al, #10

al, al, al, Isr #2
al, al, al, Isr #4
al, al, al, Isr #8
al, al, al, Isr #16
al, al, Isr #3

a3, al, al, asl #2
a2, a2, a3, asl #1
al, al, #1

az, a2, #10
pc, Ir

Take argument in al returns quotient in al,
remainder in a2

Take argument in al returns quotient in al,
remainder in a2

3-98

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

SYSTEM MANAGER

OVERVIEW

The S3C3410X System Manager has the following functionality:

Arbitrate the bus usage requests from several master blocks, based on a fixed priority.

Generate the necessary memory control signals for external memory access. For example, if a master block
such as DMA or the CPU generates an address which corresponds to a DRAM bank, the DRAM controller
inside System Manager should generate the necessary DRAM control signals (nRAS, nCAS, and so on).

Support only the big-endian mode. The access to the internal register or the external memory should be done
based on the big-endian mode.

SYSTEM MANAGER REGISTER

The S3C3410X microcontroller has the SFRs, Special Function Register Set, to keep the system control
information of system manager, cache, DMA, UART, and so on. The SFRs have the SMRs, System Manager
Register Set, to configure the external memory map as well as the access-related option for SDRAM, DRAM,
SRAM, ROM and extra-1/O control.

By utilizing the SMR, user can specify the memory type, external bus width, access cycles, necessary control
signal timings(nRAS, nCAS, and so on), location of memory bank, and each memory bank size. The SMR can
provide(or accept) the information of control signals, address, and data which are required by external devices
during normal system operation. There are eleven registers to control memory bank (ROM, SRAM,
DRAM/SDRAM), extra-device control and DRAM refresh.

The S3C3410X can provide up to 128M bytes of address space and each bank can provide up to 16M bytes
memory space because each bank can have 24 address pins and 8-bit/16-bit data width.

The S3C3410X can also support two external I/O banks. These I/O banks are mapped into the SFR region. The
two external /O bank can give the smart interface between S3C3410X and external 1/0O device, which will
improve the cost, PCB size, and reliability of system.

ELECTRONICS 4-1

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

OXO7FFFFFF —p y y
Special Function Register
64 Kbytes
O0x07FFOFFF —p
(NOTE)
OXO7EF0000 —p Internal SRAM A
. . 128 Mbytes

Undefined Region (Ext. Memory Space)

0x00010000 —» y
ROM Region

(Accessable Region) 64 Kbytes

0x00000000 —p A A

NOTE: If you use not cache but an internal SRAM as an internal memory, then
the SRAM area are from 0x07FF0000 to OxO7FFOFFF. Refer to 5-4 page.

Figure 4-1. S3C3410X Memory Map (Default Map after Reset)

The S3C3410X can support 128M-byte memory space, which means that the S3C3410X should have an
internal 27-bit system address bus. User can allocate the start address of bank by 64K-byte step from
0000000h to 7FFFFFFh. In other word, each bank can be located anywhere in the 128M-byte address
space. The SFRs(Special Function Register) Set should occupy the 64K-byte region and the start
address of normal memory bank should not be allocated in the region of SFR area. The region of SFR is
a kind of memory mapped one and it can not allow the sharing the region with other banks.

4-2

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

ADDRESS BUS GENERATION

The address bus of the S3C3410X is quite different from the general MCU's. Although the general MCU does not
use the AO pin for 16-bit data bus width, the S3C3410X always uses the AO pin regardless of data bus width. In
other word, AO should be connected to the lowest address bit of memory regardless of 16-bit bus width or 8-bit
bus width. The bus width of bank 0O(Boot ROM bank) can be configured by external pin(TEST[1:0]) and the bus
width of other bank should be configured by writing the option information in SMRs. The memory controller in
System Manager can generate AO suitable for 8-bit bus width or 16-bit bus width, automatically. When an 8-bit
data bus is selected, the resolution of address bus will be a byte and when a 16-bit is selected, the resolution of
address bus will be a half-word.

Data Bus Width External Address Pins : A[23:0] Accessible Memory Size
8-bit SA[23:0] (Internal) 16 M bytes
16-bit SA[24:1] (Internal) 16 M half-word (32 M bytes)

Data bus width configuration
(8-bit/16-bit)

——<—— SA[23:0]
24-bit

External address bus

A[23:0] Internal Address Bus

——~<—— SA[24:1]

24-bit

Figure 4-2. External Address Bus Generation (A[23:0])

ELECTRONICS 4-3

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

NWE(NOT WRITE ENABLE)/nWBE[1:0](NOT WRITE BYTE ENABLE)

The nWE is the signal to indicate that the current bus cycle is for writing the data into the memory. But, if user
want to write the byte data through 16-bit bus into the memory, there should be byte selection option. For
example, user should have CASO and CAS1 signal in case of EDO DRAM. Similarly with EDO DRAM case, there
should be nWBE[1:0] to select the byte. The x16 SRAM has nWE for indication of write cycle and LB(Lower Byte
Selection)/UB(Upper Byte Selection) for selecting the byte. In this case, n\WE from S3C3410X should be
connected to WE of x16 SRAM, and nBE[0] and nBE[1] should be connected to LB and UB for the byte selection.
Differently from x16 SRAM, in case of x16 SRAM with two x8 SRAM, nWBE[0] and nWBE[1] should be
connected to the WE of SRAM, respectively.

In case of SDRAM attachment, nWE should be connected to WE of SDRAM and nWBE[1]/nWBE[0] should be
connected to DQM[1]}/DQM[OQ].

If user want x8 bus width for external memory access, please have following connection. In case of x8 SRAM,
nWBE[0], not nWE, should be connected to the WE of SRAM. In case of x8 SDRAM, nWE and nWBE[0] should
be connected to the WE and DQM of SDRAM.

There is certain case that no more byte access is needed. For example, x16 Flash Memory does not need byte
access through 16-bit bus when user need the programming the data in the flash memory. In this case, please
use NWBE[Q] instead of nWE to indicate that the current bus cycle is a write cycle

4-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

CAS1

RAS1 —{ Bank 1

RASO —» Bank 0

CASO

Upper
Byte

nWBEO —C

Lower

Byte

—» nWE

DRAM

nCS1 ————] Bank 1

nCSO ——{ Bank 0

nBE1

Upper
Byte

Lower
Byte

—» nWE

x16 SRAM

Figure 4-3. DRAM(x16) and SRAM(x16) Bank Configuration (For x16 Data Bus)

NWBEO ——»] Lower Byte

NWBE1 —|

nCSO

Upper Byte

—®

x8 SRAM

Figure 4-4. Two SRAM(x8) Configuration (For x16 Data Bus)

ELECTRONICS

4-5

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER & MEMORY CONTROLLER SPECIAL FUNCTION REGISTERS

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The SMRs (System Manager Registers) have the SYSCFG (System Register Address Configuration Register),
which determines the start address(base point) of SFR(Special Function Register) files. The SYSCFG contains
the start address of SFR. If the reset value of SYSCFG is fff1h, the SYSCFG is mapped to the address of
07FF0000h. To determine the start address, pick up the SYSCFG[14:4] and take 16-bit shift left. In this case,
SYSCFGJ14:4] is 7FFh and (7FFh << 16) is 07FF0000h, which is the start address of SFR.

Register Offset R/W Description Reset
Address Value
SYSCFG 0x1000 R/W | Special function register to determine the start address Oxfffl
SYSCFG Bit Description Initial State
ST [0] Stall Enable: When set to 1, Stall operation is enabled. The role 1

of stall option is to insert one cycle wait for the non-sequential

access. Originally, this feature was adopted to take care of the

internal timing issue. So, we are recommending ST=0 to get the

higher performance.

0 = Disable; It is recommended for faster operation

1 = Enable; Insert an internal wait inside the core logic when
non-sequential memory accesses occur.

CE [1] Cache Enable: When set to 1, internal Cache will be enabled. 0
When user want to define the internal SRAM, not cache, the
cache should be disabled. If the performance is not critical, user
can have cache disable option to reduce the current
consumption.

0 = Cache disable

1 = Cache enable

WE [2] Write Buffer Enable: When set to 1, the write buffer operation is 0
enabled. To get the higher performance, user should enable the
write buffer. The disabling write buffer is for test purpose.

0 = Write buffer operation disable

1 = Write buffer operation enable

Reserved [3] Reserved 0

SFRSA [14:4] SYSCFG Address (SFRs Start Address): To determine the 71t
start address of SFR, this SFRSA field should be 16-bit left
shifted. In other word, the start address of SFR is

(SFRSA << 16).

CM [16:15] [Cache Mode: Internal 4KB memory can be configured as 4KB 01
cache, 2KB Cache/2KB SRAM, or 4KB SRAM.

00 = Half cache enable (2KB cache, 2KB internal SRAM)
01 = Full cache enable (4KB cache)

10 = Disable cache(4KB internal SRAM)

11 = Not used

4-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

SYSCFG

Bit

Description

Initial State

AME

[17]

Address Mux Enable: This bit determines whether or not to use
the Multiplexed Address Mode. The Multiplexed Address Mode
can generate the address for A[23:16] by using A[15:8] pins. In
Normal Mode, the S3C3410X can support the dedicated pins for
A[23:16]. In case of Multiplexed Address Mode, A[23:16] pins can
be used as I/O ports. Because A[15:8] pins output address data
for A[23:16] and A[15:8] by using latch device, as shown in
Figure 4-5 and Figure 4-14. This is option for the pin usage
because there are many multiplexed pins in S3C3410X.

0 = Normal Mode 1 = Multiplexed Address mode

0

MTO

[19:18]

Memory Type 0: This field determines memory type for bank6
00 = ROM/Flash/SRAM 01 = FP DRAM
10 = EDO DRAM 11 = Sync. DRAM

00

MT1

[21:20]

Memory Type 1: This field determines memory type for bank?7
00 = ROM/Flash/SRAM 01 = FP DRAM
10 = EDO DRAM 11 = Sync. DRAM

00

ELECTRONICS

4-7

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

BANK TIMING CONTROL REGISTER (BANKCONx : nCS0O — nCS5)

Register Offset R/W Description Reset
Address Value

BANKCONO 0x2000 R/W | Bank 0 timing control register (for ROM/Flash) 0x00200070
BANKCON1 0x2004 R/W | Bank 1 timing control register (for ROM/Flash/SRAM) 0x0
BANKCON2 0x2008 R/W | Bank 2 timing control register (for ROM/Flash/SRAM) 0x0
BANKCONS3 0x200c R/W | Bank 3 timing control register (for ROM/Flash/SRAM) 0x0
BANKCON4 0x2010 R/W | Bank 4 timing control register (for ROM/Flash/SRAM) 0x0
BANKCON5 0x2014 R/W | Bank 5 timing control register (for ROM/Flash/SRAM) 0x0
BANKCONXx Bit Description Initial State
DBW [0] Data Bus Width: This bit determines the physical data bus width 0

for bankx (bank1,2,3,4,and 5). The physical data bus width of
bankO depends on the configuration of TEST[1:0] pins.
0 = 8-bit 1 = 16-hit

PMC [2:1] These bits determines the page mode configuration for ROM 00
access (Single mode, 4 data page mode, 8 data page mode, and
16 data page mode).

00 = 1 Data Ol=4Data 10=8Data 11 =16 Data

SM [3] In certain x16 SRAM, there are byte selection signals such as LB 0
(Lowe Byte) and UB (Upper Byte). In this case, nWE from
S3C3410X should be connected to WE of SRAM and nWBE][1:0]
from S3C3410X should be connected to UB/LB of SRAM.

0 = Ordinary 1 =x16 type SRAM

Tacc [6:4] Determine the number of Access Cycle (Tacc). Please refer the 111
timing diagram.

000 = Disable 001 =2 Clock 010 =3 Clock 011 =4 Clock
100 =5Clock 101=6Clock 110=7 Clock 111 =10 Clock

Tacp [8:7] Determine the number of Page mode access cycle @ page mode 00
(Tacp). Please refer the timing diagram.
00=5Clock 01=2Clock 10=3Clock 11 =4 Clock

Reserved [9] Reserved 0

4-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

BANKCONXx

Bit

Description

Initial State

BAP

[20:10]

Memory Bank Base Address Pointer:

This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. It indicates the start address of the
corresponding memory bank(Bankx), based on 64K-byte units.
The base address pointer value is calculated as follows:

Base Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled.

00000000000b

EAP

[31:21]

Memory Bank End Address Pointer:

This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. To determine the EAP, please refer
the below equation :

End_Address_Pointer = (End_Address + 1) / 10000h.
(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address

of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

ELECTRONICS

4-9

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

BANK TIMING CONTROL REGISTER (BANKCONx: nRASO — nRAS1)

Register Offset R/W Description Reset
Address Value
BANKCONG6 | 0x2018 R/W | Bank 6 control register (for FP/EDO/SDRAM/ROM/Flash/SRAM) 0x0
BANKCON7 | 0x201c R/W [Bank 7 control register (for FP/EDO/SDRAM/ROM/Flash/SRAM) 0x0

NOTE: BANKCONSG and 7 register can have dual configuration, depending on the MT field in SYSCFG register. In other
word, BANKCONG6 and 7 have the same configuration with BANKCON1,2,3,4 and 5 when MT=00, or BANKCONG6
and 7 have the configuration on DRAM(FP, EDO)/SDRAM when MT=01, 10, and 11.

BANKCONX |

Bit

Description

Initial State

Memory Type = ROM or SRAM [MT=00 in SYSCFG]

DBW

[0]

Data Bus Width: This bit determines the physical data bus width
for bankx (bank6 and 7)
0 = 8-bit 1 = 16-hit

PMC

[2:1]

These bits determines the page mode configuration for ROM
access (Single mode, 4 data page mode, 8 data page mode, and
16 data page mode).

00 = 1 Data Ol=4Data 10=8Data 11=16 Data

00

SM

[3]

In certain x16 SRAM, there are byte selection signals such as LB
(Lowe Byte) and UB (Upper Byte). In this case, n\WE from
S3C3410X should be connected to WE of SRAM and nWBE][1:0]
from S3C3410X should be connected to UB/LB of SRAM.

0 = Ordinary 1 =x16 type SRAM

Tacc

[6:4]

Determine the number of Access Cycle (Tacc). Please refer the
timing diagram.

000 = Disable 001 =2 Clock 010 =3 Clock 011 =4 Clock
100 =5Clock 101=6Clock 110=7 Clock 111 =10 Clock

000

Tacp

[8:7]

Determine the number of Page mode access cycle @ page mode
(Tacp). Please refer the timing diagram.
00=5Clock 01=2Clock 10=3Clock 11 =4 Clock

00

Reserved

9]

Reserved

4-10

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

BANKCONXx

Bit

Description

Initial State

BAP

[20:10]

Memory Bank Base Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:

Base Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled

00000000000b

EAP

[31:21]

Memory Bank End Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. To determine the EAP, please refer the below
equation :

End_Address_Pointer = (End_Address + 1) / 10000h.
(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address

of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

ELECTRONICS

4-11

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

Memory Type = FP DRAM [MT=01 in SYSCFG] or EDO DRAM [MT=10 in SYSCFG]

DBW

[0]

Data Bus Width: This bit determines the physical data bus width
for bankx (bank6 and 7)
0 = 8-bit 1 = 16-hit

CAN

[2:1]

Column Address Number for DRAM (FP and EDO DRAM).
00 = 8-bit 01 = 9-bit
10 = 10-bit 11 = 11-hit

00

Tcp

[3]

CAS Pre-charge Time. Please refer the timing diagram.
0 =1 Clock 1 =2 Clock

Tcas

[6:4]

CAS Pulse Width. Please refer the timing diagram.

000 =1 Clock 001 = 2 Clock 010 = 3 Clock
011 =4 Clock 100 =5 Clock 101 = Not used
110 = Not used 111 = Disable

000

Trc

[7]

RAS to CAS Delay Time. Please refer the timing diagram.
0 =1 Clock 1 =2 Clock

Trp

[9:8]

RAS Pre-charge Time. Please refer the timing diagram.
00 =1 Clock 01 =2 Clock
10 = 3 Clock 11 = 4 Clock

00

BAP

[20:10]

Memory Bank Base Address Pointer: This 11-bit value
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:

Base Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).

If BAP is same with EAP, the corresponding memory bankx will
be disabled

00000000000b

EAP

[31:21]

Memory Bank End Address Pointer:

This 11-bit value corresponds to the upper 11 bits from the total
27-bit system address bus. To determine the EAP, please refer
the below equation :

End_Address_Pointer = (End_Address + 1) / 10000h.

(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16). In this case, End_Address means the end address
of corresponding memory bank by byte address unit, not half-
word or word address unit.

00000000000b

ELECTRONICS

4-12

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

Memory Type = Sync. DRAM [MT=11 in SYSCFG]

DBW [0] Data Bus Width : This bit determines the physical data bus 0
width for bankx(bank6 and 7)
0 = 8-bit 1 = 16-hit
CAN [2:1] Column Address Number of SDRAM. 00
00 = 8-hit 01 = 9-hit
10 = 10-hit 11 = 11-hit
Reserved [6:3] Reserved 0000
Trc [71 RAS to CAS Delay Time. Please refer the timing diagram. 0
0 =1 Clock 1 =2 Clock
Trp [9:8] RAS Pre-charge Time. Please refer the timing diagram. 00
00 =1 Clock 01 =2 Clock
10 = 3 Clock 11 = 4 Clock
BAP [20:10] | Memory Bank Base Address Pointer: This 11-bit value 00000000000b
corresponds to the upper 11 bits from the total 27-bit system
address bus. It indicates the start address of the corresponding
memory bank(Bankx), based on 64K-byte units. The base
address pointer value is calculated as follows:
Base Address_Pointer = Start_Address / 10000h, which is
(BAP[20:10] << 16).
If BAP is same with EAP, the corresponding memory bankx will
be disabled
EAP [31:21] | Memory Bank End Address Pointer: This 11-bit value 00000000000b
corresponds to the upper 11 bits from the total 27-bit system
address bus. To determine the EAP, please refer the below
equation:
End_Address_Pointer = (End_Address + 1) / 10000h.
(End_Address of corresponding memory bank+ 1) is equal to
(EAP << 16).
In this case, End_Address means the end address of
corresponding memory bank by byte address unit, not half-word
or word address unit.

ELECTRONICS

4-13

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

EXTERNAL DEVICE CONTROL REGISTERS (EXTCONN)

The S3C3410X can support the connection with two external 1/O devices without any additional logic. It is very
cost effective, because the additional address decoding logic is not necessary. The smart connection between
S3C3410X and external 1/0 device can improve the cost, PCB size, and reliability of system. Differently from the
normal memory banks (8 memory banks in S3C3410X), S3C3410X defines the external I/O banks in SFR
(Special Function Register), EXTPORT, EXTDATO, and EXTDAT1. EXTDATO and EXTDAT1 have 64 bytes
addressing region, respectively. To read the data from the external I/O device, you should execute the load
instruction by issuing the address (SFR start address + 1/O bank offset), EXTPORT, EXTDATO or EXTDATL1.
Then, the data will be latched in the data register. To write the data into the external I/O device, you should
execute the store instruction by issuing the address (SFR start address + 1/0O bank offset), EXTPORT, EXTDATO
or EXTDATL. Then, the data will be written into the selected address, and the data will be written into the external
I/O device. These operation is automatically executed by the memory controller.

Register Offset R/W Description Reset
Address Value
EXTCONO 0x2030 R/W | Extra device control register O (for external output port) 0x0
EXTCON1 0x2034 R/W | Extra device control register 1 (for external chip selection) 0x0
EXTCONXx Bit Description Initial State
DW [1:0] Data Bus Width: This bit determines the physical data bus width 00
for EXTBANKX (External bankO and 1)
00 = Disable Bank 01 = 8-hit
10 = 16-bit 11 = Not used
Tcos [4:2] Set-up Time of NECS before nOE. Please refer the timing 000
diagram.
000 = 0 Clock 001 =1 Clock
010 = 2 Clock 011 = 3 Clock
100 = 4 Clock 101 =5 Clock
110 = 6 Clock 111 =7 Clock
Tcoh [10:8] Hold Time of nECS after nOE. Please refer the timing diagram. 000
000 = 0 Clock 001 = 0 Clock
010 = 2 Clock 011 = 3 Clock
100 = 4 Clock 101 =5 Clock
110 = 6 Clock 111 =7 Clock
Tacc [13:11] | Access Times (nOE low time) 000
000 = 0 Clock 001 = 2 Clock
010 = 3 Clock 011 = 4 Clock
100 =5 Clock 101 = 6 Clock
110 =7 Clock 111 =8 Clock
4-14 ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

EXTERNAL OUTPUT PORT REGISTER (EXTPORT)

You can use an external output latch device as an output port without any additional address logic for decoding
logic, because S3C3410X have the nWREXP pin. When you write any data to EXTPORT register, NWREXP pin
outputs a write strobe signal to interface with an external output latch device for latching the output data. That is,
the access signal to the external output latch device is controlled by writing any data to EXTPORT register. For
example, if you write Oxff to EXTPORT, memory controller outputs a write strobe signal in nWREXP pin and Oxff
in data bus. At this time, the access time is controlled by the extra device control register, EXTCONO only. (Refer
to Figure 4-21)

When MDS mode is selected, this NWREXP pin is used as a write strobe signal for an external output latch,
which is emulated for port 7 output.

Register Offset Address R/W Description Reset Value
EXTPORT 0x203e R/W External Port Data register 0x0

EXTERNAL CHIP SELECTION DATA REGISTER (EXTDATX)

You can directly access to the external device as external memory without any additional address decoding logic
because S3C3410X have the external device control logic, NECS0 and nECSL1 pins. These pins output the
external device selection signals. External device is accessed by the memory controller when the data is
read/write from/to EXTDATO or EXTDATL. That is, if you read/write the data from/to EXTDATO or EXTDAT1, the
memory controller automatically outputs nECSO0 or nECS1, the selected address and data. For example, if you
write Oxff to 0x206¢ in EXTDATO, memory controller outputs nECSO signal, 0x206c¢ in address bus and Oxff in
data bus. At this time, the access time of EXTDATO and EXTDATL1 are controlled by the extra device control
registerl, EXTCONL1 only. (Refer to Figure 4-21)

When P2.7 or P3.7 is used as a normal input/output mode, NECSO0 or nECS1 can not support extra chip
selection.

Register Offset Address R/W Description Reset Value
EXTDATO 0x202c R/W | Extra chip selection data register 0 -
0x206¢
0x20ac
0x20ec
0x212c

Ox2fec
EXTDAT1 0x202e R/W | Extra chip selection data register 1 -
0x206e
0x20ae
0x20ee
0x212e

Ox2fee

ELECTRONICS 4-15

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

DRAM/SDRAM SELF REFRESH CONTROL REGISTER (REFCON)

Register

Offset
Address

R/W Description

Reset
Value

REFCON

0x2020

R/W | DRAM/SDRAM refresh control register

ox1

REFCON

Bit

Description

Initial State

VSMR

[0]

Validity of Special Memory Register (SMR):

Whenever CPU access one of system manager registers(SMR),
VSMR bit will be cleared automatically and all memory bank will
be disabled. To re-activate the memory bank, VSMR bit should
be set to 1 by using STMIA instruction(Data in the CPU registers
can be stored into the memory or memory mapped register by
single instruction). In other word, user should update the
necessary configuration in SMR as well as setting VSMR bit in
REFCON register, simultaneously. To do the simultaneous
updating, user should use the STMIA instruction, which can
transfer the CPU register data into SMR. The last data transfer
from CPU register should be data transfer to REFCON register to
set the VSMR bit.

0 = Not accessible to memory bank

1 = Accessible to memory bank

1

RC

[11:1]

Refresh Interval (Refresh Count): This RC field determine the
DRAM refresh period by below equation.

Refresh Period = (2" — refresh count + 1) / MCLK

EX) If refresh period is 15.6us and MCLK is 33MHz, the refresh
count should be as follows:

Refresh Count =2 + 1 -33 x 15.6 = 1019 = 1111111011b

00000000000b

REN

[12]

Refresh Enable: If Bank 6 and/or Bank 7 are configured to have
DRAM bank by MT[1:0] field in SYSCFG register, this bit has
following option.

0 = Disable DRAM refresh.

1 = Enable DRAM refresh.

If Bank 6 and/or Bank 7 are configured to have SDRAM bank by
MTI[1:0] field in SYSCFG register, this bit has following option.

0 = Disable SDRAM auto-refresh.

1 = Enable SDRAM auto refresh.

Tch

[15:13]

CAS Hold Time. Please refer the timing diagram.
000 = 1 Clock 001 = 2 Clock 010 = 3 Clock
011 = 4 Clock 100 =5 Clock Other = Not used

000

Tcsr

[16]

CAS Set-up Time. Please refer the timing diagram.
0 =1 Clock 1 =2 Clock

4-16

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

MEMORY ACCESS AND I/O TIMING DIAGRAM

S VAVAVAVAVAVA

No upper address,!if upper address is same.

=

L~

/ \
A[15:8] X ALchE[rJ:sts Liower Address l\ II LoweriAddress +1 X
N7
nAS \ —»{ «— Tash =0.77n5 (nAS to A hold-time) @ TYP dondition
nCSx \ /
nOE < \ /
nNWBE <« #\ /
DATA L
(Write)
Pl
DATA "IV .
(Read) '\)

When SRAM/ROM interface and enables address mux
A[15:8] outputs upper address during 1-cycle.
At this time, nAS is enabled during 1-cycle.

The nAS signal occurs only in case the current upper address is changed
from the previous one.
(That is to say, A[23:16] is different from the previous A[23:16].)

When nAS occurs, nOE and nWBE[1:0] signals are delayed for 1-
cycle, but, the nCSx is enabled. When upper address

outputs, data(write) is enabled. But data(read) is delayed for 1-cycle
because nOE is delayed.

Figure 4-5. S3C3410X Multiplexed Address Mode Timing Diagram

ELECTRONICS 4-17

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

MCLK

A[23:0]

nCSx

nOE

nWBE

DATA
(Write)

DATA
(Read)

YAVAVAVAVE

/-

v

Tacc

Tacp

A4
A

A4

1100

—

L drr e

—

Tacc = 4 cycles, Tacp = 3 cycles

Figure 4-6. S3C3410X nCS Timing Diagram

4-18

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

ADDR Row Column Column Column Column
Address Address Address Address Address
NRASX L Trp k\ /

nCASXx _ Tred kA\Tcas “/Tcp o \ / \ / \ /
nOE \

i 0
o I

\
T T 1 17

o () \ \

Trp =1 cycle, Tred = 1 cycle, Tcas = 1 cycle, Tcp =1 cycle

Figure 4-7. S3C3410X DRAM Timing Diagram

EEEEEEEEEEE 4-19

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

SCLK

SCKE

nSCS

NSRAS

nSCAS

ADDR

BA

ADDR

DATA
(CL=2)

[\

A

AuAs

[\

b
)
|

-

A

\ /
==

}

Precharge

Row
Active

Write

Raed (CL = 2 Cycles, BL =1 Cycle)

Trp = 2 cycles, Tred = 2 cycles, CL = 2 cycles

Figure 4-8. S3C3410X SDRAM Timing Diagram

4-20

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

ADDR

Tacc External Wait
nCSx

A\
A

nOE

A A
\ i
\

3

\
T /

Data —_\
i

L4

(Read)

Data
(Write)

— T~
~ —

[
P

N
Check the NnWAAIT signal Fetch Data

Tacc = 3 cycles, nWAIT = 3 cycles

Figure 4-9. S3C3410X nCS Timing Diagram with nWAIT

ELECTRONICS 4-21

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

Ve 4/—_/—\

ADDR

YAVAVAURY
\

nECSO0
or
nECS1

-
=
-
-

A
Y

Tacc Exterrjal Wait Tcoh
< >¢ > /
nOE Tcos \ %13;

A
A

e \ s
G
(Read) < %

(Write) >7
; ! S 7 ! 4

Check the NnWAAIT signal Fetch Data

Tcos = 2 cycles, Tacc = 3 cycles, Tcoh = 1 cycle, nWAIT = 2 cycles

Figure 4-10. S3C3410X nECS Timing Diagram with nWAIT

4-22 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

MEMORY INTERFACE SIGNAL CONNECTION METHOD

Pin Name Memory Type Description
nOE Any type Memory read strobe signal
nWBEO Single * 8 Flash ROM/EEPROM/DRAM/SRAM Memory write strobe signal
Two ~ 8 Flash ROM/EEPROM/DRAM/SRAM Memory lower byte write strobe signal
Single " 16 SRAM Memory lower byte signal
nWBE1 Two ~ 8 Flash ROM/EEPROM/DRAM/SRAM Memory upper byte write strobe signal
Single " 16 SRAM Memory upper byte signal
nWE " 16 SRAM/SDRAM Memory write strobe signal

MEMORY CONNECTION EXAMPLE

Memory Configuration Type MCU Pin Memory Pin
"8/ 16 ROM (MCU data bus: ~ 8/" 16) nOE nOE
Single x8 Flash ROM/EEPROM or single x8 SRAM nOE nOE
(MCU data bus: “ 8) nWBEO nWE
Two x8 Flash ROM/EEPROM or two “ 8 SRAM nOE nOE
(MCU data bus: “ 16) nWBEO nWE of lower byte
nWBE1 NWE of upper byte
" 16 SRAM nOE nOE
(MCU data bus: “ 16) nBEO nLB
nBE1 nUB
nSWE nWE
Single “ 8 DRAM VvDD nOE
(MCU data bus: “ 8) nRASO nRAS
nCASO nCAS
nWBEO nWE
Two *~ 8 DRAM VvDD nOE
(MCU data bus: " 16) nRASO nRAS
nCASO NCAS of lower byte
nCAS1 NCAS of upper byte
nWBEO nWE
Single " 16 DRAM VvDD nOE
(MCU data bus: “ 16) nRASO nRAS
nCASO nLCAS
nCAS1 nUCAS
nWBEO nWE

ELECTRONICS

4-23

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

Memory Configuration Type MCU Pin Memory Pin
Two “ 16 DRAM VvDD nOE
(MCU data bus: “ 16) NRASO NRAS of lower bank
nRAS1 NRAS of upper bank
nCASO nLCAS
nCAS1 nUCAS
nWBEO nWE
Single “ 8 SDRAM nOE nOE
(MCU data bus: “ 8) nSCS nSCS
nSRAC NSRAC
nSCAS nSCAS
DQMO DQM
nWE nWE
SCKE SCKE
SCLK SCLK
Two *~ 8 SDRAM nOE nOE
(MCU data bus: “ 16) nSCS nSCS
nSRAC NSRAC
nSCAS nSCAS
DQMO DQM of lower byte
DQM1 DQM of upper byte
nWE nWE
SCKE SCKE
SCLK SCLK
Single “ 16 SDRAM nOE nOE
(MCU data bus: “ 16) nSCS nSCS
nSRAC NSRAC
nSCAS nSCAS
DQMO LDQM
DQM1 UDQM
nWE nWE
SCKE SCKE
SCLK SCLK

4-24 ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

MEMORY CONFIGURATION EXAMPLES

VDD
A[15:8] —X > A[15:8]
8
A[7:0] X » A[7:0] Program
\8 Memory
D[7:0] [&—x » D[7:0] 64KB
S3C3410X ROM
(EEP/EPROM)
nOE » NnOE
nCS0 » nCS
Figure 4-11. 64K~ 8 ROM Memory Only
VDD VDD
\8 nWE —T nWE —T
A[15:8] —X > A[15:8] > A[15:8]
8
A[7:0] \\8 > A[7:0] Fh’/llrgrgrl]rgs > AI70] program
Memory
D[7:0] ja— » D[7:0 64KB
S3C3410X [7:0] \8 [7:0] ROM 16KB
D[15:8] {«— (EEP/EPROM) » D[15:8] ROM
nOE » NnOE » NnOE
nCSs0 » nCS » nCS

Figure 4-12. 64K~ 16 ROM Memory Only

ELECTRONICS 4-25

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

VDD
A[15:8] X > Al15:8] program » A[15:8]
8
AT7:0] =X » A[7:0] Memory » A[7:0] Data
64KB
8 Memory
D[7:0] [» D[7:0] ROM » D[7:0] 16KB
(EEP/EPROM) SRAM
S3C3410X (EEP/F|aSh
nOE » NOE » NOE ROM)
nCS0 » nCS
nCcs1 » nCS
nWBEO » NWE
Figure 4-13. 64KB ~ 8 Program ROM & 64KB ~ 8 Data Memory
5 VDD
A IS
NAS S Ly A[23:16] NWE |]
3 A[23:16]
8 [ee]
A[15:8] > Al158] program > A[15:8]
8
Al7:0] X » A[7:0] Memory » A[7:0] Data
16MB Memor
\8 D[7:0] ROM D[7:0] 16MBy
D[7:0] [« > : > :
S3C3410X \ (EEP/EPROM) SRAM
(EEP/Flash
nOE » NnOE » NnOE ROM)
nCS0 » nCS
nCcs1 » nCS
nWBEO » NWE

Figure 4-14. 16MB ~ 8 Program Memory & 16MB ~ 8 Data Memory

4-26

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

VbD
A[23:16]| \8) nWE —T _
(Port 1) \8 A[23:16] > A[23:16]
A[15:8] X A[15:8] > A[15:8]
8 Program
Al7:0] F—X AI7:0] Memory > A[7:0] Data
R - 16MB 5170 Memory
D[7:0] [« [7:0] ROM » D[7:0] 16MB
S3C3410X (EEP/EPROM) SRAM
(EEP/Flash
nOE nOE » NOE ROM)
nCS0 nCS
nCs1 » nCS
nWBEO » NWE
Figure 4-15. 16MB ~ 8 Program Memory & 16MB ~ 8 Data Memory
VbD
A[23:16] | \8) nWE —T _
(Port 4) \8 A[23:16] > A[23:16]
A[15:8] X A[15:8] » A[15:8]
8 Program
Al7:0] F—X AI7:0] Memory > A[7:0] Data
R . 16MB o0 Memory
D[7:0] [« D[7:0] ROM » D[7:0] 16MB
S3C3410X (EEP/EPROM) SRAM
(EEP/Flash
nOE nOE » NOE ROM)
nCS0 nCS
nCs1 » nCS
nWBEO » NWE

Figure 4-16. 16MB ~ 8 Program Memory & 16MB ~ 8 Data Memory

ELECTRONICS

4-27

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

VbD
\8 nWE —T
A[23:16] X » A[23:16] » A[23:16]
8
A[15:8] X » A[15:8] Program » A[15:8]
8 Memory
Al7:0] X » A[7:0] 8M~ 16-bit > A[7:0] Data
8 ROM M
07 |\ .) emory
D[7:0] [« \8 » D[7:0] (EEP/EPROM) » D[7:0] 8M~ 8-bit
D[15:8] |4 » D[15:8] SRAM
410X
S3C3410 nOE » nOE » NOE
nCS0 » NCS
nCS1 » nCS
nWBEO » NWE
»| D[15:8]
» NCS
nWBE1 » N"WE
Figure 4-17. 8MB ~ 16 Program Memory & two 8MB ~ 8 Data Memory
VbD
\8 nWE —T
A[23:16] X » A[23:16] » A[23:16]
8
A[15:8] X » A[15:8] Program > A[15:8]
8 Memory
Al7:0] F—X » A[7:0] 8M~ 16bit > A[7:0]
\8 ROM
D[7:0] |« \8 » D[7:0] (EEP/EPROM) » D[7:0] Data
D[15:8] |4\ » D[15:8 » D[15:8] Memory
sacastox DIl [15:8] 58] 8M ~ 16bhit
nOE » NnOE » NnOE SRAM
nCS0 » NCS
nCS1 » nCS
nWBEO » nLB
nWBE1 » nUB
nSWE » NWE

Figure 4-18. 8MB ~ 16 Program Memory & 8MB * 16 Data Memory (SRAM)

4-28

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

VDD

WE

A[23:16] :
A[15:8] Program
Memory

A[7:0] 8M~ 16bit
ROM

D[7:0] (EEP/EPROM)
D[15:8]

nOE

nCS

8
A[23:16] X >
8
A[15:8] X >
8
Al7:0] F—X >
8
D[7:0] & >
8
D[15:8] |4 >
S3C3410X
nOE >
nCSo0 >
NnRAS
NCASO
nCAS1
NWBEO

A[11:8]
A[7:0]
DI[7:

[7:0] Data
Memory
4M ~ 8bit

nOE DRAM
NnRAS
nCAS
nWE
» D[15:8]
» NRAS
» NCAS
» NWE

Figure 4-19. 8MB ~ 16 Program

Memory & two 4MB ~ 8 Data Memory (DRAM)

A[23:16]
A[15:8]
A[7:0]
D[7:0]

D[15:
S3C3410X [15:8]
nOE

nCS0

NnRAS
nCASO
nCAS1

nWBEO

VDD

8 WE
\ > A[23:16] :
\\8 > A[15:8] Program
8 Memory
N\ » A[7:0] 8M~ 16bit
\8 ROM
RER » D[7:0] (EEP/EPROM)
8
- » D[15:8]

» NOE

» NCS

|

» A[11:8]

» A[7:0]

» D[7:0] Data

Memory

» D[15:8]
4M ~ 16bit
» NOE

DRAM

> NRAS

» NLCAS

» NUCAS

» NWE

Figure 4-20. 8MB ~ 16 Program Memory & 4MB ~ 16 Data Memory (DRAM)

ELECTRONICS

4-29

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

VDD
\8 nWE —T
A23:16] X » A[23:16]
8
A[15:8] X » A[15:8] Program 1> Al11:8]
8 Memory
Al7:0] X » A[7:0] 8M "~ 16bit > Al7:0]
\8 ROM
D[7:0] & » D[7:0] (EEP/EPROM) [—1*|DI[7:0]
8 Data
D[15:8] |4 » D[15:8] > DII58] \remory
S3C3410X * 16bi
nOE » NOE > noE 4M_ 16bit
DRAM
nCS0 » NnCS
nRAS1 » NRAS
nCASO » NLCAS
nCAS1 » NUCAS
nWBEO » NWE
NRAS?2 » NRAS
» NLCAS
» NUCAS
» NWE

Figure 4-21. 8MB ~ 16 Program Memory & two 4MB ~ 16 Data Memory (DRAM)

4-30 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SYSTEM MANAGER

A[23:16]
A[15:8]
A[7:0]
D[7:0]
sacaatox DHSE

nOE
nCso0

A[13:12]
nSCSO
NSRAS
nSCAS

nWE
DQMO
SCLK
SCKE

DQM1

VDD
\\8 »| A[23:16] nWE N
\8 . Program . .
\8 » A[15:8] Mer% ol 1> A[11:8]
N\ » A[7:0] 8M~ 16bit 1> Al7:0]
\8 . ROM .
DAY » D[7:0] (EEP/EPROM) » D[7:0]
< \\8 » D[15:8]
Data
» NnOE t nOE Memory
» nCS 2M 8hit
with 4 Banks
+—» BA[1:0] spram
1+ nCS
> NnRAS
> nCAS
L:nWE
» DQMO
> SCLK
> SCKE
» DQM1
» D[15:8]

Figure 4-22. 8MB ~ 16 Program Memory & two 2MB ~ 8 with 4 Banks SDRAM

ELECTRONICS

4-31

SYSTEM MANAGER

S3C3410X RISC MICROPROCESSOR

A[23:16]
A[15:8]
A[7:0]
D[7:0]
sacaatox DHSE

nOE
nCs0

A[13:12]
nSCSO
NSRAS
nSCAS

nWE
DQMO
DQM1
SCLK
SCKE

nSCS1

VDD
\\8 »| A[23:16] nWE N
\8 . Program . .
\\8 » A[15:8] Me’% oy 1> A[11:8]
X » A[7:0] 8M~ 16bit 1+ A[7:0]
\8 _ ROM _
RER » D[7:0] (EEP/EPROM) » D[7:0]
< \\8 » D[15:8] » D[15:8]
Data
» nOE 1> NOE Memory
» nCS 1M * 16bit
with 4 Banks
+—» BA[1:0] spram
» NnCS
> NnRAS
> nCAS
L:nWE
1+ LDQM
1+ UDQM
> SCLK
> SCKE
» NnCS

Figure 4-23. 8MB ~ 16 Program Memory & two 1MB * 16 with 4 Banks SDRAM

4-32

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SYSTEM MANAGER

S3C3410X
8 74HCT374 | \8 Output
A1 | \ P
D[7:0] < N M 74HCT574 [N (External Output)
NWREXP » nLE
Servo
Processor
nOE » nOE
nWBEO > NWR
nECS0 » nCS
Servo
Processor
» NOE
nWBE1 » NWR
nECS1 » nCS

Figure 4-24. nWREXP, nECS0 and nECS1 Application Example in Normal Mode

ELECTRONICS 4-33

SYSTEM MANAGER S3C3410X RISC MICROPROCESSOR

NOTES

4-34 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

UNIFIED CACHE & INTERNAL SRAM

OVERVIEW

The S3C3410X has internal 4K-byte unified (Instruction/Data) cache. The cache architecture is based on two-
way set associative and use the LRU(Least Recently Used) as cache replacement policy. To maintain the data
coherence between main memory and cache, the cache controller should write the data into the main memory
whenever the CPU update the data in cache memory. Because the cache line size is 4 word, there should be four
word of memory fetch from main memory when cache miss happens. The cost-effective cache architecture can
maintain the good hit ratio by investing the reasonable H/W inside the chip.

The performance difference between cache-on and cache-off is dramatically big. When cache is off, there is
always instruction fetch from main memory. If we assume it takes 4 cycles for instruction fetch from main
memory, the CPU performance will be dropped to 25% of the case of 10% cache hit due to the only instruction
fetch from external memory. The 100% cache hit means that the CPU can fetch the instruction from memory
within one cycle, i.e., zero wait. Usually, the user should turn on the cache to get the higher performance. But, if
user does not want higher performance, the cache can be turn off to reduce the power consumption. If you turn
the cache off and do not use the internal memory as SRAM, the power consumption will be reduced by 40%.

The S3C3410X can support the optional cache configuration. Internal 4KB memory can be configured as 4KB
cache memory, 2KB Cache/2KB SRAM, or 4KB SRAM. Users can select these options suitable for their
application.

The caching area of external memory can be determined to non-cache region by having the configuration. When
the CPU access the non-cacheable region, these data should not be cached. Usually, the program and data area
should be in cacheable region to get higher performance. But, the control-purposed data, for example, the data
handling by DMA, should be in non-cacheable region. If the control data is in the cacheable region, if some of
these data are cached into the cache memory, and if DMA update the data in the external memory of cacheable
region, we can not guarantee the data coherence between data in cache memory and in external memory.
Summarizing, users should always be aware of the memory allocation for non-cacheable and cacheable region.

The S3C3410X can support the 128MB addressing range and it means that the internal address A[26:0] are only
effective even if the CPU can generate the A[31:0] of the internal address. If the S/W generate the address
beyond this range, the cache controller and the memory controller will treat this address as special case. The
reality is as follow. The cache controller accepts the address of A[27:0] and determine whether this access should
be cached, or not when A[27]=0. In other word, the access should be cached if the A[26:0] is corresponding to the
cacheable region and should not be cached if the A[26:0] is corresponding to the non-cacheable region. If A[27] =
1, the cache controller treat this access as non-cacheable access even if the A[26:0] is corresponding to
cacheable or non-cacheable region. When A[27]=1 and the A[26:0] is corresponding to the cacheable region, the
cache controller should treat this access as non-cacheable access and the memory controller should execute the
memory access by using A[26:0] address. The cache controller discard the address of A[31:28] and the memory
controller also discard the address of A[31:27].

ELECTRONICS 5-1

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

31 28 27 26 1110 9 4 3 2 10
Tag Address: 16-bits (17-bits)
Enable non-cacheable control ‘ 16 (17)
switch |
2 16 (17) 16 (17) Height =
A A 128 (64)

CS Set 1 Tag Set 0 Tag

A A

7(6)
Decoder <

A A A

Set 1 Cache = 4 Instruction/Data (128-bits) Set 0 Cache = 4 Instruction/Data (128-bits)
Instr3 Instr2 Instrl InstrO Instr3 Instr2 Instrl InstrO
: : 7 (6)
32-bit 32-bit

ST 1o Sl g

32 32

32

Figure 5-1. Cache Memory Configuration

5-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UNIFIED CACHE & INTERNAL SRAM

CACHE OPERATION

CACHE ORGANIZATION

The S3C3410X cache has a 4KB or 2KB cache memory and Tag RAM. The cache architecture consists of 2-way
set associative, has 4 word as line size, and uses the LRU replacement policy. To maintain the data coherence
between cache and main memory, the S3C3410X supports the WT(Write Through). The Tag RAM has a 2-bit
CS(Cache Status) field as well as Tag data for set 0 and 1 as shown in Figure 5-1. Each Tag set has a 16-bits/17-
bits Tag address of A[26:11] / A[26:10] for 4KB /2KB cache if the address of A[26:0] is cached in the cache
memory. The 2-bit CS indicates the validity of cached data of the corresponding cache memory line. It is also
used for the cache replacing algorithm and for selecting the data coming from set 0 and 1. Because the cache
consists of 2-way set associative, each set should have 2KB. The one line is 4-word(4” 32 = 128bit), and there
should be 128 lines in each set. If users specify the 2KB cache, one line is 4-word(4” 32 = 128bit) and there
should be 64 lines in each set. The TAG and Cache array memory are mapped to the specific address range and
users can access these memory by S/W, which will be explained in Cache Flush.

CACHE REPLACE OPERATION

After the system is initialized, the value of CS is set to "00", notifying that the memory content in set 0 and 1 are
invalid. When a cache fill occurs, the value of CS is changed to "01" at the specified line, which notifies that the
set 0 is only valid. When the subsequent cache fill occurs, the value of CS will be "11" at the specified line, which
notifies that the memory content in both set 0 and set 1 are valid. When the memory content in both set 0 and set
1 are valid, there should be cache replacement when the cache miss happens. During the miss cycle, the value
of CS should be changed to "10" at the specified line, notifying that the memaory content in set O will be replaced.
After the completion of miss cycle, the value of CS will be changed to "11", again because the specified cache
was re-filled. If there happens other miss cycle on the same line, the value of CS should be changed to "01" at
the specified line, notifying that the memory content in set 1 will be replaced. After the completion of miss cycle,
the value of CS will be changed to "11", again because the specified cache was re-filled. To indicate the Least
Recently Used line, there is an internal toggling bit which determines that the recent access was to set O or set 1.

Reset(/)
l ; Set0, setl all invalid
INVALID: 00
; Cache miss occurs
Miss
4 ; Set0 = valid and Setl = invalid
It does not change status on hit
SO only: 01 Q
Hit ; Read miss
Miss
v Miss or Hit 1 ;s AV_S1D = All valid and Setl Qirty.
O AV-S1D: 11 ¢ AV-SOD: 10 Q "Dirty" means to be accessed just _before.
Miss or Hit O > It does not change the status on hit.
Hit 1 Hit 0 ; AV_SO0D = All valid and SetO is dirty.

Figure 5-2. CS-Bit Status Diagram

ELECTRONICS 5-3

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

CACHE DISABLE OPERATION

The S3C3410X cache can support the programmable entire-cache-enable/disable mode. Users can enable the
cache by setting the value of CE bit in SYSCFG to "1", and disable it by clearing the value of SYSCFG to "0".
When the cache disable mode is selected, the instruction and data should always be fetched from the external
memory. The S3C3410X can also support the option for cache size of 0KB, 2KB, and 4KB by the Cache Mode
bits(SYSCFG[16:15]]). When the reset, the default status is 4KB cache. If users specify the less cache size than
4KB, the remained memory can be used as an internal SRAM.

That is to say, if you want to use the internal memory as an internal SRAM, the memory allocation table of the
internal SRAM is as follows:

Item Address Comment
Internal SRAM (SFR start address) — (SFR start address + 0x7ff) 2KB
(SFR start address + 0x800) — (SFR start address + 0xfff) 2KB

The S3C3410X can support the WT(Write Through) to maintain the coherency between the cache and main
memory. When ever the CPU updates the cache memory, the cache controller should issue the updating cycle of
main memory content through the memory controller, automatically. Users should also be cautious about the
data coherency when they specify the cacheable region. For example, if the DMA has the possibility to update
the memory content, the memory region should be non-cacheable.

WRITE BUFFER OPERATION

The S3C3410X has four Write Buffer Register to enhance the performance. The role of write buffer is as follows:
When the CPU try to write its data into the external memory, the memory controller can not execute the memory
cycle if some other master, for example, DMA is using the external bus. In this case, the performance will be
degraded if the CPU and memory controller should wait the bus free. To avoid this situation, the S3C3410X has
internal four-depth Write Buffer Register. In this case, the CPU should write its data into the Write Buffer Register
and execute its next operation. If the bus is free, the Write Buffer Register requests the bus cycle to memory
controller. The Write Buffer also need the TAG address of A[26:0] because the Write Buffer should return the
accessed data to the CPU when the CPU requests the Read operation again before the data update into the main
memory.

5-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

UNIFIED CACHE & INTERNAL SRAM

26 01 0 31
Address MAS Write Buffer Data
[31:0] Write Buffer Data
Data to be written into external memory
[1:0] MAS
00 = 8-bit data mode
01 = 16-bit data mode
10 = 32-bit data mode
11 = Not used
[24:0] Address
Indicates the address of write buffer
Figure 5-3. Write Buffer Configuration
ELECTRONICS 5-5

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

CACHE FLUSHING

The cache content as well as Tag at the specific line can be accessed by S/W. In S3C3410X, the memory array
of set 0 is mapped to the address of 0x10000000 — 0x100007ff, which is 2KB size. Similarly, the memory array of
set 1 is mapped to the address of 0x10800000 — 0x108007ff, which is also 2KB size. The Tag array is also
mapped to the address of 0x11000000 — 0x110001ff, which is 512B size. As we explained in previous chapter,
the width of Tag data is total 36-bit, which consists of 2bit CS, 17/16-bit Tag data for 2KB/4KB for set 0, and
17/16-bit Tag data for 2KB/4KB for set 1. In detail, the 16-bit Tag data(Tag[15:0]) of set 1 and 16-bit Tag
data(Tag[15:0]) of set 1 is mapped to the address of 0x11000000. The CS field of the Tag is mapped to the
address of 0x11000004. In this case, CS[1] and CSJ[0] are corresponding to the data bus of D[31] and D[30]. If
user specify the 2KB cache size, lower 16-bit Tag data of set 1 and lower 16-bit Tag data of set 0 is mapped to
the address of 0x11000000. The remained CS field, upper Tag bit of set 1 and upper Tag bit of set 0 are mapped
to the address of 0x11000004. In this case, CS[1], CS[0], Tag[16] for set 1, and Tag[16] for set O are
corresponding to the data bus of D[31], D[30], D[29], and D[28]. The next line will be corresponding to the
address of 0x11000008, 0x11000010, and so on. The memory allocation table of the Tag RAM and Set 0, 1
cache memory is as follows:

Item Address Comment
Set 0 0x10000000 — 0x100007ff 2KB
Set 1 0x10800000 — 0x108007ff 2KB
Tag RAM 0x11000000 — 0x110001ff 512B

NOTE: Cache flushing must be executed only in the cache disable mode.

NON-CACHE AREA CONTROL BIT

The S3C3410X can support the 128MB addressing range and it means that the internal address A[26:0] are only
effective even if the CPU can generate the A[31:0] of the internal address. If the S/W generate the address
beyond this range, the cache controller and the memory controller will treat this address as special case. The
reality is as follow. The cache controller accepts the address of A[27:0] and determine whether this access should
be cached, or not when A[27]=0. In other word, the access should be cached if the A[26:0] is corresponding to the
cacheable region and should not be cached if the A[26:0] is corresponding to the non-cacheable region. If A[27] =
1, the cache controller treat this access as non-cacheable access even if the A[26:0] is corresponding to
cacheable or non-cacheable region. When A[27]=1 and the A[26:0] is corresponding to the cacheable region, the
cache controller should treat this access as non-cacheable access and the memory controller should execute the
memory access by using A[26:0] address. The cache controller discard the address of A[31:28] and the memory
controller also discard the address of A[31:27].

5-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

UNIFIED CACHE & INTERNAL SRAM

0x0000000

0x0010000

0x0020000

OX7FFFFFF

0x8000000

0x8010000

0x8020000

OXFFFFFFF

Cacheable

Cacheable Area
(64M Halfword)

Non-Cacheable

Non-Cacheable Area
(64M Halfword)

NOTE: Non-cacheable area is the mirroring space of cacheable.

Figure 5-4. Non-cacheable Area

ELECTRONICS

5-7

UNIFIED CACHE & INTERNAL SRAM S3C3410X RISC MICROPROCESSOR

NOTES

5-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

DMA

DMA (DIRECT MEMORY ACCESS)

OVERVIEW

The S3C3410X has two general Direct Memory Access channels (DMAO, DMA1) which performs the data
transfer between the following source/destination and destination/source without CPU intervention:

Memory(or Internal SRAM) and Memory (or Internal SRAM)
UART and Memory (or Internal SRAM)
SI0 and Memory (or Internal SRAM)
SFR and Memory (or Internal SRAM)
SFR and SFR (Including UART, SIO, Ext. I/O, Timerl/3)

The on-chip DMA controller can be started by software, by two external DMA requests(nDREQO, nDREQ1) or by
SIO 0, SIO1, UART, Timerl, and Timer3. The DMA operation can also be stopped and restarted by software.

The CPU can recognize the completion of DMA operation by software polling or interrupt request from DMA.

The source and/or destination address can be increased or decreased during DMA operation and the DMA can
support the transfer size by byte, half-word, and word unit.

UART
SI00
SIO1

Timerl/3

nDREQ1

NDREQ0 ——p

Mode Select

P

P

P

P

v

DMAO
nDREQ
nDACK

A

—» nDACKO

DMA1
nDREQ
nDACK

sng WajisAs

A

A

—» NDACK1
~_

Figure 6-1. DMAO/DMAL1 Unit Block Diagram

ELECTRONICS

6-1

DMA S3C3410X RISC MICROPROCESSOR

DMA OPERATION

The DMA operation can be summarized as follows:

DMA transfer
Bus arbitration control

Starting/Stopping DMA transfer

DMA Transfer

The DMA(Direct Memory Access) can transfer the data directly between source and destination. The source or
the destination should be memory including internal SRAM, UART, SIO, or other SFR. The external devices can
request the DMA service by activating the nDREQO/1 signal.

The operation of DMA channel should be programmed by configuring the DMA control registers, which contain
the control information such as the direction of the source address, or destination address, and transfer size. The
UART, SIO, Timerl/3, external devices and software can request DMA service. For example, the UART, SIO,
and Timerl1/3 can request the DMA service when they are ready to need the DMA operation. For example, the
UART can request the DMA service to DMA controller when the UART finish receiving the data from port and
ready to send the received data to external memory by using DMA. Differently from internal devices, the external
device can activate the nDREQO/1 signal to request the DMA service to S3C3410X. To make the DMA ready for
its operation, users should specify the necessary control information such as source/destination address, transfer
size, and transfer count. After the completion of these configuration, user can start the DMA operation by
software.

Bus Arbitration Control

Because the DMA operation need the occupation of bus usage, the arbitration should be essential. As well as
DMA, the memory controller inside chip need the bus usage. If there happens simultaneous bus request among
master devices, there should be arbitration process in S3C3410X. The S3C3410X can do the arbitration process
base on fixed priority. The priority of these bus master devices is as follows:

Bus Master Type Priority
Memory Controller(DRAM/SDRAM refresh) 1
DMAO 2
DMA1 3
Write Buffer 4
CPU Core 5

6-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR DMA

Starting/Stopping DMA Transfer

The DMA can start its operation of transferring the data when the DMA controller receives the request from the
NDREQ signal through external pin, request from UART, request from SIO, or request from Timerl1/3. In case of
data transfer between memories, the DMA can also start its operation when the user write the start bit(Run bit) in
DMA control register. When the entire data transfer specified in DMACNT has been finished, the DMA goes into
the idle mode. If users want to perform another DMA operation, the configuration of DMA operation should be
programmed again. The users can stop the DMA operation before its complete termination. By clearing the start
bit(Run bit), the users can stop the DMA operation even if the specified DMA operation is not finished. When
users stop the DMA operation, there will be interrupt generation which depends on the SI(Stop Interrupt) bit in
DMA control register. If Sl bit is 0 in DMA control register, there will be DMA operation stop without the interrupt
generation. If users want to resume the DMA operation, users should re-run the DMA operation by setting the
start bit(RE bit) in DMA control register. To guarantee the complete DMA re-run, users should not change the
DMA configuration before the re-start.

DATA TRANSFER MODE

Single Step Mode

The single step mode is usually used for test or debugging because the bus mastership can be handed over to
other bus master between Read and Write. For the initiation of DMA operation, we need the activation of nDREQ
for each Read and Write cycle and there should be separate activation of nDACK for each Read and Write cycle.
In other word, we need two times DMA request and two times DMA acknowledge for single DMA operation. For
this reason, this kind of DMA operation is too slow and this is only for debugging purpose. During the inactive
period of NXDACK, i.e., between Read and Write cycle, the bus controller re-evaluates the bus priority to
determine the new bus mastership.

When the DMA request signal goes low, the bus controller can indicate the bus allocation for the DMA operation
by lowering the DMA Acknowledge signal if there is not higher priority bus request except this DMA request.
During the first low level period of the DMA Acknowledge signal, there will be a DMA read cycle. After the DMA
read cycle, there will be a rising of the DMA Acknowledge signal to indicate the end of the DMA read cycle.
Simultaneously, the next DMA write cycle will happen if the DMA request signal is still low at the rising edge of
DMA acknowledge. But, if the DMA request signal is already high at the rising edge of DMA acknowledge, the
next DMA write cycle will be delayed to the new coming activation of DMA Request signal. The Single Step Mode
of DMA operation can be initiated by the request from UART or SIO or Timerl/3 as well as nDREQ.

NDREQ Y}

\J
nDACK ‘ \ /
[)
—

RD/WR Cycle

L

]

_/

T

Figure 6-2. External DMA requests (Single Mode)

ELECTRONICS 6-3

DMA S3C3410X RISC MICROPROCESSOR

Block Transfer Mode

The block transfer mode means that the DMA operation will be continued up to the end of transfer count. Usually,
the DMA needs the request signal during the unit-by-unit transfer. The block transfer mode need just one time
request for whole service of DMA operation, which is shown in Figure 6-3. This transfer mode can monopoly the
bus usage if users set the CM(Continuous Mode) bit in DMA control register and it can be harmful for other bus
mastership. Therefore, users should be aware of the worst case situation when they need this mode for faster
data transfer. If users take the block transfer mode without setting the CM bit, there will be no bus monopoly. It
means that the higher bus master can take the bus usage during the block transfer.

NDREQ

nDACK _/ _F
L

RD/WR Cycle { } { }

Figure 6-3. External DMA requests (Block Mode)

6-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR DMA

Demand Mode

The demand mode means there will be continuous DMA transfer cycles as long as the activation of DMA
Request signal as shown in figure 6-4. This mode doesn't permit the bus hand-over even though the higher
priority bus master request the bus mastership to bus controller during DMA operations. In other word, no other
bus master can have the bus mastership during the demand mode. Due to the monopoly of bus mastership in
demand mode, we should be aware of the fact that the duration of the demand mode must not exceed the
specified maximum time such as the DRAM refresh period.

nDREQ \ \ /
nDACK ; / \ [
RD/WR Cycle D D D D—

Figure 6-4. External DMA requests (Demand Mode)

ELECTRONICS 6-5

DMA

S3C3410X RISC MICROPROCESSOR

DMA SPECIAL FUNCTION REGISTER

DMA CONTROL REGISTERS

Register

Offset
Address

R/W Description

Reset
Value

DMACONO

0x300c

R/W | DMA 0 control register

0x0

DMACON1

0x400c

R/W

DMA 1 control register

0x0

DMACONx

Bit

Description

Initial State

RE

[0]

Run Enable: This bit determines the enable or disable of DMA
operation. To start the DMA operation, this bit should be set. To
stop the DMA operation, users can reset this bit.

0 = Disable 1 = Enable

0

BS

[1]

BUSY Status: When the DMA start its operation, this read-only
status bit is set to "1" automatically. When the DMA is in an idle
state, this bit is set to "0". This bit is "read-only".

MODE

[3:2]

Mode Select: These bits determine the source of DMA initiation.
The initiation of DMA operation can be done by S/W, external
NDREQ, UART, or SIO/Timer.
DMACONO

00 = Software

01 = External nDREQO

10 = UART 10 = UART

11 = SIO, Timer 11 = SIO, Timer

DMACON1
00 = Software
01 = External nDREQ1

00

DD

[4]

Destination Address Direction: This bit determines whether the
destination address will be decreased or increased during a DMA
operation

0 = Increase address 1 = Decrease address

SD

[5]

Source Address Direction: This bit determines whether the
source address will be decreased or increased during a DMA
operation

0 = Increase address 1 = Decrease address

DF

[6]

Destination Address Fix: This bit determines whether the
destination address should be changed during a DMA operation,
or not. If users take DF option, the destination address will be
fixed.

0 = Increase/Decrease destination address

1 = Do not change destination address (fix)

6-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

DMA

DMACONx

Bit

Description

Initial State

SF

[7]

Source Address Fix: This bit determines whether the source
address should be changed during a DMA operation, or not. If
users take SF option, the source address will be fixed.

0 = Increase/Decrease source address

1 = Do not change source address (fix)

0

Sl

[8]

Stop Interrupt Enable: The DMA operation can be started by
setting RE bit to "1" and can also be stopped by resetting RE bit
to "0". When this Sl bit is set to "1", and when the DMA
operation is forced to stop, there will be "stop interrupt"
generation. If this bit is "0", the "stop interrupt” will not be
generated. The DMA done interrupt, which is generated after the
DMA counter is expired, can not be masked by this bit.

0 = Do not generate the stop interrupt when DMA stops

1 = Generate the stop interrupt when DMA stops

BT (note)

[9]

4 Burst Enable: When the MODE bit is set to "1" , the DMA
operation will be done by the burst transfer mode. The size of
burst will depend on TW field in this register. If TW is word unit,
there will be four times word transfer.

0 = Normal transfer 1 = 4 Burst transfer

Reserved

[10]

Reserved

SB

[11]

Single/Block Mode: This bit determines the number of external
DMA request (nDREQ) that are required for the DMA operation.
0 = One NnDREQ initiates a single DMA operation
1 = One nDREQ initiates a block DMA operation

T™W

[13:12]

Transfer Width: This bit determines the transfer data width:
byte(8-bit), half-word(16-bit) and word(32-bit).

If the transfer width is a byte, source/destination address will be
increased/decreased by one(Byte address unit), If it is a half-
word, the address will be increased/decreased by two(Half-word
address unit). If it is a word, the address will be
increased/decreased by four(Word address unit). Note that the
"transfer width" is not the physical size of data bus. The physical
size of data bus is determined by SMR(System Manager
Register) configuration.

00 = Byte(8-bit) 01 = Half-word(16-bit)

10 = Word(32-bit) 11 = Not used

00

ELECTRONICS

6-7

S3C3410X RISC MICROPROCESSOR DMA

DMACONXx Bit Description Initial State

CM [14] Continuous Mode: This bit determines whether the DMA 0

operation should monopoly the system bus, or not until the

transfer count value reaches to zero.

0 = Normal operation

1 = Monopoly the system bus until the completion of DMA
operation.

DM [15] Demand Mode: To speed up the external DMA operation, set 0
this bit. If this bit is set, the DMA operation will be continuously
proceeded while nDREQ is activated. In this case, other higher
bus master can not take the bus usage while the operation of this
Demand mode.

0 = Normal external DMA mode

1 = Demand mode

NOTE: If a DMA is set as four data burst and continuous mode together, four burst mode is ignored, and the continuous
mode only is operated. In order to use four burst mode in DMA operation, please be sure that continuous mode is
disabled.

ELECTRONICS 6-8

S3C3410X RISC MICROPROCESSOR DMA

DMA SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 27-bit source/destination address of a DMA channel. Depending on the setting of the
DMA control register (DMACONKX), these addresses will be increased/decreased or will be fixed without changing.

Register Offset R/W Description Reset
Address Value
DMASRCO 0x3000 R/W | DMA 0 source address register 0x0
DMADSTO 0x3004 R/W | DMA 0 destination address register 0x0
DMASRC1 0x4000 R/W | DMA 1 source address register 0x0
DMADST1 0x4004 R/W | DMA 1 destination address register 0x0
DMASRCO Bit Description Initial State
[26:0] Initial source address for DMAO 0x0
DMASRC1 Bit Description Initial State
[26:0] Initial source address for DMA1 0x0
DMADSTO Bit Description Initial State
[26:0] Initial destination address for DMAO 0x0
DMADST1 Bit Description Initial State
[26:0] Initial destination address for DMA1 0x0

DMA TRANSFER COUNT REGISTER

These registers contain the 26-bit count value which is the number of DMA transfer. This value is decreased by 1
when one DMA operation is completed regardless of the width of the data which should be transferred. If the
DMA operates 4 burst mode, the DMACNT is decreased by 1 when 4 data transfer is completed

Register Offset R/W Description Reset
Address Value
DMACNTO 0x3008 R/W | DMA transfer count register for DMAO 0x0
DMACNT1 0x4008 R/W | DMA transfer count register for DMA1 0x0
DMACNTO,1 Bit Description Initial State
[26:0] Number of DMA transfer 0x0

ELECTRONICS 6-9

DMA S3C3410X RISC MICROPROCESSOR

NOTES

6-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR /O PORTS

/O PORTS

OVERVIEW

S3C3410X has 74 multiplexed input/output port pins. There are ten port group, which are eight 8-bit 1/0 port
group, one 2-bit output port group, and one 8-bit input port group:

Eight 8-bit input/output ports (Port 0, 1, 2, 3, 4, 5, 6 and 7)

One 2-bit output ports (Port 9)

One 8-bit input ports (AINO — AIN7 / P8.0 — P8.7, Port 8)

Each port can be easily configured by software to meet the various system configuration and design requirement.
Users should define the functionality of port before the start of main program. If users does not want to use the
multiplexed pin functionality pin, these pin can be configured as simple 1/0O port. For example, the port 8 can be
used as analog input for ADC module or as general input port pins.

ELECTRONICS 7-1

/0 PORTS

S3C3410X RISC MICROPROCESSOR

Table 7-1. S3C3410X Port Configuration Overview

Port

Configuration Options

Recommend

General I/0O port with pull-up resistor: P0.0, P0.1, P0.2, P0.3 and P0.4 can
alternately serve as external capture input or clock input for TimerO0, 1, 2, 3
and 4 respectively. P0.5 and P0.6 can alternately serve as PWM or Toggle
Out for a Timer3 and 4 respectively. P0.7 can be used as external interrupt
input EINTO or external port write strobe signal(NnWREXP).

Bit Programmable

General I/0O port: P1.4 — P1.7 can alternately serve as external interrupt
inputs of EINT4 — EINT7, or can be configured as address line of A20 — A23
for external interface. P1.0 — P1.3 can alternately as address line of A16 —
A19 for external interface.

Bit Programmable

General I/O port: P2.0 — P2.6 can be used alternately as chip select signal
lines for the external interface. P2.7 can be used as external interrupt input
EINT1 or chip select strobes for the extra device(nECSO0).

Bit Programmable

General I/0O port: P3.0 — P3.6 can be used alternately as bus control signal
lines for the external interface: nWBEQ:nBEOQ:DQMO, nWBE1:nBE1:DQM1,
NCASO:nSRAS, nCAS1:nSCAS, SCKE, SCLK. P3.7 can be used alternately
as external interrupt input EINT2 or chip select strobes for the extra
device(nECS1).

Bit Programmable

General I/0O port: P4.0 — P4.7 can be configured as data lines, D8 — D15 for
the external interface or address line, A16 — A23.

Bit Programmable

General I/0O port: P5.0 and P5.2 can be used alternately as external request
input for DMA module: nDREQO, nDREQL1. P5.1 and P5.3 can be used
alternately as external acknowledge output for DMA module: nDACKO,
NnDACK1. P5.4 and P5.5 can be used alternately as serial data and serial
clock for 11IC module: IICSDA and IICSCK. P5.6 and P5.7 can be used
alternately as input and output for UART module: URXD and UTXD.

Bit Programmable

General I/0O port: P6.0 and P6.4 can be used alternately as serial data input
pins for SIO module: SIORXDO0 and SIORXD1. P6.2 and P6.6 can be used
alternately as serial data output pins for SIO module: SIOTXDO0 and
SIOTXD1. P6.1 and P6.5 can be used alternately as external clock
input/output for SIO module: SIOCLKO and SIOCLK1. P6.7 can be used as
external interrupt input EINT3.

Bit Programmable

General I/0O port: can be used as a real time output by 8-bit or 4-bit unit. If
TESTI[1:0] bit is set to "10" or "11", P0.0 — P0.4 can be used as JTAG test
port: NnTCK (P7.0), TMS (P7.1), TDI (P7.2), nTRST (P7.3), TDO (P7.4).

Bit Programmable

Analog input channels AINO — AIN7, alternately general input port or external
interrupt input EINT8(P8.4), EINT9(P8.5), EINT10(P8.6) and EINT11(P8.7).

Bit Programmable

General Output Port: P9.0 and P9.1 can be used alternately as LCD control
signal, LP and DCLK

Bit Programmable

7-2

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/0 PORTS

I/O PORT CONTROL REGISTER

PORT DATA REGISTER
All ten port data registers have the identical structure as shown in below:

Table 7-2. Port Data Register Summary

Register Name Mnemonic Offset Reset Value R/W
Port 0 Data Register PDATO 0xb000 0x0 R/W
Port 1 Data Register PDAT1 0xb001 0x0 R/W
Port 2 Data Register PDAT2 0xb002 0x0 R/W
Port 3 Data Register PDAT3 0xb003 0x0 R/W
Port 4 Data Register PDAT4 0xb004 0x0 R/W
Port 5 Data Register PDATS 0xb005 0x0 R/W
Port 6 Data Register PDAT6 0xb006 0x0 R/W
Port 7 Data Register PDAT7 0xb007 0x0 R/W
Port 8 Data Register PDATS 0xb008 0x0 R
Port 9 Data Register PDAT9 0xb009 0x0 R/W
Port 7 Buffer Register P7BR 0xb00b 0x0 R/W

PDATN Bit | Description Initial State

I/O Port n Data Register(n=0-9,n=0-7,9: RW,n=8:R):

configured as output port, the port data in Port Data Register will be given as output on the pin.

When the port is configured as input port, the port data will reflect the signal on the pin. When the port is

Pn.0 [0] Port n.0 port data bit (LSB) 0
Pn.1 [1] Port n.1 port data bit 0
Pn.2 [2] Port n.2 port data bit 0
Pn.3 [3] Port n.3 port data bit 0
Pn.4 4] Port n.4 port data bit 0
Pn.5 [5] Port n.5 port data bit 0
Pn.6 [6] Port n.6 port data bit 0
Pn.7 [71 Port n.7 port data bit (MSB) 0

ELECTRONICS

7-3

/0 PORTS S3C3410X RISC MICROPROCESSOR

Table 7-3. Port Control Register Summary

Register Name Mnemonic Offset Reset Value R/W
External Interrupt Pending Register EINTPND 0xb031 0x0 R/W
External Interrupt Control Register EINTCON 0xb032 0x0 R/W
External Interrupt Mode Register EINTMOD 0xb034 0x0 R/W
Port 0 Control Register PCONO 0xb010 0x0 R/W
Port 1 Control Register PCON1 0xb012 0x0 R/W
Port 2 Control Register PCON2 0xb014 0x0 R/W
Port 3 Control Register PCON3 0xb016 0x0 R/W
Port 4 Control Register PCON4 0xb018 0x0 R/W
Port 5 Control Register PCON5 0xb01c 0x0 R/W
Port 6 Control Register PCONG6 0xb020 0x0 R/W
Port 7 Control Register PCON7 0xb024 0x0 R/W
Port 8 Control Register PCONS8 0xb026 0x0 R/W
Port 9 Control Register PCON9 0xb027 0x0 R/W
Port 0 Pull-up control Register PURO 0xb028 0x80 R/W
Port 1 Pull-down control Register PDR1 0xb029 Oxff R/W
Port 2 Pull-up control Register PUR2 0xb02a Oxff R/W
Port 3 Pull-up control Register PUR3 0xb02b Oxff R/W
Port 4 Pull-down control Register PDR4 0xb02c Oxff R/W
Port 5 Pull-up control Register PUR5 0xb02d 0x0 R/W
Port 6 Pull-up control Register PURG6 0xb02e 0x0 R/W
Port 7 Pull-up control Register PUR7 0xb02f 0x0 R/W
Port 8 Pull-up control Register PURS8 0xb03c 0x0 R/W

7-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/0 PORTS

PORT 0 CONTROL REGISTERS (PCONO, PURO)

Register

Offset
Address

R/W Description

Reset
Value

PCONO

0xb010

R/W | Configuration the pins of Port O

0x0

PURO

0xb028

R/W | pull-up disable resister for port 0

0x80

PCONO

Bit

Description

Initial State

PO0.0

[0]

0 = Schmitt input mode, capture (TCAPO), or clock (TCLKO)
input for Timer 0. If the timer mode is configured as capture
mode or external timer clock mode, this pin will be used as
TCAPO or TCLKO. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.

1 = C-MOS push-pull output

0

PO.1

[1]

0 = Schmitt input mode, capture (TCAP1), or clock (TCLK1)
input for Timer 1. If the timer mode is configured as Capture
mode or external timer clock mode, this pin will be used as
TCAP1 or TCLKL1. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.

1 = C-MOS push-pull output

P0.2

(2]

0 = Schmitt input mode, capture (TCAP2), or clock (TCLK2)
input for Timer 2. If the timer mode is configured as Capture
mode or external timer clock mode, this pin will be used as
TCAP2 or TCLK2. If the timer is disabled or use the internal
clock as timer input clock, this pin will be configured as input
port.

1 = C-MOS push-pull output

PO0.3

[3]

0 = Schmitt input mode or clock (TCLK3) input for Timer 3. If the
timer mode is configured as external timer clock mode, this pin
will be used as TCLK3. If the timer is disabled or use the internal

clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

P0.4

[4]

0 = Schmitt input mode or clock (TCLK4) input for Timer 4. If the
timer mode is configured as external timer clock mode, this pin
will be used as TCLKA4. If the timer is disabled or use the internal

clock as timer input clock, this pin will be configured as input
port.
1 = C-MOS push-pull output

ELECTRONICS

7-5

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PCONO

Bit

Description

Initial State

PO.5

[6:5]

00 = Schmitt input mode or capture (TCAP3) input for Timer 3. If
the timer mode is configured as Capture mode, this pin will be
used as TCAP3.

01 = C-MOS push-pull output

10 = C-MOS push-pull PWMO/TOUT3 output for Timer 3

00

PO.6

[8:7]

00 = Schmitt input mode or capture (TCAP4) input for Timer 4.
If the timer mode is configured as Capture mode, this pin will be
used as TCAPA4.

01 = C-MOS push-pull output

10 = C-MOS push-pull PWM1/TOUT4 output for Timer 4

00

PO.7

[10:9]

00 = Schmitt input mode or external interrupt input (EINTO). If
the EINTO is enabled, this pin will be used as external interrupt
request pin. Otherwise, this pin will be used as input port pin.
01 = C-MOS push-pull output

10 = C-MOS push-pull n\WREXP output

00

PURO

Bit

Description

Initial State

PO

[7:0]

Setting the corresponding pull-up resistor of Port 0
0 = Disable pull-up resister 1 = Enable pull-up resister

0x80

7-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

VDD

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Enable © {>o I

Select

VDD

Port Data

Alternative Signal

p——H& |n/Out

Output Enable
Normal Input ::+ Q Vss
Alternative Input

Figure 7-1. Pin Circuit Type 0 (P0.0 — P0.6)

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Enable © {>c |
Select

Port Data Data

% In/Out
4_
Output Enable O—l>i>o_{

M
U
X

Alternative Signal

Normal Input <«

External II Noise
Interrupt Input Filter

Figure 7-2. Pin Circuit Type 0-1 (P0.7, P2.7, P3.7, P6.7)

ELECTRONICS 7-7

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PORT 1 CONTROL REGISTERS (PCON1, PDR1)

Register Offset R/W Description Reset
Address Value
PCON1 0xb012 R/W | Configuration the pins of Port 1 0x0
PDR1 0xb029 R/W | pull-down disable resister for port 1 Oxff
PCON1 Bit Description Initial State
P1.0 [0] Setting the corresponding bit of Port 1 0
0 = Schmitt input mode 1 = C-MOS push-pull output mode
P1.1 [1] Setting the corresponding bit of Port 1 0
0 = Schmitt input mode 1 = C-MOS push-pull output mode
P1.2 [2] Setting the corresponding bit of Port 1 0
0 = Schmitt input mode 1 = C-MOS push-pull output mode
P1.3 [3] Setting the corresponding bit of Port 1 0
0 = Schmitt input mode 1 = C-MOS push-pull output mode
P1.4 [4] Setting the corresponding bit of Port 1 0
0 = Input or External interrupt input(EINT4). If the EINT4 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode
P1.5 [5] Setting the corresponding bit of Port 1 0
0 = Input or External interrupt input(EINT5). If the EINT5 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode
P1.6 [6] Setting the corresponding bit of Port 1 0
0 = Input or External interrupt input(EINT®6). If the EINT6 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode
P1.7 [7] Setting the corresponding bit of Port 1 0
0 = Input or External interrupt input(EINT7). If the EINT7 is
enabled, this pin will be used as external interrupt request pin.
Otherwise, this pin will be used as input port pin.
1 = C-MOS push-pull output mode
MP1 [15:8] Setting the Port 1 mode 0x00
0 = Normal input/output mode
(P1.0 — P1.7 sets the its corresponding bit of Port 1)
1 = Address bus line mode (Don't care of value P1.0 — P1.7). If
this bitis 1, P1.0—P1.7 will be used as address of A16 — A23.
PDR1 Bit Description Initial State
P1 [7:0] Setting the corresponding pull-down resistor of Port 1 Oxff
0 = Disable pull-down resister 1 = Enable pull-down resister
7-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/0 PORTS

Port Data

Alternative Signal

Output Enable

Normal Input

Alternative Input

Pull-down Enable

Select

VDD

p——& |n/Out

Vss

Pull-down Resistor
(Typical Value: 50 KW)

Vss

Figure 7-3. Pin Circuit Type 1-1 (Port1.0 — Port1.3)

Port Data

Alternative Signal

Output Enable

Select

Data

M
U
X

Normal Input ©

External
Interrupt Input

Noise
Filter

VDD
In/Out
4_
Vss

Pull-down Enable ©

>

Pull-down Resistor
(Typical Value: 50 KW)

Vss

Figure 7-4. Pin Circuit Type 1-2 (Portl.4 — Port1.7)

ELECTRONICS

7-9

/0 PORTS S3C3410X RISC MICROPROCESSOR

PORT 2 CONTROL REGISTERS (PCON2, PUR2)

Register Offset R/W Description Reset
Address Value
PCON2 0xb014 R/W | Configuration the pins of Port 2 0x0
PUR2 0xb02a R/W | pull-up disable resister for port 2 Oxff
PCON2 Bit Description Initial State
P2.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS1) output for the external interface
P2.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS2) output for the external interface
pP2.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS3) output for the external interface
P2.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS4) output for the external interface
P2.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS5) output for the external interface
P2.5 [11:10] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00

10 = Chip select signal(nCS6) or Row address strobe
signal(nRASO) for DRAM or Chip select signal(nSCSO0) for
SDRAM. It depends on the configuration on bank 6. If this bank
is configured as ROM/SRAM, EDO DRAM, or SDRAM, this
signal will behavior as nCS6, nRASO, or nSCSO0.

P2.6 [13:12] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Chip select signal(nCS7) or Row address strobe
signal(nRAS1) for DRAM or Chip select signal(nSCS1) for
SDRAM. It depends on the configuration on bank 7. If this bank
is configured as ROM/SRAM, EDO DRAM, or SDRAM, this
signal will behavior as nCS7, nRASO, or nSCSO0.

pP2.7 [15:14] | OO0 = Input or external interrupt input(EINT1) 00
01 = C-MOS push-pull output mode

10 = Extra Chip select signal(nECSO0) output for the external
interface

PUR2 Bit Description Initial State

P2 [7:0] Setting the corresponding pull-up resistor of Port 2 Oxff
0 = Disable pull-up resister 1 = Enable pull-up resister

7-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

VDD

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Enable © {>o I
Select

VDD

Port Data

Alternative Signal

p——H& |n/Out

Output Enable

Normal Input

A
<
)
»

Figure 7-5. Pin Circuit Type 2-1 (P2.0 — P2.6)

ELECTRONICS 7-11

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PORT 3 CONTROL REGISTERS (PCONS3, PUR3)

Register

Offset
Address

R/W Description

Reset
Value

PCON3

0xb016

R/W | Configuration the pins of port 3

0x0

PUR3

0xb02b

R/W | pull-up disable resister for port 3

Oxff

PCON3

Bit

Description

Initial State

P3.0

[1:0]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write byte enable(nWBEQO) output for external interface or
Data Mask(DQMO) output for SDRAM or Byte enable(nBEO)
output for x16 SRAM. If the memory bank is configured as
SDRAM bank, this port will behavior as Data Mask(DQMO). If the
memory bank is configured as x16 SRAM bank, this port will
behavior as Byte enable(nBEO). Otherwise, this port will
behavior as nWBEO.

00

P3.1

[3:2]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write byte enable(nWBE1) output for external interface or
Data Mask(DQM1) output for SDRAM or Byte enable(nBEO)
output for x16 SRAM. If the memory bank is configured as
SDRAM bank, this port will behavior as Data Mask(DQM1). If the
memory bank is configured as x16 SRAM bank, this port will
behavior as Byte enable(nBEO). Otherwise, this port will
behavior as NnWBE1.

00

P3.2

[5:4]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Column address strobe(nCASO) output for DRAM or Row
address strobe(nSRAS) output for SDRAM. If the memory bank
is configured as EDO DRAM. This port will behavior as nCASO.
If the memory bank is configured as SDRAM bank, this port will
behavior as nSRAS.

00

P3.3

[7:6]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Column address strobe(nCAS1) output for DRAM or Row
address strobe(nSCAS) output for SDRAM. This port will
behavior as nCASL1. If the memory bank is configured as
SDRAM bank, this port will behavior as nNSRAS.

00

P3.4

[9:8]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Write enable(nWE) output for 16-bit SRAM or SDRAM

00

P3.5

[11:10]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Clock Enable(SCKE) output for SDRAM

00

P3.6

[13:12]

00 = C-MOS input mode 01 = C-MOS push-pull output mode
10 = Clock output for SDRAM

00

P3.7

[15:14]

00 = C-MOS input mode or external interrupt(EINT2) mode
01 = C-MOS push-pull output mode
10 = Extra chip select(nECS1) output

00

7-12

ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

PUR3

Bit Description Initial State

P3

[7:0] Setting the corresponding pull-up resistor of Port 3 Oxff
0 = Disable pull-up resister
1 = Enable pull-up resister

VDD

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Enable © >O I

Select

VDD

Port Data

Alternative Signal

p——H& |n/Out

Output Enable

Normal Input

A
<
)
»

Figure 7-6. Pin Circuit Type 3-1 (P3.0 — P3.6)

ELECTRONICS 7-13

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PORT 4 CONTROL REGISTERS (PCON4, PDR4)

0 = Disable pull-down resister

1 = Enable pull-down resister

Register Offset R/W Description Reset
Address Value
PCON4 0xb018 R/W | Configuration the pins of Port 4 0x0
PDR4 0xb02c R/W | pull-down disable resister for port 4 Oxff
PCON4 Bit Description Initial State

P4.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Al6 11 =D8

P4.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = A17 11 =D9

P4.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 =A18 11 =D10

P4.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = A19 11 =D11

P4.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = A20 11 =D12

P4.5 [11:10] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 =A21 11 =D13

P4.6 [13:12] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = A22 11 =D14

P4.7 [15:14] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = A23 11 =D15

PDR4 Bit Description Initial State
P4 [7:0] Setting the corresponding pull-down resistor of Port 4 Oxff

7-14

ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

Select

VDD

Port Data

Alternative Signal

p———M |n/Out

Output Enable

Normal Input €—— Vss
ujo<
Alternative Input <4——

Pull-down Enable ©

Pull-down Resistor
(Typical Value: 50 KW)

Vss

Figure 7-7. Pin Circuit Type 4 (Port 4)

ELECTRONICS 7-15

/0 PORTS S3C3410X RISC MICROPROCESSOR

PORT 5 CONTROL REGISTERS (PCON5, PURS5)

Register Offset R/W Description Reset
Address Value
PCONS5 0xb0lc R/W | Configuration the pins of Port 5 0x0
PURS 0xb02d R/W | pull-up disable resister for port 5 0x0
PCON5 Bit Description Initial State

P5.0 [1:0] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = External DMA Request input (hnDREQOQ)

P5.1 [3:2] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = External DMA Acknowledge output (hDACKO)

P5.2 [5:4] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = External DMA Request input (nDREQ1)

P5.3 [7:6] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = External DMA Acknowledge output (hDACK1)

P5.4 [9:8] 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Serial data line, SDA for IIC interface (Open-drain type)

P5.5 [11:10] | 00 = C-MOS input mode 01 = C-MOS push-pull output mode 00
10 = Serial clock line, SCK for IIC interface (Open-drain type)

P5.6 [13:12] | 00 = Schmitt input mode or serial input(URXD) for UART. For 00
the case of URXD, the UART should be enabled. Otherwise, this
bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode

P5.7 [16:14] | 000 = Schmitt input mode 000
001 = C-MOS push-pull output mode
011 = N-ch open-drain output mode
101 = C-MOS push-pull serial output(UTXD) for UART
111 = N-ch open-drain serial output(UTXD) for UART

PUR5 Bit Description Initial State

P5 [7:0] Setting the corresponding pull-up resistor of Port 5 0x0
0 = Disable pull-up resister 1 = Enable pull-up resister

7-16 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

Pull-up Enable ©

Select

Port Data

Alternative Signal

Output Enable

VDD

VDD

Pull-up Resistor
(Typical Value: 50 KW)

p———& |n/Out

Normal Input ::+ Q Vss
Alternative Input

Figure 7-8. Pin Circuit Type 5-1 (P5.0 — P5.5)

Pull-up Enable ©

Select
Port Data

Alternative Signal

Open-drain
Output Enable

Normal Input

Alternative Input

VDD

VDD

Pull-up Resistor
(Typical Value: 50 KW)

B |n/Out

Figure 7-9. Pin Circuit Type 5-9 (P5.6, P5.7, P6.0 — P6.6)

ELECTRONICS

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PORT 6 CONTROL REGISTERS (PCONG6, PURG)

Register Offset R/W Description Reset
Address Value
PCONG6 0xb020 R/W | Configuration the pins of Port 6 0x0
PURG6 0xb02e R/W | pull-up disable resister for port 6 0x0
PCONG6 Bit Description Initial State
P6.0 [1:0] 00 = Schmitt input or serial data input(SIORXD0) mode for SIO. 00
For the case of SIORXDO, the SIO 0 should be enabled.
Otherwise, this bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode
P6.1 [4:2] 000 = Schmitt input or serial clock input(SIOCLKO) mode for SIO 000
For the case of SIOCLKO, the SIO 0 should be enabled.
Otherwise, this bit will be input port.
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial clock output (SIOCLKO) for SIO 0
110 = N-ch open-drain serial clock output (SIOCLKO) for SIO 0
P6.2 [7:5] 000 = Schmitt input mode 000
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial data output (SIOTXDO) for SIO 0
110 = N-ch open-drain serial data output (SIOTXDO) for SIO 0
P6.3 [9:8] 00 = Schmitt input mode 01 = C-MOS push-pull output mode 00
10 = Wait signal(nWAIT) input for the external interface
11 = Ready signal(nSIORDY) input or output for SIO0,1
P6.4 [11:10] | OO0 = Schmitt input or serial data input (SIORXD1) mode for SIO. 00
For the case of SIORXD1, the SIO 1 should be enabled.
Otherwise, this bit will be input port.
01 = C-MOS push-pull output mode
10 = N-ch open-drain output mode
P6.5 [14:12] | 000 = Schmitt input or serial clock input (SIOCLK1) mode for 000
SIO For the case of SIOCLK1, the SIO 1 should be enabled.
Otherwise, this bit will be input port.
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial clock output (SIOCLK1) for SIO 1
110 = N-ch open-drain serial clock output(SIOCLK1) for SIO 1
P6.6 [17:15] | 000 = Schmitt input mode 000
001 = C-MOS push-pull output mode
010 = N-ch open-drain output mode
101 = C-MOS push-pull serial data output (SIOTXD1) for SIO 1
110 = N-ch open-drain serial data output (SIOTXD1) for SIO 1
P6.7 [18] 0 = Schmitt input mode or external interrupt (EINT3) input mode. 0

For the case of EINT3, the EINT3 should be enabled. Otherwise,
this bit will be input port.
1 = C-MOS push-pull output mode

7-18

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/0 PORTS

PURG6 Bit Description Initial State
P6 [7:0] Setting the corresponding pull-up resistor of Port 6 0x0
0 = Disable pull-up resister 1 = Enable pull-up resister
PORT 7 CONTROL REGISTERS (PCON7, PUR7)
Register Offset R/W Description Reset
Address Value
PCON7 0xb024 R/W | Configuration the pins of Port 7 0x0
PUR7 0xb02f R/W | pull-up disable resister for port 7 0x0
P7BR 0xb00b R/W | Buffer register for storing real time output data 0x0
PCON7 Bit Description Initial State
P7.0 (RPO) [0] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.1 (RP1) [1] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.2 (RP2) [2] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.3 (RP3) [3] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.4 (RP4) 4] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.5 (RP5) [5] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.6 (RP6) [6] 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
P7.7 (RP7) [71 0 = C-MOS input mode 1 = C-MOS push-pull output mode 0
RTO [9:8] Setting port 7 as real time output 00
00 = General I/O port
01 = Low nibble real time output buffer mode
10 = High nibble real time output buffer mode
11 = Byte real time output buffer mode
LNS [10] Time source of Low nibble real time output 0
0=TO 1=T3
HNS [11] Time source of High nibble real time output 0
0=TO 1=T3
PUR7 Bit Description Initial State
pP7 [7:0] Setting the corresponding pull-up resistor of Port 7 0x0

0 = Disable pull-up resister 1 = Enable pull-up resister

NOTE: Port 7 can be used for the realtime buffer output port. The realtime buffer is that P7BR data are output to RP[7:0],
when timerD or timer3 match interrupt occurs. At this time, P7 must be configured to C-MOS push-pull output

mode.

ELECTRONICS

7-19

/0 PORTS S3C3410X RISC MICROPROCESSOR

VDD

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Enable © >c I

Select VDD

Port Data M Data

U
Alternative Signal X jo—{

% p——H |n/Out
4_
Output Enable O—'>;[>O_{

Vss
Normal Input <

Figure 7-10. Pin Circuit Type 7 (P7.0 — P7.7)

Data Bus (Bit4-7)
A

A
P7BO (High)

4 , 4
P7 (High) 4‘ >0—~4—M RP4-RP7

xc<

el

TO/T3 INT

Data Bus (Bit0-3)
A

4
IM| 4 4
A 4 |V P7 (Low) —|>O+l RPO-RP3
P7BO (Low) —l>+> X
TO/T3 INT —T
PCON7

Figure 7-11. Port 7 (Real Time Output)

7-20 ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

TimerO Interrupt

A F 4 6 7 8 4 5
| | |
| | |

TDATO =i#F TDATO =#6 TDATO=#8 | TDATO = #5

P7BR = #1100b P7BR = #1011b P7BR = #1110b P7BR = #1110b
TDATO=#A | TDATO=#4 | TDATO=#7 | TDATO=#4 | TDATO = #n |

Start Timer0 | P7BR=#1101b | P7BR=#0111b P7BR = #1100b P7BR = #nb !
P7BR = #0000b : : : : : : :

:>< #0000b X #1100b >< #1101b >< #1011b X #0111b X #1110b X #1100b >< #1110b ><:

Figure 7-12. Real Time Output Example

ELECTRONICS 7-21

/0 PORTS S3C3410X RISC MICROPROCESSOR

PORT 8 CONTROL REGISTERS (PCONS8, PURS)

Register Offset R/W Description Reset
Address Value
PCONS8 0xb026 R/W | Configuration the pins of port 8 0x0
PURS8 0xb03c R/W | Pull-up disable resister for port 8 0x0
PCONS8 Bit Description Initial State
P8.0 [0] 0 =C-MOS input mode 1 =AINO 0
P8.1 [1] 0 = C-MOS input mode 1 =AIN1 0
P8.2 [2] 0 = C-MOS input mode 1 = AIN2 0
P8.3 [3] 0 =C-MOS input mode 1= AIN3 0
P8.4 [4] 0 = C-MOS input mode or External interrupt input mode. For the 0

case of EINT8, the EINT8 should be enabled. Otherwise, this bit
will be input port.
1 =AIN4

P8.5 [5] 0 = C-MOS input mode or External interrupt input mode. For the 0
case of EINT9, the EINT9 should be enabled. Otherwise, this bit
will be input port.

1=AIN5

P8.6 [6] 0 = C-MOS input mode or External interrupt input mode. For the 0
case of EINT10, the EINT10 should be enabled. Otherwise, this
bit will be input port.

1=AIN6

P8.7 [7] 0 = C-MOS input mode or External interrupt input mode. For the 0
case of EINT11, the EINT11 should be enabled. Otherwise, this
bit will be input port.

1=AIN7

PURS8 Bit Description Initial State

P8 [7:0] Setting the corresponding pull-up resistor of port 7 0x0
0 = Disable pull-up resister 1 = Enable pull-up resister

7-22 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/0 PORTS

Pull-up Resistor
(Typical Value: 50 KW)

Pull-up Resistor Enable © {>c I

Normal Input Mode

Normal Input © o{ I
T H In

B AVREF

(o}

ADC Input

A

Figure 7-13. Pin Circuit Type 8-1 (P8.0 — P8.3)

VbD
Pull-up Resistor
(Typical Value: 50 KW)
Pull-up Resistor Enable © {>c I
Normal Input Mode ©
Normal Input <«
Noise
Interrupt Input Filter
T L H In

ADC Input

A

B AVREF

Figure 7-14. Pin Circuit Type 8-2 (P8.4 — P8.7)

ELECTRONICS

7-23

/0 PORTS

S3C3410X RISC MICROPROCESSOR

PORT 9 CONTROL REGISTERS (PCON?9)

Register Offset R/W Description Reset
Address Value
PCON9 0xb027 R/W | Configuration the pins of Port 9 0x0
PCONS8 Bit Description Initial State
P9.0 [0] 0 = LCD clock output mode (for LP) 0
1 = C-MOS push-pull output
LP: When you write any data to EXTDATO or EXTDAT1 register,
this signal is generated by the memory controller.
P9.1 [1] 0 = LCD line pulse output mode (for DCLK) 0
1 = C-MOS push-pull output
DCLK: When you write any data to EXTPORT register by DMA,
this signal is generated by the memory controller.

Alternative Signal ©

Port Data ©

VDD

Select

Vss

In/Out

Figure 7-15. Pin Circuit Type 9 (P9.0, P9.1)

7-24

ELECTRONICS

S3C3410X RISC MICROPROCESSOR /0 PORTS

VDD

nCS0
nRD O—| >0—o

nAS

Vss

Figure 7-16. Pin Circuit Type 10 (nCSO, nRD and nAS)

VDD

Pull-Up Resistor
(Typical 100 KW)

RESET

Figure 7-17. Pin Circuit Type 11 (RESET)

TEST1 Mode
TEST2 Selection

Figure 7-18. Pin Circuit Type 12 (TEST1, TEST2)

ELECTRONICS

7-25

/0 PORTS S3C3410X RISC MICROPROCESSOR

EXTERNAL INTERRUPT CONTROL REGISTERS (EINTPND, EINTCON, EINTMOD)

Register Offset R/W Description Reset
Address Value
EINTPND 0xb031 R/W | External interrupt pending register 0x0
EINTCON 0xb032 R/W | External interrupt control register 0x0
EINTMOD 0xb034 R/W | External interrupt mode register 0x0
EINTPND Bit Description Initial State
EINT4 [0] 0 = No interrupt pending 0

0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT4) is pending
EINT5 [1] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT5) is pending
EINT6 [2] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT®6) is pending
EINT7 [3] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = External interrupt(EINT7) is pending

7-26 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

/O PORTS

EINTCON Bit Description Initial State

EINTO [0] Setting external interrupt enable of EINTO 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT1 [1] Setting external interrupt enable of EINT1 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT2 [2] Setting external interrupt enable of EINT2 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT3 [3] Setting external interrupt enable of EINT3 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT4 4] Setting external interrupt enable of EINT4 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT5 [5] Setting external interrupt enable of EINTS5 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT6 [6] Setting external interrupt enable of EINT6 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT7 [71 Setting external interrupt enable of EINT7 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT8 [8] Setting external interrupt enable of EINT8 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT9 [9] Setting external interrupt enable of EINT9 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT10 [10] Setting external interrupt enable of EINT10 0
0 = Disable external interrupt 1 = Enable external interrupt

EINT11 [11] Setting external interrupt enable of EINT11 0
0 = Disable external interrupt 1 = Enable external interrupt

ELECTRONICS 7-27

S3C3410X RISC MICROPROCESSOR

/O PORTS

EINTMOD Bit Description Initial State

EINTO [2:0] 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT1 [5:3] 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT2 [8:6] 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT3 [11:9] 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT4 [14:12] | 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT5 [17:15] | 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT6 [20:18] | 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT7 [23:21] | 000 = Falling edge triggered 001 = Rising edge triggered 000
010 = High level interrupt 011 = Low level interrupt
100 = Both edge triggered

EINT8 [25:24] | 00 = Falling edge triggered 01 = Rising edge triggered 00
10 = High level interrupt 11 = Low level interrupt

EINT9 [27:26] | 00 = Falling edge triggered 01 = Rising edge triggered 00
10 = High level interrupt 11 = Low level interrupt

EINT10 [29:28] | 00 = Falling edge triggered 01 = Rising edge triggered 00
10 = High level interrupt 11 = Low level interrupt

EINT11 [31:30] | 00 = Falling edge triggered 01 = Rising edge triggered 00
10 = High level interrupt 11 = Low level interrupt

NOTES:

1. Because each external interrupt pins has a 200ns noise filter

2. Because EINTPNDx bits are not cleared automatically, you have to clear this bit by writing "0". (Although these bits are
not cleared, the interrupt triggering will operate.)

ELECTRONICS

7-28

S3C3410X RISC MICROPROCESSOR TIMER

TIMER (16-BIT TIMERS & 8-BIT TIMERS)

OVERVIEW

The S3C3410X has three 16-bit timers (Timer0, Timerl, and Timer2) and two 8-bit timers (Timer3 and Timer4).
The 16-bit timer can operate in interval mode, capture mode, match & overflow mode or DMA mode (Timerl
only). The 8-bit timer can operate in interval mode, capture mode, PWM (Pulse Width Modulation) mode or DMA
mode (Timer3 only). The clock source for timer can be an internal or an external clock. Users can enable or
disable the timer by setting control bits in the corresponding timer mode register.

The following list summarizes the main features of the general-purpose timers:

Maximum period of 16-bit Timer is 419.4ms at 40MHz and minimum resolution is 25ns at 40MHz
Maximum period of 8-bit Timer is 26.2ms at 40MHz and minimum resolution is 50ns at 40MHz
Programmable clock source for timer, including an external clock

Input capture capability with programmable trigger edge on input pin

PWM mode operation (Timer3 and Timer4 only)

DMA mode operation (Timerl and Timer3 only)

ELECTRONICS 8-1

TIMER S3C3410X RISC MICROPROCESSOR

Input Select Data Bus

MCLK 8-hit T
Prescaler 16-bit P TOFINT
Up Counter —

TCLK

A
16-bit

Comparator TMINT/

4 ' TCAPINT

TCAP

Capture ;T7 Timer Buffer T
Detect - Register Mode Select

[——

Timer Data
Register

|

Data Bus

Figure 8-1. 16-Bit Timer Block Diagram

8-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

TIMER

Input Select Input Select
Data Bus
1/2 MCLK
1/4 MCLK 8-bit T
1/8 MCLK Prescaler
1/16 MCLK 8-bit
Up Counter —
TCLK
A
8-bit
Comparator v
4 >
Capture Ry Timer Buffer T
TCAP Detect g 7 Register Mode Select
A
- Timer FIFO
v Register
Data Bus

» TOFINT

TMINT/TCAPINT
PWM/TOUT

Figure 8-2. 8-Bit Timer Block Diagram

ELECTRONICS

8-3

TIMER S3C3410X RISC MICROPROCESSOR

OPERATION DESCRIPTION

16-BIT TIMERS (TIMERO, TIMER1 AND TIMERZ2)

Interval Mode Operation

In interval mode, a match signal should be generated when the counter value is identical to the value written to
the timer data register, TDATO, TDAT1 and TDAT2. The match signal can generate a timer 0, 1, or 2 match
interrupt and clear the counter value. When a match condition happens, the timer output(TOUTO0/1/2) will be
toggled.

Capture Mode Operation

In capture mode, the timer can perform the capturing operation, which is that the counter value is transferred into
the capture register(Timer Data Register) in synchronization with an external trigger. The external triggering
signal for capturing operation is a pre-defined valid edge on the capture input pin. When this valid signal
happens, the counter value in process should be moved into the capture register(Timer Data Register). By using
the capturing function, users can measure the time difference between external events. If a valid trigger signal on
the pin does not happen before the overflow, an overflow interrupt will be generated and the counter value will be
counted from 0000h, again.

Match & Overflow Mode Operation

In this mode, a match signal can be generated when the counter value is identical to the value written to the timer
data register. However, the match signal does not clear the counter even if it can generate a match interrupt as
same as the interval mode. Because it does not clear the counter value, the timer can run up to the overflow of
counter value and generate an overflow interrupt, also. After the overflow of counter value, the counter value will
be counted from 0000h, again.

DMA Mode Operation (Timer 1 Only)

Users can use the DMA to support the Timer 1. The DMA can transfer the data in memory to the TDAT1(Timer
Data Register). When the match interrupt happens, the Timer 1 can request the DMA service to transfer the data
into the TDATL1 register, again. Before the DMA-based operation, users should configure the control information
on DMA, such as TCON1[5:3] to "010", TDAT1, destination address, source address, and so on. This kind of
DMA-based timer operation is very helpful to generate the pre-defined timing event.

8-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR TIMER

8-BIT TIMER (TIMER3 AND TIMERA4)

Interval Mode Operation

In interval mode, a match signal should be generated when the counter value is identical to the value written to
the timer data register, TDAT3 and TDAT4. The match signal can generate a timer match interrupt and clear the
counter value. When a match condition happens, the timer output(TOUT3/4) will be toggled.

Capture Mode Operation

In capture mode, the timer can perform the capturing operation, which is that the counter value is transferred into
the capture register(Timer Data Register) in synchronization with an external trigger. The external triggering
signal for capturing operation is a pre-defined valid edge on the capture input pin. When this valid signal
happens, the counter value in process should be moved into the capture register(Timer Data Register). By using
the capturing function, users can measure the time difference between external events. If a valid trigger signal on
the pin does not happen before the overflow, an overflow interrupt will be generated and the counter value will be
counted from 00h, again.

PWM Mode Operation

The timer can be used for generating the PWM(Pulse Width Modulation) signal. Timer3/4 can support the PWM
functionality, which is different from Timer0/1/2.

In this mode, a match signal should be generated when the counter value is identical to the written to the timer
FIFO register(Timer Data Register). However, because the match signal dose not clear the counter, it can
generate an overflow interrupt when the counter value reaches to the ffh. After the overflow of counter value, the
timer will count its value from 0Oh, again. To generate the PWM signal, the PWM output should be "Low" level as
long as the counter value is less than or equal(£) to the value specified in Timer Buffer Register and "High" level
as long as the counter value is greater than (>) the value specified in Timer Buffer Register. Because it is 8-bit
PWM timer, the one period is equal to tc x = 256.

The pre-scale value can define the input clock frequency of Timer according to the following equation:

Timer input clock frequency(tc k) = MCLK / (pre-scale value + 1) : for Timer 0, 1 and 2
Timer input clock frequency(tc k) = MCLK / (pre-scale value +1) / (divider value) : for Timer 3 and 4
pre-scale value = 0 — 255, divider value = 2, 4, 8, 16

DMA Mode Operation (Timer 3 Only)

Users can use the DMA to support the Timer 1. The DMA can transfer the data in memory to the TDAT3(Timer
Data Register). When the match interrupt happens, the Timer 1 can request the DMA service to transfer the data
into the TDAT3 register, again. Before the DMA-based operation, users should configure the control information
on DMA, such as TCONS3[5:3] to "010", TDAT3, destination address, source address, and so on. This kind of
DMA-based timer operation is very helpful to generate the pre-defined timing event or the sound using PWM.

ELECTRONICS 8-5

TIMER

S3C3410X RISC MICROPROCESSOR

TIMER SPECIAL FUNCTION REGISTER

TIMER CONTROL REGISTERS

Register Offset R/W Description Reset
Address Value
TCONO 0x9003 R/W | Timer O control register 0x00
TCON1 0x9013 R/W | Timer 1 control register 0x00
TCON2 0x9023 R/W | Timer 2 control register 0x00
TCONS3 0x9033 R/W | Timer 3 control register 0x00
TCON4 0x9043 R/W | Timer 4 control register 0x00
TCONO, 1, 2 Bit Description Initial State
Reserved [1:0] Reserved 00
ICS [2] Timer Input Clock Selection: This bit can determine the input 0
clock source of Timer.
0 = Internal Clock 1 = External Clock
OMS [5:3] Timer Operating Mode Selection: This field can determine the 000
operating mode of Timer.
000 = Interval mode operation
001 = Match & overflow mode operation
010 = Match & DMA mode operation (Timerl Only)
100 = Capture on falling edge of TCAPO, 1, and 2
101 = Capture on rising edge of TCAPO, 1, and 2
110 = Capture on rising or falling edges of TCAPO, 1, and 2
CL [6] Timer Counter Clear: This bit can clear the content of timer 0
counter register.
0 = No effect 1 = Clearing the counter register
TEN [7] Timer Enable: This bit can enable or disable of Timer 0
functionality.
0 = Disable (Stop) 1 = Enable (Start)
8-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

TIMER

TCONS, 4

Bit

Description

Initial State

CD

[1:0]

Clock Divider of Internal Clock Source:

This field can determine the divider factor of timer clock source.
This bit is only effective when users take the timer clock source
as internal CPU clock. In other word, this is effective when ICS

bit is set to "0".

00 =1/16 01=1/8 10=1/4 11=1/2

00

ICS

(2]

Timer Input Clock Selection: This bit can determine the input
clock source of Timer.
0 = Internal Clock 1 = External Clock

OMS

[5:3]

Timer Operating Mode Selection: This field can determine the
operating mode of Timer.

000 = Interval mode operation

001 = PWM Mode

010 = Match & DMA mode operation (Timer3 Only)

100 = Capture on falling edge of TCAP3, and 4

101 = Capture on rising edge of TCAP3, and 4

110 = Capture on rising or falling edges of TCAP3, and 4

000

CL

[6]

Timer Counter Clear: This bit can clear the content of timer
counter register.
0 = No effect 1 = Clearing the Counter register

TEN

[7]

Timer Enable: This bit can enable or disable of Timer
functionality.
0 = Disable (Stop) 1 = Enable (Start)

NOTES:

1. Timer is continuously operated by one time enabling.
2. If FIFO is enabled in PWM mode, data is not stored into TDAT4. So to store data into TDAT4, FIFO should be disabled.

ELECTRONICS

8-7

TIMER

S3C3410X RISC MICROPROCESSOR

TIMER FIFO CONTROL REGISTERS

Register Offset R/W Description Reset
Address Value
TFCON 0x904f R/W | FIFO control register of Timer 4 0x0
TFCON Bit Description Initial State
FEN [0] FIFO Enable: This bit can determine whether or not to use the 0
FIFO
0 = FIFO disable 1 = FIFO enable
FCL [1] FIFO Reset: This bit can clear the content of Timer FIFO. This 0
bit is automatically cleared after clearing FIFO.
0 = Normal mode 1 = FIFO clearing
FTL [3:2] FIFO Trigger Level: This field can determine the trigger level of 00
FIFO empty interrupt.
00 = Empty 01 =1 byte
10 = 2 byte 11 = 4 byte
FR [5:4] FIFO Repeat: This field can determine the number of the usage 00
of FIFO data. The seven repeat means that each FIFO data
should be used in Timer seven times before taking next data in
FIFO.
00 = No effect 01 = One repeat
10 = Three repeat 11 = Seven repeat
TIMER FIFO STATUS REGISTERS
Register Offset R/W Description Reset
Address Value
TFSTAT 0x904e R FIFO status register of Timer 4 0x0
TFSTAT Bit Description Initial State
FC [2:0] FIFO Count: Number of data in Timer FIFO 000
FF [3] FIFO Full: This bit is automatically set to "1" whenever Timer 0
FIFO is full in case of the FIFO enable
0=0£ Timer FIFO Data £ 4
1=Full
8-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR TIMER
TIMER PRESCALER REGISTERS
Register Offset R/W Description Reset
Address Value
TPREO 0x9002 R/W | Timer O pre-scale register Oxff
TPRE1 0x9012 R/W | Timer 1 pre-scale register Oxff
TPRE2 0x9022 R/W | Timer 2 pre-scale register Oxff
TPRE3 0x9032 R/W | Timer 3 pre-scale register Oxff
TPRE4 0x9042 R/W | Timer 4 pre-scale register Oxff
TPREX Bit Description Initial State
Pre-scale [7:0] This field can determines pre-scale value for Timer 0,1,2,3, and 4 Oxff
TIMER 0, 1, AND 2 DATA REGISTERS
Register Offset R/W Description Reset
Address Value
TDATO 0x9000 R/W | Timer O data register Oxffff
TDAT1 0x9010 R/W | Timer 1 data register Oxffff
TDAT2 0x9020 R/W | Timer 2 data register Oxffff
TDATO,1,2 Bit Description Initial State
Data [15:0] This field can determine the data value for Timer 0,1, and 2 Oxffff

ELECTRONICS

8-9

TIMER

S3C3410X RISC MICROPROCESSOR

TIMER 3 AND 4 DATA REGISTER & FIFO REGISTERS

Register Offset R/W Description Reset
Address Value
TDAT3 0x9031 R/W | Timer 3 data register Oxff
TDAT4 0x9041 R/W | Timer 4 data register Oxff
TFB4 0x904b R/W | Timer 4 FIFO register @ byte access, FIFO 0x0
TFHWA4 0x904a R/W | Timer 4 FIFO register @ half-word access, FIFO 0x0
TFW4 0x9048 R/W | Timer 4 FIFO register @ word access, FIFO 0x0
TDATS3, 4. Non FIFO mode, Byte access (by STRB)
TDATS3, 4 Bit Size Description Initial State
TDATA [7:0] Timer data for Timer 3 and 4 Oxff
TFB4: Byte access, FIFO Mode
TFB4 Bit Size Description Initial State
TDATA [7:0] Timer data for Timer 4 0x0
FC(FIFO Count) = FC(FIFO Count) + 1
TFHWA4: Half-word access, FIFO Mode
TFHWA4 Bit Size Description Initial State
TDATA 8 Bit Timer dataO for Timer 4 0x0
8 Bit Timer datal for Timer 4
FC(FIFO Count) = FC(FIFO Count) + 2
TFW4: Word access, FIFO Mode
TFW4 Bit Size Description Initial State
TDATA 8 Bit Timer dataO for Timer 4 0x0
8 Bit Timer datal for Timer 4
8 Bit Timer data2 for Timer 4
8 Bit Timer data3 for Timer 4

FC(FIFO Count) = FC(FIFO Count) + 4

8-10

ELECTRONICS

S3C3410X RISC MICROPROCESSOR TIMER

TIMER O, 1, AND 2 COUNT REGISTERS

Register Offset R/W Description Reset
Address Value
TCNTO 0x9006 R Timer O count register 0x0
TCNT1 0x9016 R Timer 1 count register 0x0
TCNT2 0x9026 R Timer 2 count register 0x0
TDATO,1,2 Bit Description Initial State
Ccv [15:0] This field contains the current timer's count value during the 0x0
normal operation

TIMER 3 AND 4 COUNT REGISTERS

Register Offset R/W Description Reset
Address Value
TCNT3 0x9037 R Timer 3 count register 0x0
TCNT4 0x9047 R Timer 4 count register 0x0
TDATS3, 4 Bit Size Description Initial State
Ccv [7:0] This field contains the current timer's count value during the 0x0
normal operation

ELECTRONICS 8-11

TIMER S3C3410X RISC MICROPROCESSOR

NOTES

8-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UART

UART

OVERVIEW

The UART(Universal Asynchronous Receiver and Transmitter) in S3C3410X can support one asynchronous
serial 1/0 ports. The UART can be operated by the interrupt-based or DMA-based mode. In other words, the
UART can generate an interrupt or DMA request to prepare the data to be sent, or to store the received data into
the memory. It has two 8-byte FIFOs for receive and transmit. One is for receiving FIFO and the other is for
transmitting FIFO. The functionality of UART includes the programmable baud-rate, frame format suitable for
infra-red (IrDA ver. 1.0) transmit/receive, programmable number of stop bit insertion, programmable data width of
5, 6, 7, and 8-bit, and parity checking/attaching capability of received/transmitted data.

The UART has a baud-rate generator, transmitter/receiver block and their control unit as shown in Figure 9-1.
The baud-rate generator can generate the suitable baud rate for UART by using MCLK. To generate the proper
baud rate, users should configure the proper division rate of MCLK in special register in baud rate generator. To
support the higher baud rate, the UART in S3C3410X has internal 8-byte FIFO. The data in FIFO should be
transferred into Transmitter Shifter for TX and data in Receive Shifter should be moved into FIFO for RX. The TX
data in Transmitter Shifter will be shifted out through the UTXD pin for TX case. Also, the data on URXD will also
be shifted in Receive Shifter for RX case.

Transmitter

Transmit FIFO(8 Byte)

Transmit Shifter |——> UTXD

I

Control Baud-rate Clock
Unit Generator Source

: l

[}

[}

l Receive Shifter }4‘— URXD
[}

Receive FIFO(8 Byte)

A
A
i
l
|
l
v

A

Receiver

Figure 9-1. UART Block Diagram with FIFO

ELECTRONICS 9-1

UART S3C3410X RISC MICROPROCESSOR

UART FUNCTION DESCRIPTION

UART OPERATION

The following section describe the operation of UART which include the data transmission, data reception,
interrupt generation, baud-rate generation, loopback mode, infra-red mode, and so on.

Data Transmission

The data frame for transmission is programmable. It can have several options regarding to the data size, number
of stop bit, parity checking capability, and so on, which can be specified in the Line Control Register(ULCON).
Sometimes, users need to send the break condition during the sending the UART frame. The break condition can
be realized by writing SBS bit in UCON register. If users write the SBS bit in UCON register during the UART
frame sending, the break condition forces the serial output to logic O state at least for longer time than one frame
transmission after successful sending the current UART frame. This break condition will be automatically cleared
after one frame of break time. The UART will send the frame data again after break time. On the receive side, if
the receive controller recognize the break condition from Transmitter, there will be break interrupt to CPU.

The data transmission process is shown in Figure 9-2. The transmitter should transfer the data through a path as
follows: data source -> transmit holding(transmit FIFO) register -> transmit shifter -> UTXD pin. Two flags(status
signals) such as transmit holding(transmit FIFO) register empty and transmitter empty, are used to indicate the
status of the transmit holding(transmit FIFO) register and transmitter.

< START >

A

UBRDIV, ULCON, UCON
is configured

<
4

Transmit holding
register empty?

N -

Y

v

Transfer the data to
transmit shifter

A

Set the transmit holding
register empty flag

A

After shift out last stop bit,
Set the transmitter empty flag

Figure 9-2. UART Data Transmission Process

9-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UART

Data Reception

The RX block of UART can also support several options necessary for UART frame receiving as similar with TX.
It can support the option on data size, number of stop bit, parity checking capability, and so on, which can also be
specified in the Line Control Register(ULCON). The receiver block of UART can detect the erroneous such as
overrun error, parity error, frame error and break condition from TX.

The overrun error indicates that new data has overwritten the previously received data before the previous one
has been read. The parity error indicates that the receiver has detected a parity error, which is due to different
parity bit from the expectation. The frame error indicates that the received data does not have a valid stop bit in
terms of frame boundary. The break condition indicates that the URXD input is held in the logic O state at least for
longer time than one frame transmission. The receive time-out condition occurs when the UART receiver does
not receive the data during the necessary time of 3 half-word (6 bytes) transmission when the Rx FIFO is not
empty state in FIFO mode.

The data reception process is shown in Figure 9-3. The receiver transfer data through a path as follows: URXD
pin -> receive shifter register -> receive buffer register -> destination. A receive buffer (receive FIFO) full flag as
well as several error flags during the reception can be used to indicate the status of the receive buffer (receive
FIFO) register.

(s)

A

UBRDIV, ULCON, UCON
is configured

I
.

A

Receive data into receive
shifter from URXD pin

Data reception

detected ? AMing

N

v

Transfer the data to
receive shifter

A

Set the receive buffer
(receive FIFO) full flag

Figure 9-3. UART Data Reception Process

ELECTRONICS 9-3

UART S3C3410X RISC MICROPROCESSOR

Interrupt / DMA Request Generation

The UART of S3C3410X has eight status signals: overrun error, parity error, frame error, break, receive FIFO
ready, receiver time out, transmit FIFO empty and transmitter empty, which are specified in the corresponding
UART status register(USTAT).

The overrun error, parity error, frame error and break condition are referred to as the receive status, each of
which can cause the receive status interrupt request if the receive status interrupt enable bit is set to one in the
control register(UCON). When a receive status interrupt request is detected, users can know the interrupt source
by reading the content of UCON register.

When the receiver transfers the data in the receive shifter to the receive FIFO, there will be the activation of the
receive FIFO ready status signal, which will cause the receive interrupt if the receive mode in control register is
selected as the interrupt mode.

When the transmitter transfers the data in the transmit FIFO to transmit shifter, there will be the activation of the
transmit FIFO empty status signal, which will cause the transmit interrupt if the transmit mode in control register
is selected as the interrupt mode.

The receive FIFO ready and transmit FIFO empty status signals can also be connected to generate the DMA
request signals if the receive/transmit mode is selected as the DMA mode.

Interrupt generation relating with FIFO

Type FIFO Mode Non-FIFO Mode
Rx Interrupt | When UART receive one frame data, it When UART receives one frame data
should move the data into FIFO. After successfully, it will generate an interrupt.

loading the data into FIFO, it should
determine whether an interrupt should be
generated by looking the FIFO trigger level,

or not.
Tx Interrupt | When UART transmit one frame data, it When UART transmits one frame data
should extract the data from FIFO. After successfully, it will generate an interrupt.

extracting the data from FIFO, it should
determine whether an interrupt should be
generated by looking the FIFO trigger level,

or not.

Error Interrupt | When UART detects the frame error, parity All erroneous condition should generate an
error and break condition, it does not error interrupt immediately. However, if
generate the interrupt immediately. The several interrupt happen simultaneously, the
UART will move the data into receive FIFO interrupt routine should discriminate the
and it will generate the interrupt when the interrupt source by looking the content of
data move to the top of receive FIFO. UCON register.

However, an overrun error as well as receive
time-out should generate an interrupt
immediately.

9-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UART

Baud Rate Generation

The UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator should be the S3C3410X's internal system clock. The baud-rate clock is generated by
dividing the source clock by 16 and a 16-bit divisor specified by the UART baud-rate divisor register (UBRDIV).
The UBRDIV can be determined as follows:

UBRDIV = (round_off) { MCLK / (Transferrate ~ 16)} -1

Where the divisor should be from 1 to (216 —1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,
UBRDIV is:

UBRDIV = (int) { MCLK / (Transferrate " 16) + 0.5} -1
= (int) { 40000000/ (115200 *16)+ 0.5} -1 =(int) (2L.7+05)-1
=22-1=21

Loop Back Mode

The S3C3410X UART can support a test mode, so called the loop back mode. In this mode, the transmitted data
from UART Tx module is immediately received through UART Rx module via internal connection between Tx
and Rx module. This feature allows that the processor can verify the internal transmit/receive data path of UART
channel. This mode can be selected by setting the loop back bit in the UART control register(UCON).

Infra Red(IrDA) Mode

The UART in S3C3410X can support the frame of infra-red (IrDA) transmit and receive, which can be selected
by setting the infra-red bit in the UART control register (UCON). As shown in Figure 9-4, we should have IrDA Tx
Encoder and Rx Decoder, which is different from the normal UART operation mode. By using the specific
Decoder/Encoder for IrDA, the signal frame in IrDA is different from the normal signal frame of UART, which is
shown in Figure 9-5, 9-6 and 9-7. In IrDA transmit mode, the transmitter should pulse 3/16 duty to represent a
zero data as shown in Figure 9-6. In IrDA receive mode, the receiver should detect the 3/16 pulsed period to
recognize a zero data as shown in Figure 9-7.

TxD » 0
» UTXD
IrDA TX 1
"] Encoder g
IRS
UART
Block
0 |« URXD
RxD [«
1 e IrDA Tx <
- Encoder <
RE

Figure 9-4. IrDA Function Block Diagram

ELECTRONICS 9-5

UART S3C3410X RISC MICROPROCESSOR

< UART Frame >
—» Start [« Data Bit » Stop [
Bit Bit
0 1 0 1 0 0 1 1 0 1
Figure 9-5. Serial I/O Frame Timing Diagram (Normal UART)
< IR Transmit Frame >
—» Start [¢ Data Bit » Stop [¢
Bit Bit
0 1 0 1 0 0 1 1 0 1
—> Bit - Pulse Width = 3/16 Bit Frame
Time B
Figure 9-6. Infra Red(IrDA) Transmit Mode Frame Timing Diagram
< IR Receive Frame >
—» Start [« Data Bit » Stop [¢
Bit Bit
0 1 0 1 0 0 1 1 0 1

Figure 9-7. Infra Red(IrDA) Receive Mode Frame Timing Diagram

9-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UART
UART SPECIAL FUNCTION REGISTERS
UART LINE CONTROL REGISTER (ULCON)
This is UART line control register, ULCON, is used to control UART block.
Register Offset R/W Description Reset
Address Value
ULCON 0x5003 R/W | UART line control register 0x0
ULCON Bit Description Initial State
WL [1:0] Word Length: The word length indicates the number of data bit 00
to be transmitted or received per frame
00 = 5-bits 01 = 6-bits
10 = 7-bits 11 = 8-bits
SB [2] Number of Stop Bit: The number of stop bit per frame should 0
be specified by using SB.
0 = One stop bit per frame 1 = Two stop bit per frame
PMD [5:3] Parity Mode: The parity mode can specify the parity mode. 000
When the parity mode is enabled, the parity generation for Tx
and parity checking for Rx will be performed automatically
during the Tx and Rx operation of UART.
0xx = No parity
100 = Odd parity
101 = Even parity
IRM [6] Infra-Red Mode : The Infra-Red mode can determine whether 0
or not to be use the Infra-Red mode.
0 = Normal mode operation 1 = Infre-Red Tx/Rx mode
ELECTRONICS 9-7

UART

S3C3410X RISC MICROPROCESSOR

UART CONTROL REGISTER (UCON)

Register

Offset
Address

R/W Description

Reset
Value

UCON

0x5007

R/W | UART control register

0x0

UCON

Bit

Description

Initial State

RM

[1:0]

Receive Mode: This field can determine the operation mode of
UART. The UART can be operated by DMA as well as interrupt
mechanism. If the interrupt is not enabled, it is polling mode.

00 = Disable 01 = Interrupt request or polling mode
10 = DMAQO request 11 = DMAL1 request

00

™

[3:2]

Transmit Mode: This field can determine the operation mode of
UART. The UART can be operated by DMA as well as interrupt
mechanism. If the interrupt is not enabled, it is polling mode.

00 = Disable 01 = Interrupt request or polling mode
10 = DMAQO request 11 = DMAL1 request

00

SBS

[4]

Send Break Signal: Setting this bit can cause the UART to send
a break signal.
0 = Normal transmit 1 = Send break signal

LBM

[5]

Loop Back Mode: Setting loop back bit to "1" can cause the
UART to enter loop back mode. The Loop Back Mode means the
internal connection between Tx and Rx module for test purpose.
0 = Normal operation 1 = Loopback mode

RSIE

[6]

Rx Status Interrupt Enable: This bit enables the UART to
generate an interrupt if an exception, such as a break, frame
error, parity error, or overrun error occurs during a receive
operation.

0 = Do not generate receive status interrupt

1 = Generate receive status interrupt

RXTOEL

[7]

Rx Time Out Enable: Enable/Disable Rx time out interrupt. This
bit is only effective when the FIFO is enabled.
0 = Disable 1 = Enable

9-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

UART

UART STATUS REGISTER (USTAT)

The UART status register, USTAT, is a read-only register which is used to monitor the status during the operation
of serial /0 in the UART

Register

Offset
Address

R/W Description

Reset
Value

USTAT

0x500b

R UART status register

0OxcO

USTAT

Bit

Description

Initial State

OE

[0]

Overrun Error: This bit is automatically set to "1" whenever an
overrun error occurs during the receive operation.
0 = No overrun error during receive 1 = Overrun error

0

PE

[1]

Parity Error: This bit is automatically set to "1" whenever an
parity error occurs during the receive operation.
0 = No parity error during receive 1 = Parity error

FE

(2]

Frame Error: This bit is automatically set to "1" whenever an
frame error occurs during the receive operation.
0 = No frame error during receive 1 = Frame error

BD

[3]

Break Detect: This bit is automatically set to "1" to indicate that
a break signal has been received.
0 = No break received 1 = Break received

RTO

[4]

Receiver Time Out: This bit is automatically set to "1" whenever
a receiver time out occurs during the receive operation.

0 = No receiver time out during receive

1 = Generate receiver time out

RFDR

[5]

Receive FIFO Data Ready / Receive Buffer Data Ready: This
bit is automatically set to "1" whenever the receiver is ready to
receive the data through the URXD pin.
0 = Completely empty
1 = 1-byte £ Rx FIFO Data £ 8-byte @ FIFO mode

The buffer register has a received data @ Non FIFO mode

TFE

[6]

Transmit FIFO Empty / Transmit Holding Register Empty:
This bit is automatically set to "0" whenever the transmitter has
the valid data for sending.
0 = 1-byte £ FIFO £ 8-byte @ FIFO mode

The holding register is not empty @ Non FIFO mode
1 = Empty

TSE

[7]

Transmit Shift Register Empty: This bit is automatically set to
"1" whenever the transmit shift register does not have a valid
data for sending.

0 = Not empty

1 = Transmit holding & shifter register empty

ELECTRONICS

9-9

UART

S3C3410X RISC MICROPROCESSOR

UART FIFO CONTROL REGISTER (UFCON)

Register Offset R/W Description Reset
Address Value
UFCON 0x500f R/W | UART FIFO control register 0x0
UFCON Bit Description Initial State
FE [0] FIFO Enable: This bit can determine whether or not to use the 0
FIFO mode.
0 = FIFO Disable 1 = FIFO enable
RFR [1] Receive FIFO Reset: To reset the receive FIFO, user should set 0
RFR bit.
0 = Normal mode 1 = Rx FIFO reset
TFR [2] Transmit FIFO Reset: To reset the transmit FIFO, user should 0
set TFR bit.
0 = Normal mode 1 =Tx FIFO reset
Reserved [3] Reserved 0
RFTL [5:4] Receive FIFO Trigger Level for Interrupt Generation: This 00
field can determine the interrupt trigger level of receive FIFO.
00 = 2 byte 01 =4 byte
10 = 6 byte 11 = 8 byte
TFTL [7:6] Transmit FIFO Trigger Level for Interrupt Generation: This 00
field can determine the interrupt trigger level of transmit FIFO.
00 = Empty 01 =2 byte
10 = 4 byte 11 = 6 byte
9-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

UART

UART FIFO STATUS REGISTER (UFSTAT)

Register Offset R/W Description Reset
Address Value
UFSTAT 0x5012 R UART FIFO control register 0x0
UFSTAT Bit Description Initial State

RFC [2:0] Receive FIFO Count: This field can indicate the number of 000
current data in Receive FIFO.

TFC [5:3] Transmit FIFO Count: This field can indicate the number of 000
current data in Transmit FIFO.

RFF [6] Receive FIFO Full: This bit is automatically set to "1" whenever 0
receive FIFO is full during receive operation.
0 =0 £ Rx FIFO Data £ 7 byte
1=Full

TFF [7] Transmit FIFO Full: This bit is automatically set to "1" 0
whenever transmit FIFO is full during transmit operation.
0 =0 £ Rx FIFO Data £ 7 byte
1=Full

EIF [8] Error in FIFO: This bit represent that there is not valid data in 0
the receive FIFO.
0 = All data in receive FIFO are valid
1 = Some data in receive FIFO is not valid.

ELECTRONICS 9-11

UART S3C3410X RISC MICROPROCESSOR

UART TRANSMIT HOLDING REGISTER & FIFO REGISTERS

Register Offset R/W Description Reset
Address Value
UTXH 0x5017 W UART transmit holding register 0x0
UTXH_B 0x5017 W UART transmit FIFO register @ byte access 0x0
UTXH_HW 0x5016 wW UART transmit FIFO register @ half-word access 0x0
UTXH_W 0x5014 wW UART transmit FIFO register @ word access 0x0
UTXH Bit Description Initial State
TXDATA [7:0] This field represents the data to be transmitted through TX 0x0
module in UART. When users write the data in this register, the
transmit holding register empty bit(TFE) in the status register
should be set to "0". This bit is for preventing the overwriting on
transmitted data that may already be existed in the UTXH
register. Users should update the UTXH after checking TFE bit.
Whenever the UTXH is written with new value, the transmit
register empty bit(TFE) will be automatically cleared to "0"

UTXH_B : Byte Access, FIFO Mode

UTXH_B Bit Description Initial State

TXDATAO [7:0] Transmit data for UART; 0x0
When users write the byte data in this register,
FIFO_COUNT = FIFO_COUNT + 1

UTXH_HW : Half-word Access, FIFO Mode

UTXH_HW Bit Description Initial State
TXDATAO [7:0] Transmit dataO for UART 0x0
TXDATA1 [15:8] Transmit datal for UART 0x0

When users write the half-word data in this register,
FIFO_COUNT = FIFO_COUNT + 2

UTXH_W : Word Access, FIFO Mode

UTXH_W Bit Description Initial State
TXDATAO [7:0] Transmit dataO for UART 0x0
TXDATA1 [15:8] Transmit datal for UART 0x0
TXDATA2 [23:16] | Transmit data2 for UART 0x0
TXDATA3 [31:24] | Transmit data3 for UART 0x0

When users write the word data in this register,
FIFO_COUNT = FIFO_COUNT + 4

9-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR UART
UART RECEIVE BUFFER REGISTER & FIFO REGISTERS
Register Offset R/W Description Reset
Address Value
URXH 0x501b W UART receive buffer register -
URXH_B 0x501b W UART receive FIFO register @ byte access -
URXH_HW 0x501a wW UART receive FIFO register @ half-word access -
URXH_W 0x5018 wW UART receive FIFO register @ word access -
URXH Bit Description Initial State
RXDATA [7:0] This field represents the data to be received through RX module -
in UART. When users read the data in this register, the receive
buffer data ready bit(RFDR) in the status register should be set
to "0". This bit is for preventing the reading the invalid received
data in the URXH register before successful reception. Users
should read the URXH after checking RFDR bit. Whenever the
URXH is read, the receive buffer data ready bit(RFDR) in the
status register will be automatically cleared to "1"
URXH_B : Byte Access, FIFO Mode
URXH_B Bit Description Initial State
RXDATAO [7:0] Receive data for UART; -
When users read the byte data in this register,
FIFO_COUNT = FIFO_COUNT + 1
URXH_HW : Half-word Access, FIFO Mode
URXH_HW Bit Description Initial State
RXDATAO [7:0] Receive dataO for UART -
RXDATAl [15:8] Receive datal for UART
When users read the half-word data in this register,
FIFO_COUNT = FIFO_COUNT + 2
URXH_W : Word Access, FIFO Mode
URXH_W Bit Description Initial State
RXDATAO [7:0] Receive dataO for UART -
RXDATAl [15:8] Receive datal for UART
RXDATAZ2 [23:16] | Receive data2 for UART
RXDATA3 [31:24] | Receive data3 for UART

When users read the word data in this register,
FIFO_COUNT = FIFO_COUNT + 4

ELECTRONICS

9-13

UART

S3C3410X RISC MICROPROCESSOR

UART BAUD RATE DIVISOR REGISTER (UBRDIV)

The value in the baud rate divisor register, UBRDIV, can be used to determine the UART Tx/Rx clock rate(baud

rate) as follows:

UBRDIV = (round_off) { MCLK / (transferrate ” 16)} -1

Where the divisor should be from 1 to (216 —1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,

UBRDIV is:

UBRDIV = (int) { MCLK / (Transferrate " 16) + 0.5} -1
= (int) { 40000000/ (115200*16)+ 0.5} -1 =(int) (21.7 +05)-1

=22-1=21
Register Offset R/W Description Reset
Address Value
UBRDIV 0x501e R/W | Baud rate divisor register for UART 0x0
UBRDIV Bit Description Initial State
UBRDIV [15:0] Baud rate divisor value 0x0

9-14

ELECTRONICS

S3C3410X RISC MICROPROCESSOR SIO

1 O SIO (SYNCHRONOUS 1/0)

OVERVIEW

The S3C3410X SIO(Synchronous 1/O) can interface with various types of external devices which requires the
serial data transfer/receive. The SIO module can transmit or receive 8-bit serial data at a frequency determined
by its corresponding control register. To ensure the flexible data transmission rate, users can select an internal or
external clock source.

—P 3-bit Counter » SIOINT

SIORDY « g .
SIO Control Logic

)4
SIOCLK —e——p

————— _bi
MCLK ——p| 8-bit Sii?tltB?JIffoer SIOTXD
Prescaler g g
SIORXD 8
Data Bus

Figure 10-1. SIO Function Block Diagram

ELECTRONICS 10-1

SIO S3C3410X RISC MICROPROCESSOR

SIO FUNCTION DESCRIPTION

NON-DMA MODE OPERATION

Transmit and Receive By Synchronous Serial Line

The 8-bit data can be transmitted and received through SIO port. The serial output data can go out through a
serial output pin(SIOTXD), and the serial input data can come through a serial input pin(SIORXD). In this case,
the data should be sent and received synchronously by serial clock pin(SIOCLK). After transmitting or receiving
data, the SIO interrupt request will be activated if users enable an interrupt for SIO TX and RX. Because of the
separate hardware for TX and RX, the dual operation of TX and RX is possible. If users want to use the receiving
operation, users can treat the receive data as dummy one.

The TX and RX rate can be controlled by having the appropriate configuration in the SIOCON and SBRDR
registers. The clock source of serial interface can be an internal or external clock. In other words, the TX and RX
rate are programmable and users can determine the rate by having a suitable configuration in the SIOCON and
SBRDR registers.

Programming Procedure

When users write a byte data into the SIODAT register, the SIO will start to transmit a data if the SIO run bit is
set and the transmit mode bit is enabled.

To program the operation of SIO modules, please take following steps:

Configure the multiplexed 1/O pins as SIO related ones(SIOTXD, SIORXD, SIOCLK, and SIORDY).
Configure the SIOCON register to have a necessary functionality of the serial I/O module.

3. For the operation of interrupt mode in SIO, configure the interrupt mode in SIOCON register and enable
interrupt-relating bits in interrupt controller.

4. In case of interrupt mode for TX, users should write a data to be transmitted in SIODAT, first. To start the
transmission, users should write SB(SIO Start) bit in SIOCON register. After transmission, there should be
SIO interrupt. In case of interrupt mode of RX, there will be SIO interrupt after receipt. To start the receiving
operation, users should write SB bit in SIOCON register.

5. Goto step 4 if users need interrupt-based SIO operation more.

10-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR SIO

SIOCLK

SIORXD

SIOTXD
SIOCON Transmit
Start Bit Complete

Figure 10-2. Synchronous I/O Timing Transmit/Receive Mode (Tx at Falling)

SIOCLK

SIORXD

SIOTXD
SIOCON Transmit
Start Bit Complete

Figure 10-3. Synchronous I/O Transmit/Receive Mode (Tx at Rising)

ELECTRONICS 10-3

SIO S3C3410X RISC MICROPROCESSOR

DMA MODE OPERATION

Hand-Shaking Mode (Flag Run Mode)

In case of DMA-base SIO operation, there can be consecutive frame TX and RX. Between frames(for example,
TX frame and next TX frame), SIO can watch the SIORDY signal to check whether receiving SIO is busy, or not.
This is Hand-Shaking Mode. If RX SIO is not ready, TX SIO can not send the frame and should wait until RX SIO
is available. To indicate the busy state, SIORDY signal should below.

Non Hand-Shaking Mode (Auto Run Mode)

The Non-Hand-Shaking Mode means that SIO can transmit its data without watching SIORDY signal during the
consecutive operation. In stead of watching SIORDY signal, users can have programmable duration between
frames. The duration can be specified in IVTCNT register in SIO module.

Steps for Transmit by DMA

1. For the operation of DMA mode for TX in SIO, have a suitable configuration in DMA-related register in DMA
controller, first. The TRS bit in SIOCON register should be 1.

Configure the DMA mode in SIOCON register.

The SIO requests DMA service

The SIO transmits the data (The first transmitted data is in the first source address of DMA)
Go to step 3 until DMA count is "0"

a M 0w DN

Steps for Receive by DMA

1. For the operation of DMA mode for RX in SIO, have a suitable configuration in DMA-related register in DMA
controller, first. The TRS bit in SIOCON register should be 0.

Configure the DMA mode in SIOCON register. The SB(SIO Start) bit should also be set.
The SIO requests the DMA service after 8-bit data has been received.
Go to step 4 until DMA count is "0"

10-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR SIO

}NU\I\J\NUHWWWW*
2:8&%(\XXXEXXXETTTEXXXXEXX

)}
(4 1(

SIOCON (N Transmit
Start Bit Complete

DMA Condition Setting

Figure 10-4. Synchronous I/O Timing in Hand-shaking Mode (Flag Run Mode)

Interval Time

SIOCLK
it
SIOTXD
SIORXD
it
SIOCON Transmit
Start Bit Complete

DMA Condition Setting

Figure 10-5. Synchronous I/O Timing in Non Hand-shaking Mode (Auto Run Mode)

ELECTRONICS 10-5

SIO S3C3410X RISC MICROPROCESSOR

SYNCHRONOUS I/O SPECIAL FUNCTION REGISTERS

SYNCHRONOUS I/0 CONTROL REGISTERS (SIOCONO, SIOCON1)

There are two control register for synchronous I/O interface module, SIOCONO and SIOCONL1. To determine the
SIO operation, users should configure a necessary option on this register.

Register Offset R/W Description Reset
Address Value
SIOCONO 0x6003 R/W | Synchronous I/O 0 control register 0x0
SIOCON1 0x7003 R/W | Synchronous I/O 1 control register 0x0
SIOCONXx Bit Description Initial State
MODE [1:0] SIO Mode Selection: This field can determine the SIO 00
operation mode for SIO TX and RX.
00 = Disable 01 = SIO interrupt
10 = DMAQO request 11 = DMAL1 request
HSE [2] Hand-Shaking Mode Enable: In DMA-based SIO operation, 0

users can have Hand-Shaking or Non-Hand-Shaking mode. In
Hand-Shaking mode, SIO controller should watch SIORDY
signal before the sending of next frame. In Non-Hand-Shaking
mode, users can have programmable duration between
consecutive frames.

0 = Non hand-shaking mode (Auto run mode)

1 = Hand-shaking mode (Flag run mode)

SB [3] SIO Start: To start SIO operation, users should set this bit. 0
0 = No action
1 = Clear 3-bit counter and start shift

CES 4] Clock Edge Select: This bit can determine what clock edge 0
should be used for serial transmission. If this bit is set to "0" for
transmission, the transmitting operation is executed at the falling
edge, and the receiving operation is executed at the rising edge.
0 = Falling edge clock to Tx 1 = Rising edge clock to Tx

TRS [5] Transmit/Receive Selection: This bit can decide that the 0
current SIO is configured as receiver only, or
transmitter/receiver. The receiver only mode is just for DMA-
based receive operation. For DMA-based TX and interrupt-based
TX/RX operation, users should have TRS as 1. In case of TX/RX
mode, SIO can receive the data from external device without
S/W control. In this case, users should determine whether the
received data is valid, or not.

0 = Received only mode 1 = Transmit/Receive mode

DD [6] Data Direction: This bit can control whether MSB should be 0
transmitted first or LSB is transmitted first.
0 = MSB mode 1 =LSB mode

CS [71 SIO Clock Source Selection: This bit can determine the clock 0
source for SIO.
0 = Internal Clock 1 = External Clock

10-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

SIO

SIO DATA REGISTERS (SIODATO, SIODAT1)

To send the data by SIO, users should write the data in the SIO data register (SIODATO, SIODAT1) before

sending. As well as transmission, the received data can also be stored. Even if the receive operation can not be
controlled by S/W, the users should decide whether the received data is valid, or not. For example, this decision
can be made by the interrupt service routine. If users do not want the received data, users should think the data
in SIO data register as dummy one.

received over the SIO channel.

Register Offset R/W Description Reset
Address Value
SIODATO 0x6002 R/W | Synchronous I/O 0 data register 0x0
SIODAT1 0x7002 R/W | Synchronous I/O 1 data register 0x0
SIODATX Bit Description Initial State
SIODATA [7:0] SIO Data: The field represent the data to be transmitted or 0x0

SIO BAUD RATE PRESCALER REGISTERS (SBRDRO, SBRDR1)

The value stored in the baud rate divisor register (SBRDR0O, SBRDR1), allows users to determine the SIO clock
rate (baud rate) as follows:

Baud rate = CKIN /{2 “ (divisor value + 1) }

Register Offset R/W Description Reset
Address Value
SBRDRO 0x6001 R/W | Synchronous I/O 0 baud rate pre-scale register 0x0
SBRDR1 0x7001 R/W | Synchronous I/O 1 baud rate pre-scale register 0x0
SIODATX Bit Description Initial State
Pre-scale [7:0] The field has a pre-scale value for generating the baud rate. 0x0
ELECTRONICS

10-7

SIO S3C3410X RISC MICROPROCESSOR

SIO INTERVAL COUNTER REGISTERS (ITVCNTO, ITVCNT1)

In case of the non hand-shaking mode(auto run mode), users should have the duration between consecutive
frames. The duration between frames can be calculated by below formula.

Intervals time(between 8-bit data) = (ITVCNT + 1) "~ 256" 2/ CKIN

Register Offset R/W Description Reset
Address Value
ITVCNTO 0x6000 R/W | Synchronous I/O 0 interval counter register 0x00
ITVCNT1 0x7000 R/W | Synchronous I/O 1 interval counter register 0x00
ITVCNTX Bit Description Initial State
Count value [7:0] This field contains the interval time value for the DMA non hand- 0x00
shaking mode.

10-8 ELECTRONICS

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

1 1 INTERRUPT CONTROLLER

OVERVIEW

In S3C3410X, there are 35 interrupt sources. Among them, 23 interrupt sources are coming from internal
peripheral devices like the DMA controller, UART, SIO, etc. Other 8 interrupt sources are coming from external
interrupt request pins like EINTO, EINT1, EINT2, EINT3, EINTS, EINT9, EINT10, and EINT11. The other 4 are
coming from external interrupt request pins like EINT4, EINT5, EINT6, and EINT7. Because these 4 external
interrupt requests should be OR-ed internally, we consider these external interrupt request sources as one
interrupt request source to CPU. In other word, the total interrupt request sources to CPU is 32, not 35.

Even if there are many interrupt request sources, the ARM7TDMI core can only recognize all interrupt as two
kinds of interrupt: a normal interrupt request(IRQ) and a fast interrupt request(FIQ). Therefore, all interrupt
sources in S3C3410X should be categorized as either IRQ or FIQ.

The multiple interrupt sources should be controlled by three kind of information in special registers in interrupt
controller. These are INTMOD, INTPND, and INTMSK register. The role of three registers in interrupt controller is
as follow.

In S3C3410X, the interrupt controller can support the interrupt base vector address as well as programmable

priority. To reduce the interrupt latency, the interrupt controller in S3C3410X can assign the hard-wired vector
address for each interrupt source. The total 32 interrupt request sources to CPU can have the programmable

priority. This kind of programmable priority can make users to have more intelligent interrupt handling.

Interrupt Mode Register: Defines the interrupt mode for each interrupt source, which is IRQ or FIQ. By
having the configuration for each interrupt source in this register, users can allocate all interrupt sources as
IRQ or FIQ mode interrupt.

Interrupt Pending Register: In CPU core, there is PSR(Processor Status Register) register, which has
several field including the interrupt relating I-Flag and F-Flag. As mentioned above, the CPU can accept two
kinds of interrupt even if there are many interrupt sources in S3C3410X. That is why all interrupt sources in
S3C3410X should be categorized into two mode, which is IRQ mode and FIQ mode. In this case, if CPU is
running the service for certain interrupt, and if this interrupt has IRQ mode, the other interrupt sources with
IRQ mode can not be serviced until the completion of current service. These interrupt should be pending in
IPR(Interrupt Pending Register). In case of FIQ mode, other FIQ interrupt request can not take CPU while the
current FIQ service is running as same as IRQ case. Therefore, the FIQ interrupt request should be pending in
IPR as same as IRQ. If IRQ interrupt service is running, the FIQ interrupt can take the CPU for service
because FIQ has higher priority than IRQ. In other word, ARM CPU can support two level interrupt
architecture. The pending interrupt service can start whenever the I-Flag or F-Flag should be cleared to "0".
The service routine should clear the pending bit, also.

Interrupt Mask Register: If this mask bit is set, the corresponding interrupt request should be disabled. Users
can select the interrupt enable or disable by using this register. For masking(Disable the interrupt), the
corresponding mask bit should be "0".

ELECTRONICS 11-1

INTERRUPT CONTROLLER

S3C3410X RISC MICROPROCESSOR

INTERRUPT SOURCE

In S3C3410X, there are 35 interrupt sources. Among them, 23 interrupt sources are coming from internal
peripheral devices like the DMA controller, UART, SIO, etc. Other 8 interrupt sources are coming from external
interrupt request pins like EINTO, EINTL1, EINT2, EINT3, EINTS8, EINT9, EINT10, and EINT11. The other 4 are
coming from external interrupt request pins like EINT4, EINT5, EINT6, and EINT7. Because these 4 external
interrupt requests should be OR-ed internally, we consider these external interrupt request sources as one
interrupt request source to CPU. In other word, the total interrupt request sources to CPU is 32, not 35.

Sources Description Number
EINTO External interrupt O 0
EINT1 External interrupt 1 1
INT_URX UART receive interrupt 2
INT_UTX UART transmit interrupt 3
INT_UERR UART error interrupt 4
INT_DMAO DMAQO interrupt 5
INT_DMA1 DMAL interrupt 6
INT_TOFO Timer 0 overflow interrupt 7
INT_TMCO Timer O match/capture interrupt 8
INT_TOF1 Timer 1 overflow interrupt 9
INT_TMC1 Timer 1 match/capture interrupt 10
INT_TOF2 Timer 2 overflow interrupt 11
INT_TMC2 Timer 2 match/capture interrupt 12
INT_TOF3 Timer 3 overflow interrupt 13
INT_TMC3 Timer 3 match/capture interrupt 14
INT_TOF4 Timer 4 overflow interrupt 15
INT_TMC4 Timer 4 match/capture interrupt 16
INT_BT Basic Timer interrupt 17
INT_SIOO SIO 0 interrupt 18
INT_SIO1 SIO 1 interrupt 19
INT_IIC [IC interrupt 20
INT_RTCA RTC alarm interrupt 21
INT_RTCT RTC time interrupt(SEC/MIN/HOUR) 22
INT_TF Timer4 FIFO interrupt 23
EINT2 External interrupt 2 24
EINT3 External interrupt 3 25
EINT4/5/6/7 External interrupt 4/5/6/7 26
INT_ADC ADC interrupt 27
EINT8 External interrupt 8 28
EINT9 External interrupt 9 29
EINT10 External interrupt 10 30
EINT11 External interrupt 11 31

NOTE: EINT4, EINT5, EINT6 and EINT7 are sharing the same interrupt request line. So, the ISR(Interrupt Service Routine)
can discriminate the interrupt request source by reading the EINTPND register because it has 4-bit for the interrupt

source of EINT4, EINT5, EINT6, and EINT7. The EINTPND has to be cleared by writing "0" in ISR

11-2

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

INTERRUPT CONTROLLER

INTERRUPT CONTROLLER SPECIAL FUNCTION REGISTERS

INTERRUPT MODE REGISTER (INTMOD)

Each bit in INTMOD register can determine the interrupt mode of each interrupt request. In case of FIQ mode,
this bit should be "1". Otherwise, it means the IRQ mode interrupt. The FIQ mode has higher priority than IRQ

mode. During the service of IRQ, the FIQ mode interrupt can occupy the CPU for its service.

Register Offset R/W Description Reset
Address Value
INTMOD 0xc000 R/W | Interrupt mode register 0x0
0 = IRQ mode 1 =FIQ mode
INTMOD Bit Description Initial State
EINTO [0] 0 = IRQ mode 1 = FIQ mode 0
EINT1 [1] 0 = IRQ mode 1 = FIQ mode 0
INT_URX [2] 0 = IRQ mode 1 = FIQ mode 0
INT_UTX [3] 0 = IRQ mode 1 = FIQ mode 0
INT_UERR [4] 0 = IRQ mode 1 = FIQ mode 0
INT_DMAO [5] 0 = IRQ mode 1 = FIQ mode 0
INT_DMA1 [6] 0 = IRQ mode 1 = FIQ mode 0
INT_TOFO [7] 0 = IRQ mode 1 = FIQ mode 0
INT_TMCO [8] 0 = IRQ mode 1 = FIQ mode 0
INT_TOF1 [9] 0 = IRQ mode 1 = FIQ mode 0
INT_TMC1 [10] 0 = IRQ mode 1 = FIQ mode 0
INT_TOF2 [11] 0 = IRQ mode 1 = FIQ mode 0
INT_TMC2 [12] 0 = IRQ mode 1 = FIQ mode 0
INT_TOF3 [13] 0 = IRQ mode 1 = FIQ mode 0
INT_TMC3 [14] 0 = IRQ mode 1 = FIQ mode 0
INT_TOF4 [15] 0 = IRQ mode 1 = FIQ mode 0
INT_TMC4 [16] 0 = IRQ mode 1 = FIQ mode 0
INT_BT [17] 0 = IRQ mode 1 = FIQ mode 0
INT_SIOO [18] 0 = IRQ mode 1 = FIQ mode 0
INT_SIO1 [19] 0 = IRQ mode 1 = FIQ mode 0
INT_IIC [20] 0 = IRQ mode 1 = FIQ mode 0
INT_RTCA [21] 0 = IRQ mode 1 = FIQ mode 0

ELECTRONICS

11-3

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER
INTMOD Bit Description Initial State
INT_RTCT [22] 0 = IRQ mode 1 = FIQ mode 0
INT_TF [23] 0 = IRQ mode 1 = FIQ mode 0
EINT2 [24] 0 = IRQ mode 1 = FIQ mode 0
EINT3 [25] 0 = IRQ mode 1 = FIQ mode 0
EINT4/5/6/7 [26] 0 = IRQ mode 1 = FIQ mode 0
INT_ADC [27] 0 = IRQ mode 1 = FIQ mode 0
EINT8 [28] 0 = IRQ mode 1 = FIQ mode 0
EINT9 [29] 0 = IRQ mode 1 = FIQ mode 0
EINT10 [30] 0 = IRQ mode 1 = FIQ mode 0
EINT11 [31] 0 = IRQ mode 1 = FIQ mode 0

ELECTRONICS

11-4

S3C3410X RISC MICROPROCESSOR

INTERRUPT CONTROLLER

INTERRUPT PENDING REGISTER (INTPND)

In CPU core, there is PSR(Processor Status Register) register, which has several field including the interrupt
relating I-Flag and F-Flag. As mentioned above, the CPU can accept two kinds of interrupt even if there are
many interrupt sources in S3C3410X. That is why all interrupt sources in S3C3410X should be categorized into
two mode, which is IFQ mode and FIQ mode. In this case, if CPU is running the service for certain interrupt, and
if this interrupt has IRQ mode, the other interrupt sources with IRQ mode can not be serviced until the completion
of current service. These interrupt should be pending in IPR(Interrupt Pending Register). In case of FIQ mode,
other FIQ interrupt request can not take CPU while the current FIQ service is running as same as IRQ case.
Therefore, the FIQ interrupt request should be pending in IPR as same as IRQ. If IRQ interrupt service is
running, the FIQ interrupt can take the CPU for service because FIQ has higher priority than IRQ. In other word,
ARM CPU can support two level interrupt architecture. The pending interrupt service can start whenever the |-

Flag or F-Flag should be cleared to "0". The service routine should clear the pending bit, also.

Register Offset R/W Description Reset
Address Value
INTPND 0xc004 R/W | Interrupt pending register. 0x0
Indicates the interrupt request status of each source.
0 = The interrupt has not been requested
(when reading)
0 = Clear pending bit (when writing)
1 = The interrupt source has asserted the interrupt
request (when reading)
1 = No effect, keeping current status, '0' or '1'".
(when writing)

INTPND Bit Description Initial State
EINTO [0] 0 = Not requested 1 = Requested 0
EINT1 [1] 0 = Not requested 1 = Requested 0
INT_URX [2] 0 = Not requested 1 = Requested 0
INT_UTX [3] 0 = Not requested 1 = Requested 0
INT_UERR [4] 0 = Not requested 1 = Requested 0
INT_DMAO [5] 0 = Not requested 1 = Requested 0
INT_DMA1 [6] 0 = Not requested 1 = Requested 0
INT_TOFO [7] 0 = Not requested 1 = Requested 0
INT_TMCO [8] 0 = Not requested 1 = Requested 0
INT_TOF1 [9] 0 = Not requested 1 = Requested 0
INT_TMC1 [10] 0 = Not requested 1 = Requested 0
INT_TOF2 [11] 0 = Not requested 1 = Requested 0
INT_TMC2 [12] 0 = Not requested 1 = Requested 0
INT_TOF3 [13] 0 = Not requested 1 = Requested 0
INT_TMC3 [14] 0 = Not requested 1 = Requested 0
INT_TOF4 [15] 0 = Not requested 1 = Requested 0
INT_TMC4 [16] 0 = Not requested 1 = Requested 0
INT_BT [17] 0 = Not requested 1 = Requested 0

ELECTRONICS 11-5

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER
INTPND Bit Description Initial State
INT_SIOO0 [18] 0 = Not requested 1 = Requested 0
INT_SIO1 [19] 0 = Not requested 1 = Requested 0
INT_IIC [20] 0 = Not requested 1 = Requested 0
INT_RTCA [21] 0 = Not requested 1 = Requested 0
INT_RTCT [22] 0 = Not requested 1 = Requested 0
INT_TF [23] 0 = Not requested 1 = Requested 0
EINT2 [24] 0 = Not requested 1 = Requested 0
EINT3 [25] 0 = Not requested 1 = Requested 0
EINT4/5/6/7 [26] 0 = Not requested 1 = Requested 0
INT_ADC [27] 0 = Not requested 1 = Requested 0
EINT8 [28] 0 = Not requested 1 = Requested 0
EINT9 [29] 0 = Not requested 1 = Requested 0
EINT10 [30] 0 = Not requested 1 = Requested 0
EINT11 [31] 0 = Not requested 1 = Requested 0

ELECTRONICS

11-6

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

INTERRUPT MASK REGISTER (INTMSK)

The interrupt mask register has interrupt mask bits for all interrupt source. When an interrupt source mask bit is
"0", the corresponding interrupt can not be serviced by the CPU when the corresponding interrupt request is
generated. If the mask bit is "1", the interrupt service can be done.

Register Offset R/W Description Reset
Address Value

INTMSK 0xc008 R/W | Interrupt mask register. 0x0

Each bit can disable or enable the corresponding

interrupt request.

0 = Interrupt service is masked or disabled.

1 = Interrupt service is available

INTMSK Bit Description Initial State

EINTO [0] 0 = Masked 1 = Service available 0
EINT1 [1] 0 = Masked 1 = Service available 0
INT_URX [2] 0 = Masked 1 = Service available 0
INT_UTX [3] 0 = Masked 1 = Service available 0
INT_UERR 4] 0 = Masked 1 = Service available 0
INT_DMAO [5] 0 = Masked 1 = Service available 0
INT_DMA1 [6] 0 = Masked 1 = Service available 0
INT_TOFO [71 0 = Masked 1 = Service available 0
INT_TMCO [8] 0 = Masked 1 = Service available 0
INT_TOF1 [9] 0 = Masked 1 = Service available 0
INT_TMC1 [10] 0 = Masked 1 = Service available 0
INT_TOF2 [11] 0 = Masked 1 = Service available 0
INT_TMC2 [12] 0 = Masked 1 = Service available 0
INT_TOF3 [13] 0 = Masked 1 = Service available 0
INT_TMC3 [14] 0 = Masked 1 = Service available 0
INT_TOF4 [15] 0 = Masked 1 = Service available 0
INT_TMC4 [16] 0 = Masked 1 = Service available 0
INT_BT [17] 0 = Masked 1 = Service available 0
INT_SIOO [18] 0 = Masked 1 = Service available 0
INT_SIO1 [19] 0 = Masked 1 = Service available 0
INT_IIC [20] 0 = Masked 1 = Service available 0
INT_RTCA [21] 0 = Masked 1 = Service available 0

ELECTRONICS

11-7

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

INTMSK Bit Description Initial State
INT_RTCT [22] 0 = Masked 1 = Service available 0
INT_TF [23] 0 = Masked 1 = Service available 0
EINT2 [24] 0 = Masked 1 = Service available 0
EINT3 [25] 0 = Masked 1 = Service available 0
EINT4/5/6/7 [26] 0 = Masked 1 = Service available 0
INT_ADC [27] 0 = Masked 1 = Service available 0
EINT8 [28] 0 = Masked 1 = Service available 0
EINT9 [29] 0 = Masked 1 = Service available 0
EINT10 [30] 0 = Masked 1 = Service available 0
EINT11 [31] 0 = Masked 1 = Service available 0

ELECTRONICS 11-8

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

INTERRUPT VECTOR BASE ADDRESS

To reduce the interrupt latency, the S3C3410X can support the concept of interrupt vector base address. The
interrupt vector base address means the start address of corresponding service routine. In other word, as soon as
CPU recognize the interrupt request, there will be Branch to fixed hardwired vector. But, because the CPU can
support just two interrupt mode of FIQ and IRQ, we need special technigue to assign the specific base vector
address for all interrupt source. To do this, the interrupt controller should give the Branch Instruction (Branch to
the fixed hardware vector address) to CPU as soon as the CPU recognize the interrupt request. Because the
interrupt controller can know the interrupt mode as well as source, the interrupt controller can give the specific
vector address to CPU by H/W. Following table shows the interrupt base vector address for each interrupt source.

Sources Address Sources Address
EINTO 0x80 INT_TMC4 0xcO0
EINT1 0x84 INT_BT Oxc4

INT_URX 0x88 INT_SIOO0 0xc8

INT_UTX 0x8c INT_SIO1 Oxcc

INT_UERR 0x90 INT_IlIC 0xdO
INT_DMAO 0x94 INT_RTCA 0xd4
INT_DMA1 0x98 INT_RTCT 0xd8
INT_TOFO 0x9c INT_TF Oxdc
INT_TMCO 0xa0 EINT2 0xe0
INT_TOF1 Oxa4 EINT3 Oxe4
INT_TMC1 Oxa8 EINT4/5/6/7 Oxe8
INT_TOF2 Oxac INT_ADC Oxec
INT_TMC2 0xb0 EINT8 0xf0
INT_TOF3 0xb4 EINT9 0xf4
INT_TMC3 0xb8 EINT10 0xf8
INT_TOF4 Oxbc EINT11 0xfc

ELECTRONICS 11-9

INTERRUPT CONTROLLER S3C3410X RISC MICROPROCESSOR

INTERRUPT PRIORITY REGISTER (INTPRI)

INTPRIn are the interrupt priority register to determine the priority of interrupt sources. There should be 32 grade
priorities for interrupt sources because there are total 32 interrupt request sources in S3C3410X. It means that
the 5-bit register can determine all the priorities of 32 interrupt request sources. So, each INTPRIn is divided into
four part to set the priority of the each interrupt source, that is, INTPRIO is divided into PRIORITY3, PRIORITY2,
PRIORITY1, and PRIORITYO. Lower number has the higher priority than the higher number, that is, PRIORITYO
has the higher priority than PRIORITYS3. So, for determining the priority of interrupt sources, first set the interrupt
number in PRIORITYn only. For example, if PROIRITYO have 0x11, which is basic timer interrupt number, then
basic timer interrupt have the highest priority in all interrupt sources.

As previously mentioned, there are two kinds of interrupt mode in CPU. One is FIQ and the other is IRQ. The FIQ
has the higher priority than IRQ in CPU. So, if you want to set the priority of FIQ and IRQ, you must set the
priority of FIQ higher than that of IRQ. In summary, the FIQ must have the higher priority than IRQ, interrupt
source in low number priority register has the higher priority than interrupt source in high number priority register.
In addition, all 32 PRIORITYn should have a different interrupt source number.

Register Offset Address R/W Description Reset Value
INTPRIO 0xc00c R/W Interrupt priority register 0 0x03020100
INTPRI1 0xc010 R/W Interrupt priority register 1 0x07060504
INTPRI2 0xc014 R/W Interrupt priority register 2 0x0b0a0908
INTPRI3 0xc018 R/W Interrupt priority register 3 0x0f0e0dOc
INTPRI4 0xcOlc R/W Interrupt priority register 4 0x13121110
INTPRI5 0xc020 R/W Interrupt priority register 5 0x17161514
INTPRI6 0xc024 R/W Interrupt priority register 6 0x1b1al1918
INTPRI7 0xc028 R/W Interrupt priority register 7 Ox1fleldic
Register [28:24] [20:16] [12:8] [4:0]
INTPRIO | EN PRIORITY3 X PRIORITY2 X PRIORITY1 X PRIORITYO
INTPRIL | X PRIORITY7 X PRIORITY6 X PRIORITY5 X PRIORITY4
INTPRI2 | X PRIORITY11 X PRIORITY10 X PRIORITY9 X PRIORITYS8
INTPRI3 | X PRIORITY15 X PRIORITY14 X PRIORITY13 X PRIORITY12
INTPRI4 | X PRIORITY19 X PRIORITY18 X PRIORITY17 X PRIORITY16
INTPRI5 | X PRIORITY23 X PRIORITY22 X PRIORITY21 X PRIORITY20
INTPRI6 | X PRIORITY27 X PRIORITY26 X PRIORITY25 X PRIORITY24
INTPRI7 | X PRIORITY31 X PRIORITY30 X PRIORITY29 X PRIORITY28

11-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR INTERRUPT CONTROLLER

INTPRIO Bit Description Initial State
EN [31:29] | 000 = Disable interrupt priority other = Enable interrupt priority 000
PRIORITY N 5-bit The priority number for interrupt request source N.

X 3-bit Do not care field.
NOTES:

1. To use the programmable priority, set EN to 000b, then the priority should be determined by SW.
2. The PRIORITYn determines the priority of the corresponding interrupt source.
3. The highest priority is PRIORITYO, and the lowest priority is PRIORITY31.

ELECTRONICS 11-11

INTERRUPT CONTROLLER S3C3410X RISC MICROPROCESSOR

NOTES

11-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR A/D CONVERTER

1 2 A/D CONVERTER

OVERVIEW

The 10-bit CMOS A/D converter in S3C3410X has a 8-channel analog input multiplexer, auto offset calibration
comparator, high resolution R-string DAC, clock generator, successive approximation register(SAR), ADC control
register(ADCCON), and tri-state output register (ADCDAT). This well trimmed ADC architecture can give high
accurate conversion result. In addition to accurate conversion result, users can have the power down mode of
ADC to reduce the power consumption when users do not use the ADC.

FEATURE

Resolution: 10-bit

Differential Linearity Error: + 1 LSB
Integral Linearity Error: + 1 LSB
Maximum Conversion Rate: 500KSPS

Low Power Consumption: 3.3 mW (Typical) @ normal operation mode
330 nW (Typical) @ standby mode

No missing code

ELECTRONICS 12-1

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

A/D CONVERTER OPERATION

BLOCK DIAGRAM

Vref (Internal Reference Voltage)

T

DAC [

L

8 COMP
AIN[7:0] - SAR/ADC » INT ——» ADCINT

DACLK
To]
e
1 5
l_\

Input A
Select CLKGEN
OUTREG

aoA10

4

MCLK ——» /2, /4,18, /16 v 0
ADCDAT / » DataBus

Figure 12-1. A/D Converter Block Diagram

FUNCTION DESCRIPTION

SAR (Successive Approximation Register) A/D Converter Operation

A SAR type A/D converter basically consists of the comparator, D/A converter, and SAR logic. The conversion
process of basic SAR-type ADC is as follow. After sampling analog input, the MSB is switched on to generate the
D/A output of half reference voltage and the analog input signal is compared to the output signal of the D/A
converter. When the input signal is larger than the output signal of the D/A converter, then the MSB remains and
next bit is switched on to generate the D/A output contributing quarter reference voltage. It means that there will
be comparison between analog input and the 0.75 reference voltage. When the input signal is smaller than the
output signal of the D/A converter, then the MSB is off and next bit is switched on to generate the D/A output
contributing quarter reference voltage. It means that there will be comparison between analog input and the 0.25
reference voltage. and a comparison will be performed. By having this comparison algorithm, we need 10 times
comparison to determine the 10bit result. Usually, SAR algorithm need n-step to determine the n-bit, which has
linear complexity.

12-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR A/D CONVERTER

Comparator and DAC (Digital to Analog Converter)

The CMOS comparator can produce the digital output as the result of comparison between analog input and
reference voltage by the assumed digital code. This comparator need internal non-overlapping clock to reduce
the error effect during the conversion process. Especially, the D/A converter consists of 128 resistor strings and
switches array to cover 7-bit resolution. So, the comparator should perform the comparison with 3-bit resolution.
The D/A converter can generate the digitized analog output (DAOUT) from data of SAR logic block as follows:

DAOUT = (AVREF — AVSS) /128" D[9:0]

where AVREF and AVSS are analog reference voltage and analog ground which should be applied to the
comparator and the D/A converter block.
Clock Divider and Clock Generator (CLKGEN)

The clock divider block of the A/D converter can generate the necessary clock for ADC. The clock rate for ADC
can eventually indicate the conversion speed of ADC. To get the reliable accuracy of ADC, users should
configure the proper clock rate of ADC. The ADC clock can be achieved by slowing down the MCLK. The CKSEL
field in ADCCON register can select the necessary clock for ADC. These options are MCLK/2, MCLK/4, MCLK/8,
or MCLK/16. Internally, ADC should generate the necessary clock based on master clock. For example, we need
non-overlapping clock for the operation of ADC.

NOTE: The maximum frequency into CLKGEN is 20MHz. In other word, the MCLK/X should be less than 20MHz.

A/D Conversion Time

The number of cycle of CLKGEN (Input clock of clock generator for ADC) which needs for complete conversion
of 10-bit resolution, is 45.

So, the minimum A/D conversion time at MCLK=40MHz is calculated as follows if users take the division factor
of 2:

40MHz / 2 (divide 2 frequency) / 45 = 444.4KHz = 2.25us

If MCLK is 25MHz, the minimum A/D conversion time is calculated as follows:

25MHz / 2 / 45 = 277.8KHz = 3.6us

NOTE: In the above calculated A/D conversion time, the CPU access time is omitted. If the CPU access time is considered,
the maximum conversion rate will be about 500KSPS.

Standby Mode

When users need the reduction of power for ADC, users can set the STBY "1". In this case, the A/D converter
should be kept in standby mode without an A/D conversion operation and it can eliminate the power
consumption, also

NOTE: If STBY is applied during A/D conversion, the FLAG bit goes HIGH immediately.

ELECTRONICS 12-3

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

A/D CONVERTER SPECIAL REGISTERS

A/D CONVERTER CONTROL REGISTER (ADCCON)

Register Offset R/W Description Reset
Address Value
ADCCON 0x8002 R/W | A/D Converter control register 0x140
ADCCON Bit Description Initial State
ADEN [0] A/D Enable: This bit can determine enable/disable for ADC. 0

0 = No operation
1 = Start A/D conversion. This bit will be cleared automatically
after conversion start.

ASEL [3:1] Analog Input Select: This field can determine the channel of 000
analog input.

000 = AINO 001 = AIN1 010 = AIN2 011 = AIN3
100 = AIN4 101 = AIN5 110 = AIN6 111 = AIN7

CLKSEL [5:4] Clock Source: This field can determine the input clock of clock 00
generator (CLKGEN)

00 = MCLK /16 01=MCLK/8
10=MCLK /4 11 =MCLK /2

STBY [6] Standby Mode: System power down mode select. 1
0 = Normal operation 1 = Power down mode
MODE [7] Conversion Mode: 10-bit/8-bit mode. 0
0 = 10-bit operation 1 = 8-bit operation
FLAG [8] A/D converter state flag (Read Only) 1

0 = A/D conversion in process
1 = End of A/D conversion

12-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

A/D CONVERTER

A/D CONVERTER DATA REGISTER (ADCDAT)

When A/D conversion is finished, the conversion result can be read from the ADCDAT register. The ADCDAT
register should be read after the conversion is finished.

Register Offset R/W Description Reset
Address Value
ADCDAT 0x8006 R/W | A/D Converter data register -
ADCDAT Bit Description Initial State
DATA [9:0] A/D converter output -

NOTE: If MODE bit in the ADCCON register set to "1", ADCDAT[1:0] isn't a valid value. Instead, the maximum conversion

rate will be 650KSPS.

ELECTRONICS

12-5

A/D CONVERTER S3C3410X RISC MICROPROCESSOR

NOTES

12-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR BASIC TIMER & WATCHDOG TIMER

1 3 BASIC TIMER & WATCHDOG TIMER

OVERVIEW

The S3C3410X has internal Basic Timer/Watchdog Timer. This kind of timer can be used to resume the
controller operation when it is disturbed due to noise, system error, or other kinds of malfunction. To have a
configuration on Watchdog Timer, the overflow signal from 8-bit Basic Timer should be fed to the clock input of
3-bit Watchdog Timer as shown in below figure. User can enable or disable the Watchdog Timer by software, i.e.,
by controlling the configuration in BTCON register. If users do not want to use the configuration of Watchdog
Timer, the 8-bit Basic Timer can only be used as a normal interval timer to request the interrupt service. Also, it
works to signal the end of the required oscillation interval after a reset or Stop mode release. For example, the
Basic Timer can give the overflow signal to necessary logic blocks after a reset or release from Stop mode. In
this case, the overflow signal from Basic Timer can guarantee the necessary time delay for stable clock from
external oscillator circuit.

Clock DIV WDT enable control

Fi Fin/ 279 > N

in —p
Fin /2711 > 8-bit)—» 3-bit WDT |—— RESET
Fin / 2712 > Counter "
Fin /2713 >
f Counter Clear
» BTINT
Clock Select Bit 4
Counter Clear CPU Start

Figure 13-1. Basic Timer Block Diagram

ELECTRONICS 13-1

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

FUNCTION DESCRIPTION

Interval Timer Function

The primary function of Basic Timer is to measure the elapsed time between events. The standard time interval
is equal to 256 basic timer clock pulses, which is an overflow signal from 8-bit Basic Timer.

The content of 8-bit counter register, BTCNT, increases it content every when a clock signal is detected which
corresponds to the frequency selected by BTCON. The BTCNT continues its counting until an overflow occurs,
i.e., the content reaches to 255. An overflow can cause the BT interrupt pending flag to be set, which signals that
the designated time interval has elapsed. In this case, when an interrupt request is generated, BTCNT is cleared
to all zero, and the counting continues from 00h, again.

Oscillation Stabilization Using Interval Timer Function

Users can use the Basic Timer to have programmable delay time, which is necessary for stabilizing the clock
signal from oscillator circuit after reset or Stop mode release.

When the S3C3410X is in Stop mode, the reset or external interrupt request can wake up the S3C3410X. Please
understand that the oscillator circuit is in disable state when the S3C3410X is in Stop mode. In case of wake-up
by reset, the oscillator should start first. Because the default clock division ratio is Fin / 2*13, the Fin / 2*13 clock
will be fed to the 8-bit Basic Timer. When an overflow occurs from Bit 4 of BTCNT register(Not using 8-bit, but 4-
bit of Basic Timer), this kind of overflow signal can release the clock blocking to CPU. In other word, the normal
clock can be bed to S3C3410X when an overflow of Bit 4 in Basic Timer. In case of wake-up by external interrupt
request, the only difference from reset, is clock division ratio. While we should use the default value of clock
division ratio for the case of wake-up by reset, we use the pre-defined value of clock division ration before
entering Stop mode for the case of wake-up by external interrupt request. In any case, the CPU can resume its
operation when normal clock can be fed to the blocks in S3C3410X.

In summary, please take following sequence for releasing S3C3410X from Stop mode:

1. When S3C3410X is in Stop mode, the escape from Stop mode can be made by a power-on reset or an
external interrupt. At same time, the oscillator can start its oscillation.

2. In case of wake-up by power-on reset, the Basic Timer will increase its content(BTCNT) at the rate of Fin /
2713, which is the default rate of clock division ration. In case of wake-up by external interrupt request, the
Basic Timer will increase its content(BTCNT) at the rate of preset value, which is written before entering into
Stop mode.

3. The normal clock from oscillator will be delayed to be fed to all logic blocks inside S3C3410X until the 4" pit
of Basic Timer is generated. It means that user can use the Basic Timer to guarantee the stable clock from
oscillator, i.e., waiting up to stable oscillation.

4. When the normal clock can be fed to S3C3410X, the S3C3410X can resume the operation.

13-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR BASIC TIMER & WATCHDOG TIMER

Watchdog Timer Operation

The Basic Timer can also be used as a "Watchdog" Timer to recover the S3C3410X from the unexpected
program sequence, that is, system or program operation error due to external factor. For example, the external
noise can cause this kind of situation, which means that the CPU is running the unexpected code sequence, i.e.,
malfunction of CPU. To recover the CPU from the unexpected sequence, the Watchdog Timer should reset the
CPU in case of malfunction. But, during normal sequence, the instruction which clear the Watchdog before the
overflow of Watchdog Timer (Within a given period) should be executed at the proper points in a program. If this
instruction can be executed in certain circumstance, it means the overflow of Watchdog Timer and it can
generate the internal reset signal generation to restart the CPU from the beginning. In summary, an operation of
Watchdog Timer is as follows:

Each time BTCNT overflows, an overflow signal should be sent to the Watchdog Timer Counter, WDTCNT.
If WDTCNT overflows, system reset should be generated.

NOTE

A reset signal can clear the BTCON as 0x0000. This value can enable the Watchdog Timer because it is
not OxA5(Please understand the Watchdog Timer can be disable when its content(WDTE field in
BTCONIJ15:8] register) is 0xA5). For normal program sequence, the application program should prevent
the overflow. To do this, the WDTCNT value should be cleared(by writing a "1" to WDTC bit of the Basic
Timer Control Register(BTCONI[0])) before the overflow occurs.

ELECTRONICS 13-3

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

BASIC TIMER DURATION

The Basic Timer Counter, BTCNT, can be used to specify the time-out duration, and is a free-running 8-bit
counter. Please keep below table as reference for duration of timer. This is the case when the external clock is

40Mhz.

Clock Source Resolution Interval Time
Fin / 29 (Fin = 40MHz) 12.8 us 279" 28/ Fin=3.277 ms
Fin / 211 (Fin = 40MHz) 51.2 us 211 28/ Fin = 13.107 ms
Fin / 212 (Fin = 40MHz) 102.4 us 2127 28 Fin = 26.214 ms
Fin / 213 (Fin = 40MHz) 204.8 us 2137 28/ Fin = 52.429 ms

WATCHDOG TIMER DURATION

The Watchdog Timer Counter, WTCNT, can be used to specify the time-out duration and is a free-running 3-bit
counter. To enable Watchdog Timer, user should write the data in BTCON[15:8] register except OxA5. In case of
OxADb, it will disable the Watchdog Timer. After writing certain value in BTCON[15:8] except OxA5, there will be a
system reset if the overflow occurs.

Clock Source Basic Timer Interval Watchdog Timer Interval Time
Fin / 29 (Fin = 40MHz) 3.277 ms 297 287 23/Fin=26.214 ms
Fin / 211 (Fin = 40MHz) 13.107 ms 2117 287 23/ Fin = 104.858 ms
Fin / 212 (Fin = 40MHz) 26.214 ms 2127 287 23/ Fin = 209.715 ms
Fin / 213 (Fin = 40MHz) 52.429 ms 213 287 23/ Fin = 419.430 ms

13-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

BASIC TIMER & WATCHDOG TIMER

BASIC TIMER & WATCHDOG TIMER SPECIAL REGISTERS

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register contains Watchdog counter enable bits, clock input bits, and counter clear bit.

Register Offset R/W Description Reset
Address Value
BTCON 0xa002 R/W | Basic Timer Control register 0x0
BTCON Bit Description Initial State
WDTC [0] Watchdog Timer Clear: This bit can clear the Watchdog Timer 0
Counter. When this bit is set, the Watchdog Timer Counter will
be cleared to all zero.
BTC [1] Basic Timer Clear: This bit can clear the Basic Timer Counter. 0
When this bit set, the Basic Timer Counter will be cleared to all
zero.
CS [3:2] Clock Source Select: This field can select a clock source. 00
00 = Fin / 213 01 = Fin / 212
10 = Fin/ 211 11 =Fin/2°
Reserved [7:4] Reserved 0000
WDTE [15:8] Watchdog Timer Enable: This field can control to enable or 00000000
disable a Watchdog Timer Counter. When this field is OxA5,
Watchdog Timer Counter will be stopped. The other value
except OXA5 can enable a Watchdog Timer Counter, and make
a system reset when the overflow signal occurs.
BASIC TIMER COUNT REGISTER (BTCNT)
Register Offset R/W Description Reset
Address Value
BTCNT 0xa007 R Basic Timer count register 0x0
BTCNT Bit Description Initial State
Ccv [7:0] Count value 0x00
ELECTRONICS 13-5

BASIC TIMER & WATCHDOG TIMER S3C3410X RISC MICROPROCESSOR

NOTES

13-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

lIC-BUS INTERFACE

OVERVIEW

The S3C3410X RISC microprocessor can support a multi-master 11IC-bus serial interface. A dedicated serial data
line(SDA) and a serial clock line(SCL) can carry information between bus masters and peripheral devices which
are connected to the IIC-bus. The SDA and SCL lines are bi-directional.

In multi-master 11IC-bus mode, multiple S3C3410X RISC microprocessor can receive or transmit the serial data to
or from slave devices. The master S3C3410X which can initiate a data transfer over the 1IC-bus, is responsible
for terminating the transfer. Standard bus arbitration procedure is used in this 1IC-bus in S3C3410X.

When the IIC-bus is free, the SDA and SCL lines should be both at High level. A High-to-Low transition of SDA
can initiate a Start condition. A Low-to-High transition of SDA can initiate a Stop condition while SCL remains
steady at High Level.

The Start and Stop conditions can always be generated by the master devices. A 7-bit address value in the first
data byte which is put onto the bus after the Start condition is initiated, can determine the slave device which the
bus master device has selected. The 8" bit determines the direction of the transfer (read or write).

Every data byte that is put onto the SDA line should be total eight bits. The number of bytes which can be sent or
received during the bus transfer operation is unlimited. Data is always sent from most-significant bit (MSB) first
and every byte should be immediately followed by an acknowledge (ACK) bit.

Serial Clock SCL
MCLK I Prescaler "l Control D SCL
y
IICINT ¢—] IIC-BUS

A A

Control Logic

IICCON IICSTAT

A

DATA
IICADD IICDAT > control] SPA

Figure 14-1. lIC-Bus Block Diagram

ELECTRONICS 14-1

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

lIC_BUS OPERATION

THE 1IC-BUS INTERFACE
The S3C3410X IIC-bus interface has four operation modes:

— Master transmitter mode
— Master receive mode
— Slave transmitter mode

— Slave receive mode
Functional relationships among these operating modes are described below.
START AND STOP CONDITIONS

When the IIC-bus interface is in inactive state, it is usually in slave mode. In other word, the state of interface
should be in slave mode before detecting a Start condition on the SDA line. (A Start condition can be initiated by
having a High-to-Low transition of the SDA line while the clock signal of SCL is High) When the state of interface
is changed into the master mode, it can initiate a data transfer on the SDA line as well as generating the SCL
signal.

A Start condition can initiate a one-byte serial data transfer over the SDA line and stop condition can indicate the
termination of data transfer. A Stop condition is a Low-to-High transition of the SDA line while SCL is High. Start
and Stop conditions are always generated by the master. The IIC-bus is busy when a start condition is generated.
A few clocks after a stop condition, the 11C-bus will be free, again.

When a master initiates a Start condition, it should send slaver address to give a notice to the slaver device. The
one byte of address field consist of a 7-bit address and a 1-bit transfer direction indicator (that is, write or read).
If bit 8 is 0, it indicate a write operation(transmit operation). If bit 8 is 1, it indicate a request for data read(receive
operation).

The master will finish the transfer operation by transmitting a Stop condition. If the master want to continue the
data transmission the bus, it should generate another Start condition as well as slave address. In this way, the
read-write operation can be performed in various format.

a1\ /o \ [e

SCL \ / \ / SCL

Start Stop
Condition Condition

Figure 14-2. Start and Stop Condition

14-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

DATA TRANSFER FORMAT

Every byte put on the SDA line should have eight bits in length. The number of bytes which can be transmitted
per transfer is unlimited. The first byte following a start condition should have the address field. The address field
can be transmitted by the master when the IIC-bus is operating in master mode. Each byte should be followed by
an acknowledge (ACK) bit. The MSB bit of Serial data and addresses are always sent first.

Write Mode Format with 7-bit Addresses

S | Slave Address 7bits|R/W| A DATA AlP
e
(Write) Data Transferred

(Data + Acknowledge)
Write Mode Format with 10-bit Addresses

Slave Address Slave Address
S 1st 7 bits RIWI A 2nd Byte g DATA AlP
11110XX "0"
(Write) Data Transferred

(Data + Acknowledge)
Read Mode Format with 7-bit Addresses

S |Slave Address 7 bits|R/W| A DATA AlP
nqn
(Read) Data Transferred

(Data + Acknowledge)

Read Mode Format with 10-bit Addresses

Slave Address Slave Address Slave Address
S 1st 7 bits RIWI A 2nd Byte Alrs 1st 7 Bits RIWIES B2ASIEA AlP
11110XX "o" "1
(Write) (Read) Data Transferred
(Data + Acknowledge)
NOTES:

1. S: Start, rS: Repeat Start, P: Stop, A: Acknowledge
2. O : From Master to Slave,[: from Slave to Master

Figure 14-3. lIC-Bus Interface Data Format

ELECTRONICS 14-3

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

D S0 0 B SR B B

[} \ 1

i ! |

: ! 1

1 ! 1

] L] |
! i Acknowledgement Acknowledgement ! i
! ' Signal from Receiver Signal from Receiver: '
! i ! i
i ! i !
' i e ' i
scL | ! \ 1\ [2)\ 7 8 9 1 2 \ /9 ['
1 \ ——_— 1 \
IS ! ACK T T PP
"

Byte Complete, Interrupt Clock Line Held Low While
within Receiver Interrupts are Serviced

Figure 14-4. Data Transfer on the lIC-Bus

ACK SIGNAL TRANSMISSION

To finish a one-byte transfer operation completely, the receiver should send an ACK bit to the transmitter. The
ACK pulse should occur at the ninth clock of the SCL line. Eight clocks are required for the one-byte data
transfer. The clock pulse required for the transmission of the ACK bit, should be generated by the master.

The transmitter should release the SDA line by making the SDA line High when the ACK clock pulse is received.
The receiver should also drive the SDA line Low during the ACK clock pulse so that the SDA is Low during the
High period of the ninth SCL pulse.

The ACK bit transmit function can be enable or disable by software (IICSTAT). However, the ACK pulse on the
ninth clock of SCL is required to complete a one-byte data transfer operation.

Clock to Output

Data Output by ! \
Trasmitter I

Data Output by

Receiver
[}
[}
SCL from 1 2 7 8 9
Master S _——

[} [}

[} [}

Start | T |
Condition | |

Clock Pulse for Acknowledgment

Figure 14-5. Acknowledge on the IIC-Bus

14-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

READ-WRITE OPERATION

In case of transmitter mode, after a data was transferred, the IIC-bus interface will wait until ICDS(IIC-bus Data
Shift Register) is written by a new date. Until the new data is written, the SCL line will be held low. After the new
data is written to [ICDS register, the SCL line will be released. The S3C3410X should wait the interrupt to know
the completion of transmission of current data. After getting the interrupt request, the CPU should write a new
data into [ICDS, again.

In case of receive mode, after a data is received, the IIC-bus interface will wait until ICDS register is read. Until
the new data is read out, the SCL line will be held low. After the new data is read out from IICDS register, the
SCL line will be released. The S3C3410X should wait the interrupt to know the completion of reception of new
data. After getting the interrupt request, the CPU should read data from IICDS.

BUS ARBITRATION PROCEDURES

Arbitration takes place on the SDA line to prevent the contention on the bus between two masters. If a master
with a SDA High level detects another master with a SDA active Low level, it will not indicate a data transfer
because the current level on the bus does not correspond to its own. The arbitration procedure will be extended
until the SDA line will be High.

But, in case of simultaneous lowering of the SDA line from masters, each master should evaluate whether or not
the mastership is allocated to itself. For the purpose of evaluation, each master should detect the address bits.
While each master generate the slaver address, it should also detect the address bit on the SDA line because the
lowering of SDA line is stronger than maintaining High on the line. For example, one master generate Low as first
address bit, while the other master is maintaining High. In this case, both master will be detect Low on the bus
because Low is stronger than High even if first master is trying to maintain High on the line. In this case, Low-
generating master as first address bit will get the mastership and High-generating master as first address bit
should withdraw the mastership. If both master generate Low as first address bit, there should be arbitration for
second address bit, again. This arbitration will be continued up to the end of last address bit.

ABORT CONDITION

If a slave receiver can not acknowledge the confirmation of the slave address, it should hold the level of the SDA
line High. In this case, the master should generate a Stop condition to abort the transfer.

If a master receiver is involved in the aborted transfer, it should signal the end of the slave transmit operation. It
does this by canceling the generation of an ACK in the master Rx mode. The slave transmitter should then
release the SDA to allow a master to generate a Stop condition.

ELECTRONICS 14-5

IIC-BUS INTERFACE

S3C3410X RISC MICROPROCESSOR

lIC-BUS INTERFACE SPECIAL REGISTERS

MULTI-MASTER lIC-BUS CONTROL REGISTER (IICCON)

Register Offset R/W Description Reset
Address Value
IICCON 0xe000 R/W | IIC-bus control register 0x0
IICCON Bit Description Initial State
Reserved [0] Reserved
BSSF [1] Busy Signal Status Flag: When CPU has read this bit, the "0" 0
status indicates that IIC-Bus is idle and the "1" status means IIC-
Bus is busy.
In case of writing to this bit, the "0" write operation asserts the
Stop signal on 1IC-Bus interface and the "1" asserts the Start
signal on lIC-Bus interface.
MS [3:2] Mode Selection: This field determines which [IC mode is 00
currently able to read/write data from/to ICDAT
00 = Slave receive mode 01 = Slave transmit mode
10 = Master receive mode 11 = Master transmit mode
ACKE® [4] Acknowledge Enable: This bit determines whether IIC-Bus 0
acknowledge is enabled or disabled.
0 = Disable ACK generation 1 = Enable ACK generation
BE [5] [IC-Bus Enable: This bit determines whether 1IC-Bus data 0
output is enabled or disabled.
0 = Disable Rx/Tx 1 = Enable Rx/Tx
Reserved [6] This bit should be to set "0"
Reset [71 If "1" is written to this bit, the IIC bus controller is reset to its 0

initial state

NOTE: Interfacing EEPROM, the ACK generation may be disabled in order to generate the STOP condition in Rx mode.

14-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR IIC-BUS INTERFACE

MULTI-MASTER [IC-BUS STATUS REGISTER (IICSTAT)

Register Offset R/W Description Reset
Address Value
ICSTAT 0xe001 R/W | IIC-bus status register 0x0
ICSTAT Bit Description Initial State
LRBSF [0] Last-received Bit Status Flag: This bit is automatically set to 0

"1" whenever an ACK signal is not received during a last bit
receive operation. When the last receive bit is zero, this is as
same meaning as the detection of an ACK signal. In this case,
Last-Received Bit Status Flag will be cleared.

GCSF [1] General Call Status Flag: This bit is automatically set to "1" 0
whenever "00000000b", General Call Value is issued as the
received slave address. When the Start/Stop condition is

detected, this bit of General Call Status Flag will be cleared.

MACSF [2] Master Address Call Status Flag: This bit is automatically set 0
to "1" whenever the received slave address matches the address
value in IICADD register. This bit will be cleared after Start/Stop
condition is detected.

ASF [3] Arbitration Status Flag: This bit is automatically set to "1" to 0
indicate that a bus arbitration has been failed during IIC-Bus
interface. This bit is also set to "0" to indicate the successful
arbitration for IIC-Bus interface

INTFLAG [4] Interrupt Pending Flag: This bit is 1IC-bus Tx/Rx interrupt 0
pending flag. It is impossible to write "1" into this bit. If this bit is
read as "1", IICSCL is tied to "L" and IIC is stopped. To resume
the operation, clear this bit by writing "0".

0 = 1) No interrupt pending (when read)
2) Clear pending condition (when write)

1 =1) Interrupt is pending (when read)
2) N/A (when write)

NOTE: A IIC-bus interrupt occurs 1) when a 1-byte transmit or receive operation is terminated, 2) when a general call or a
slave address match occurs, or 3) if bus arbitration fails. To measure the setup time of ICSDA before rising edge of
IICSCL, IICDS has to be written before clearing IIC interrupt pending flag bit by the setup time in Tx mode.

ELECTRONICS 14-7

IIC-BUS INTERFACE

S3C3410X RISC MICROPROCESSOR

MULTI-MASTER IIC-BUS ADDRESS REGISTER (IICADD)

Register Address R/W Description Reset Value
IICADD 0xe003 R/W | lIC-Bus transmit/receive address register 0x0
IICADD Bit Description Initial State
Reserved [0] Reserved 0
SA [7:1] Slave Address: 7-bit slave address, latched from the IIC-bus: 0000000b
When serial output enable=0 in the ICCON register,
IICADD is write-enabled. You can read the IICADD value at any
time, regardless of the current serial output enable bit (IICCON)
setting.
MULTI-MASTER IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (lICDS)
Register Address R/W Description Reset Value
IICDS 0xe002 R/W | lIC-Bus transmit/receive data shift register 0x0
IICDS Bit Description Initial State
DS [7:0] Data Shift: 8-bit data shift register for 1IC-bus Tx/Rx operation: 0x0
When serial output enable = 1 in the ICCON, IICDS is write-
enabled. You can read the IICDS value at any time, regardless
of the current serial output enable bit (ICCON) setting

14-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

IIC-BUS INTERFACE

MULTI-MASTER 1IC-BUS PRESCALER REGISTER (IICPS)

Register Address R/W Description Reset Value
[ICPS 0xe004 R/W [lIC-Bus Prescaler register Oxff
IICPS Bit Size Description Initial State
PS [7:0] Prescaler Value: This prescaler value is used to generate clock Oxff
of the 11IC-Bus clock.
The system clock is divided by (16 ~ (prescaler value +1)) to
make clock of the IIC block. If the prescaler value is zero, IIC
operation may work incorrectly.
MULTI-MASTER IIC-BUS PRESCALER COUNTER REGISTER (IICPCNT)
Register Address R/W Description Reset Value
ICPCNT 0xe005 R/W | lIC-Bus Prescaler Counter register 0x0
ICPCNT Bit Description Initial State
PCNT [7:0] Prescaler Counter Value: This 8-bit value is the value of the 0x0
prescaler counter. It is read(in test mode only) to check the
counter's current value
ELECTRONICS 14-9

IIC-BUS INTERFACE S3C3410X RISC MICROPROCESSOR

NOTES

14-10 ELECTRONICS

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

1 5 POWER MANAGEMENT

OVERVIEW

The Power Management Block in S3C3410X can manage the optimal power consumption for the given task by
selecting the optimal operation mode. The Power Management scheme in S3C3410X consists of five categories,
which are Normal, Slow, Idle, DMA Idle, and Stop mode. The key scheme of this power down mode is to
distribute the clock or slow-down clock to necessary block for the given task. By selecting optimal clocking
strategy, we can reduce the power consumption by getting rid of unnecessary power consumption for the given
task.

S3C3410X has five power-down modes. The following section describes each power-down mode. The transition
between the modes is not allowed freely. For available transitions among these modes, refer to Figure 15-1.

Interrupts, EINT
DMA_IDLE BIT=1
>

IDLE_BIT=1
Interrupts, EINT

NORMAL
(CS_BIT=011b)

SLOW
(CS_BIT=0thers)

EINT, Alarm interrupt
STOP_BIT=1

Figure 15-1. Power Management State Machine

ELECTRONICS 15-1

POWER MANAGEMENT S3C3410X RISC MICROPROCESSOR

POWER MANAGEMENT OPERATION

NORMAL MODE

In Normal mode, all peripherals and the basic blocks: such as CPU core, bus controller, memory controller,
interrupt controller, and clock controller, should work normally. In Normal mode, the power consumption will be
maximized.

SLOW MODE

The Slow mode can reduce power consumption by slowing down operation frequency. The operating frequency is
divide by n of MCLK. The divide ratio is determined by CS bits in the SYSCON register.

IDLE MODE

IDLE mode is invoked by the setting SYSCON][1] to "1". In IDLE mode, the operation of CPU is halted by
disconnecting the clock to CPU while some peripherals remain active.

These are two ways to escape from IDLE mode:

1. Execute a reset. All system and peripheral control registers are reset to their default value and the contents
of all data registers are retained. The reset automatically selects a slow clock (1/16) because SYSCON][5:3]
are cleared to "000b". if interrupt masked, a reset is the only way to escape from IDLE mode.

2. Any active interrupt happens, causing IDLE mode to be released. The interrupt routine will be serviced by
active CPU. After the interrupt is serviced, the CPU will return to the next instruction after instruction used for
IDLE mode entrance.

DMA IDLE MODE

The DMA Idle mode can be invoked by the setting SYSCONJ2] to "1". In DMA Idle mode, CPU operation will be
stopped while some peripherals remain active. This is same as IDLE mode. The difference between IDLE and
DMA IDLE mode is that any external DMA request can wake up CPU and make CPU sleep by the corresponding
DMA Acknowledge. Consequently, user can make CPU alive only during the DMA operation. This mode is
effective when there are infrequent external DMA request based on Single DMA Request/Acknowledge. This
mode is not effective for internal DMA request, Demand, or Block transfer mode. The main reason for this mode
is that we can save the power consumption during DMA operation by sleeping CPU when user want DMA
operation without CPU operation and when there are infrequent external DMA request.

These are three ways to release DMA Idle mode:

1. Execute areset. It is the same that Idle mode.
Any active interrupt happens, causing DMA Idle mode to be released. It is as same as IDLE mode.

The external DMA request makes DMA Idle mode to be released and Acknowledge makes CPU in IDLE
mode.

15-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

STOP MODE

Entering STOP Mode

STOP mode is invoked by the setting SYSCONJ0] to "1". In STOP mode, the operation of the CPU and all
peripherals should be halted. That is, the on-chip main oscillator stops and the supply current is reduced to less
than 1uA. All system functions stop when the clock "freezes", but data stored in the internal register file is
retained. STOP mode can be released by two ways: by a reset or by an external interrupt or alarm interrupt.

NOTE

Do not use STOP mode if you are using an external clock source because Xin input must be restricted
internal to VSS to reduce current leakage. Also, do not use STOP mode if program control execute in
DRAM memory because of DRAM leakage current. Therefore, please confirm status before the STOP
mode: STOP command in located Non-DRAM memory.

Wake-Up from STOP Mode
The S3C3410X can be escaped from STOP mode by external interrupt or by a reset.

Using RESET to Release STOP Mode: The STOP mode should be released when the RESET signal is
released. All system and peripheral control registers are reset to have their default hardware values and the
contents of data registers should be retained. A reset operation automatically selects a slow clock(MCLK/16)
because SYSCON][5:3] are cleared to "000b". After the programmed oscillation stabilization interval has elapsed,
the CPU starts the system initialization routine by fetching the program instruction stored in location 0xO.

Using an External Interrupt to Release STOP Mode: External interrupts and alarm interrupt can be used to
release STOP mode. Which interrupt you can use to release STOP mode in a given situation depends on the
current microcontroller's operating mode. The external interrupts of EINTO - EINT11 and alarm interrupt in the
S3C3410X can be used to release STOP mode :

Please note the following conditions for STOP mode release:

If user want to release STOP mode by using an external interrupt or alarm interrupt, the current values in
system and peripheral control registers should be unchanged. User can also program the duration of the
oscillation stabilization interval. To do this, user should make the appropriate control and clock setting before
entering STOP mode.

When the STOP mode is released by external interrupt or alarm interrupt, the SYSCON[5:3] setting remains
unchanged and the selected clock value is used.

The external interrupt should be serviced when the STOP mode release interrupt occurs. After interrupt
service routine, the program sequence should be return to the instruction after the instruction for STOP mode
entrance.

ELECTRONICS 15-3

POWER MANAGEMENT

S3C3410X RISC MICROPROCESSOR

VDD

RESET

Internal
RESET

Oscillator

BTCNT
Clock

BTCNT
Value

Oscillation Stabilization

Normal Operation Mode

.

/‘ 0.85VDD

: ' Reset Release
| Voltage
[}

[

Oscillator stabilization time

PRI

(L

BTCNT = 0x0

I

BTCNT = 0x10

| >
tWAIT =8192 ~ 16/ fosc

Basic timer increament and
CPU operations are IDLE mode

NOTE:

Figure 15-2. Oscillation stabilization Time on RESET

Duration of the stabilization wait time, tWAIT, when it is released by a Power-on reset is (213 * 16/ fosc).

15-4

ELECTRONICS

S3C3410X RISC MICROPROCESSOR POWER MANAGEMENT

Normal Mode P STOP Mode P Oscillation Stabilization Time

4
A
4
A

External

Interrupt \

RESET

s [N U

R R R—— BTONT=0d0_
BTCNT = 0x0
tWAIT
CS_BIT tWAIT tWAIT (When fosc is 40MHz)
00b 213 16/ fosc 3.28 ms
01b 2127 16/ fosc 1.64 ms
10b 2117 16/ fosc 0.82 ms
11b 2°” 16/ fosc 0.205 ms

Figure 15-3. Oscillation Stabilization Time on STOP Mode Release

NOTE: Duration of the stabilization wait time, tWAIT, it is released by an interrupt is determined by the setting in basic
timer control register, BTCNT

ELECTRONICS 15-5

POWER MANAGEMENT

S3C3410X RISC MICROPROCESSOR

POWER MANAGEMENT SPECIAL FUNCTION REGISTERS

SYSTEM CONTROL REGISTER (SYSCON)

The system control register is used to control the system operation of the chip.

the interrupt

0 = No requested 1 = Requested

Register Offset R/W Description Reset
Address Value
SYSCON 0xd003 R/W | System control register 0x0
SYSCON Bit Description Initial State
STOP [0] STOP Control: This bit value determines whether STOP mode 0
is enabled or disabled.
0 = Normal operation 1 = Entering STOP mode
IDLE [1] IDLE Control: This bit value determines whether IDLE mode is 0
enabled or disabled.
0 = Normal operation 1 = Entering IDLE mode
DMA_IDLE [2] DMA IDLE Control: This bit value determines whether 0
DMA_IDLE mode is enabled or disable.
0 = Normal operation 1 = Entering DMA_IDLE mode
CS [5:3] Clock Select: This field determines frequency of system clock. 000
000 = MCLK / 16 001 =MCLK /8
010 =MCLK /2 011 = MCLK
100 = MCLK / 1024
GIE [6] Global Interrupt Enable: This bit control to enable or disable 0

15-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

1 6 RTC (REAL TIME CLOCK)

OVERVIEW

The RTC(Real Time Clock) unit can be operated by the backup battery although the system power is turned off.
The RTC can transmit 8-bit data to CPU as BCD(Binary Coded Decimal) values using STRB/LDRB ARM
operation. The data include second, minute, hour, date, day, month, and year. The RTC unit works with an

external 32.768KHz crystal and also can perform the alarm function

FEATURE

BCD number: second, minute, hour, date, day, month, year
Leap year generator

Alarm function: alarm interrupt.

Year 2000 problem is removed.

Independent power pin (RTCVDD)

RTC Time interrupt (SEC/MIN/HOUR)

REAL TIME CLOCK OPERATION

EXTAL1 €4—— OSC & Frequency

XTAL1 p| Division Logic Leap Year Generator

A A A 4 4

SEC MIN HOUR DAY DATE MON YEAR

—» INT_RTCT

"
?

A A A A A f‘ A

RTCCON Alarm Generator

L » INT_RTCA

4 A

A A 4 A

SYSTEM BUS

Figure 16-1. Real Time Clock Block Diagram

ELECTRONICS

16-1

REAL TIME CLOCK S3C3410X RISC MICROPROCESSOR

LEAP YEAR GENERATOR

This block can determine whether the last date of each month is 28, 29, 30, or 31, based on data from BCDDAY,
BCDMON, and BCDYEAR. This block can also consider the leap year in deciding the last date. An 8-bit counter
can only represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. For example, it can not
discriminate between 1900 and 2000. To solve this problem, the RTC block in S3C3410X has hard-wired logic to
support the leap year in 2000. Please note 1900 is not leap year while 2000 is leap year. Therefore, two digits of
00 in S3C3410X denote 2000, not 1900.

SAFE READ OF SEC, MIN, HOUR, DAY, MONTH, AND YEAR

It is required to set bit 0 of the RTCCON register to read and write the register in RTC block. To display the sec.,
min., hour, day, month, and year, the CPU should read the data in BCDSEC, BCDMIN, BCDHOUR, BCDDAY,
BCDDATE, BCDMON, and BCDYEAR register in RTC block. But, there may be one second deviation because of
multiple register read. For example, when user read registers from BCDYEAR to BCDMIN register, we assume
that the result was 1959(Year), 12(Month), 31(Date), 23(Hour) and 59(Minute). When user read BCDSEC
register, if the result is value from 1 to 59(Second), there is no problem. But, if the result is 0 sec., there will be
possibility for year, month, data, hour, and minute to be changed into 1960(Year), 1(Month), 1(Date), O(Hour) and
0(Minute) because of one second deviation as above-mentioned. In this case, user should read from BCDYEAR
to BCDSEC again if BCDSEC is zero.

BACKUP BATTERY OPERATION

The RTC logic can be driven by the backup battery, which supplies the power through the RTCVDD pin into RTC
block, even if the system power is off. In this case of power-off, the interfaces of the CPU and RTC logic should
be blocked and the backup battery only drives the oscillation circuit and the BCD counters to minimize power
dissipation.

ALARM FUNCTION

The RTC can generate an alarm signal at a specified time in the power down mode or normal operation mode. In
normal operation mode, the alarm interrupt (INT_RTCA) is activated. The RTC alarm register, RTCALM, can
determine the alarm enable/disable and the condition of the alarm time setting.

RTC TIMER INTERRUPT OPERATION

The RTC generates an time interrupt at each sec/minute/hour/day in normal operation mode. In normal operation
mode, the RTC time interrupt (INT_RTCT) is activated. The RTC time interrupt control register, RINTCON,
determines the RTC time (SEC/MIN/HOUR/DAY) interrupt enable.

16-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR REAL TIME CLOCK

REAL TIME CLOCK SPECIAL REGISTERS

REAL TIME CLOCK CONTROL REGISTER (RTCCON)

The RTCCON register consists of 4 bits such as RTCEN which controls the read/write enable of the BCD
registers, CLKSEL, CNTSEL, and CLKRST for testing.

RTCEN bit can control all interfaces between the CPU and the RTC, so it should be set to 1 in an RTC control
routine to enable data read/write after a system reset. Also before power off, the RTCEN bit should be cleared to
0 to prevent an inadvertent writing into RTC registers.

Register Offset R/W Description Reset
Address Value
RTCCON 0xa013 R/W | RTC control register 0x0
RTCCON Bit Description Initial State
RTCEN [0] RTC read/write enable 0
0 = Disable, 1 =Enable
CLKSEL [1] BCD clock select 0

0 = XTAL 1/2*° divided clock
1 = Reserved (XTAL clock)

CNTSEL [2] BCD count select 0
0 = Merge BCD counters
1 = Reserved (Separate BCD counters)

CLKRST [3] RTC clock count reset 0
0 =Noreset, 1=Reset

ELECTRONICS 16-3

REAL TIME CLOCK

S3C3410X RISC MICROPROCESSOR

RTC ALARM CONTROL REGISTER (RTCALM)

RTCALM register can determine the alarm enable/disable and the alarm time. Note that the RTCALM register
can generate the alarm signal through INT_RTCA.

Register Offset R/W Description Reset
Address Value
RTCALM 0xa012 R/W | RTC alarm control register 0x0
RTCALM Bit Description Initial State
SECEN [0] Second alarm enable 0
0 = Disable, 1 =Enable
MINEN [1] Minute alarm enable 0
0 = Disable, 1 =Enable
HOUREN [2] Hour alarm enable 0
0 = Disable, 1 =Enable
DAYEN [3] Day alarm enable 0
0 = Disable, 1 =Enable
MONREN 4] Month alarm enable 0
0 = Disable, 1 =Enable
YEAREN [5] Year alarm enable 0
0 = Disable, 1 =Enable
ALMEN [6] Alarm global enable 0
0 = Disable, 1 =Enable

16-4

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

REAL TIME CLOCK

ALARM SECOND DATA REGISTER (ALMSEC)

Register Offset R/W Description Reset
Address Value
ALMSEC 0xa033 R/W | Alarm second data register 0x59
ALMSEC Bit Description Initial State
SECDATA [6:4] BCD value for alarm second 101
from 0 to 5
[3:0] from 0 to 9 1001
ALARM MIN DATA REGISTER (ALMMIN)
Register Offset R/W Description Reset
Address Value
ALMMIN 0xa032 R/W | Alarm minute data register 0x59
ALMMIN Bit Description Initial State
MINDATA [6:4] BCD value for alarm minute 101
from 0 to 5
[3:0] from O to 9 1001
ALARM HOUR DATA REGISTER (ALMHOUR)
Register Offset R/W Description Reset
Address Value
ALMHOUR 0xa031 R/W | Alarm hour data register 0x23
ALMHOUR Bit Description Initial State
HOURDATA [5:4] BCD value for alarm hour 10
from O to 2
[3:0] from 0 to 9 0011

ELECTRONICS

16-5

REAL TIME CLOCK

S3C3410X RISC MICROPROCESSOR

ALARM DAY DATA REGISTER (ALMDAY)

Register Offset R/W Description Reset
Address Value
ALMDAY 0xa037 R/W | Alarm day data register 0x31
ALMDAY Bit Description Initial State
DAYDATA [5:4] BCD value for alarm day, from 0 to 28, 29, 30, 31
fromOto 3 11
[3:0] from O to 9 0001
ALARM MON DATA REGISTER (ALMMON)
Register Offset R/W Description Reset
Address Value
ALMMON 0xa036 R/W | Alarm month data register 0x12
ALMMON Bit Description Initial State
MONDATA 4] BCD value for alarm month
fromOto 1 1
[3:0] from O to 9 0010
ALARM YEAR DATA REGISTER (ALMYEAR)
Register Offset R/W Description Reset
Address Value
ALMYEAR 0xa035 R/W | Alarm year data register 0x99
ALMYEAR Bit Description Initial State
YEARDATA [7:0] BCD value for year 0x99

from 00 to 99

16-6

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

REAL TIME CLOCK

BCD SECOND REGISTER (BCDSEC)

Register Offset R/W Description Reset
Address Value
BCDSEC 0xa023 R/W | BCD second register Undef.
BCDSEC Bit Description Initial State
SECDATA [6:4] BCD value for second -
from 0 to 5
[3:0] from 0 to 9 -
BCD MINUTE REGISTER (BCDMIN)
Register Offset R/W Description Reset
Address Value
BCDMIN 0xa022 R/W | BCD minute register Undef.
BCDMIN Bit Description Initial State
MINDATA [6:4] BCD value for minute -
from 0 to 5
[3:0] from 0 to 9 -
BCD HOUR REGISTER (BCDHOUR)
Register Offset R/W Description Reset
Address Value
BCDHOUR 0xa021 R/W | BCD hour register Undef.
BCDHOUR Bit Description Initial State
HOURDATA [5:4] BCD value for hour -
from O to 2
[3:0] from 0 to 9 -

ELECTRONICS

16-7

REAL TIME CLOCK

S3C3410X RISC MICROPROCESSOR

BCD DAY REGISTER (BCDDAY)

Register Offset R/W Description Reset
Address Value
BCDDAY 0xa027 R/W | BCD day register Undef.
BCDDAY Bit Description Initial State
DAYDATA [5:4] BCD value for hour -
fromOto 3
[3:0] from 0 to 9 -
BCD DATE REGISTER (BCDDATE)
Register Offset R/W Description Reset
Address Value
BCDDATE 0xa020 R/W | BCD date register Undef.
BCDDATE Bit Description Initial State
DATEDATA [2:0] BCD value for date -
from1to 7
BCD MONTH REGISTER (BCDMON)
Register Offset R/W Description Reset
Address Value
BCDMON 0xa026 R/W | BCD month register Undef.
BCDMON Bit Description Initial State
MONDATA 4] BCD value for month -
fromOto 1
[3:0] from 0 to 9 -

16-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR

REAL TIME CLOCK

BCD YEAR REGISTER (BCDYEAR)

Register Offset R/W Description Reset
Address Value
BCDYEAR 0xa025 R/W | BCD year register Undef.
BCDMON Bit Description Initial State
YEARDATA [7:0] BCD value for year -
from 00 to 99

ELECTRONICS

16-9

REAL TIME CLOCK

S3C3410X RISC MICROPROCESSOR

RTC TIME INTERRUPT PENDING REGISTER (RINTPND)

Register Offset R/W Description Reset
Address Value
RINTPND 0xa010 R/W | RTC Time interrupt pending register 0x0
RINTPND Bit Description Initial State
INT_SEC [0] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = RTC SEC interrupt is pending
INT_MIN [1] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = RTC MIN interrupt is pending
INT_HOUR [2] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = RTC HOUR interrupt is pending
INT_DAY [3] 0 = No interrupt pending 0
0 = Clear interrupt pending condition (when write)
1 = RTC DAY interrupt is pending
RTC TIME INTERRUPT CONTROL REGISTER (RINTCON)
Register Offset R/W Description Reset
Address Value
RINTCON Oxa011 R/W | RTC Time interrupt control register 0x0
RINTCON Bit Description Initial State
INT_SEC [0] Setting RTC Time interrupt enable of SEC 0
0 = Disable 1 = Enable
INT_MIN [1] Setting RTC Time interrupt enable of MIN 0
0 = Disable 1 = Enable
INT_HOUR [2] Setting RTC Time interrupt enable of HOUR 0
0 = Disable 1 = Enable
INT_DAY [3] Setting RTC Time interrupt enable of DAY 0

0 = Disable 1 = Enable

16-10

ELECTRONICS

S3C3410X RISC

MICROPROCESSOR

ELECTRICAL DATA

ELECTRICAL DATA

ABSOLUTE MAXIMUM RATINGS
Table 17-1. Absolute Maximum Rating

Symbol Parameter Rating Unit

Vb DC Supply Voltage —-0.3 to 3.8 Vv

Vin DC Input Voltage —-0.3to Vpp +0.3 Vv
I DC Input Current +10 mA

Ta Operating Temperature 0 to 70 °C

Tste Storage Temperature —40 to 125 °C
RTCVpp Battery Voltage for RTC 2.5 to Vpp \Y

ELECTRONICS

17-1

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

D.C. ELECTRICAL CHARACTERISTICS

Table 17-2. DC Electrical Characteristics
(Vop =3.3+0.3V, TA=01t0 70 °C)

Symbol Parameters Conditions Min Type Max Unit
Viy High level input voltage V
LVCMOS Interface 2.0
Schmitt-trigger Interface 2.3
RESET Voo~ 0.8
XTAL, EXTAL Vpp — 0.3
Vi Low level input voltage \
LVCMOS Interface 0.8
Schmitt-trigger Interface 0.8
RESET Vpp ~ 0.2
XTAL, EXTAL 0.4
VT Switching threshold LVCMOS 14 \%
VT+ Schmitt trigger, positive-going | LVCOMS 2.3 V
threshold
VT- Schmitt trigger, negative-going | LVCMOS 0.8 \Y,
threshold
I High level input current UA
Input buffer Vin = Vbp -10 10
Input buffer with pull-up 10 60 90
n Low level input current UA
Input buffer Vin = Vss -10 10
Input buffer with pull-up -90 -60 -10
Vou High level output voltage Vv
Type B4, B8 lon =-1 UA Vpp— 0.05
Type B4 lon = -4 mA 2.4
Type B8 lon = -8 mA 2.4
VoL Low level output voltage Vv
Type B4, B8 lon = 1 UA 0.05
Type B4 lon =4 mA 0.4
Type B8 lon = 8 MA 0.4
loz Tri-state output leakage current | Vour=Vss Of Vpp -10 10 UA
los Output short circuit current Vpp=3.6V, Vo=Vpp 210 mA
Vpp=3.6V, Vo=Vss -170 mA
Cin Input capacitance (@) Any Input and bi- 4 pF
directional buffers
Cour Output capacitance (@) Any Output buffer 4 pF
NOTES:
1. Type B4 means 4mA output driver cell, and Type B8 means 8mA output driver cells.
2. This value excludes package parasitic.
17-2 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ELECTRICAL DATA

Typical Quiescent Supply Current on VDD @ Normal Mode

Test Condition 1 : Cache off, Write buffer off, and ROM access

10 MHz 20 MHz 30MHz 40MHz
3.0V 9.06 16.52 23.62 32.96
33V 10.40 18.72 27.38 37.46
3.6V 11.80 20.96 31.06 42.24

Test Condition 2 : Cache on, Write buffer on, and cache hit operation at SDRAM interface

10 MHz 20 MHz 30MHz 40MHz
30V 14.74 27.12 39.68 54.24
3.3V 16.72 30.66 45.58 61.54
3.6V 18.90 34.38 51.42 69.18

Test Condition 3 : Cache on, Write buffer on, and DMA transfer(SDRAM to SDRAM, Half-word transfer mode)

10 MHz 20 MHz 30MHz 40MHz
30V 22.0 42.0 62.0 84.0
3.3V 25.0 47.0 70.0 94.0
3.6V 28.0 53.0 79.0 104.0
Typical Quiescent Supply Current on VDD @ IDLE Mode
10 MHz 20 MHz 30MHz 40MHz
30V 3.26 4,78 6.16 9.64
3.3V 3.94 5.54 7.78 11.30
36V 4.62 6.44 9.28 13.14
Typical Quiescent Supply Current on VDD @ STOP Mode
10 MHz 20 MHz 30MHz 40MHz
3.0V 14 uA
3.3V 15 uA
3.6V 16 uA

ELECTRONICS

17-3

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

50

40

30

20

Spec. Guaranteed Area

10

26 27 28 29 30

w

32 33 34 35 36 37 38

Figure 17-1. Typical Operating Voltage Range

17-4 ELECTRONICS

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

A.C. ELECTRICAL CHARACTERISTICS

tXTALCYC

1/2 VDD 7— /

Figure 17-2. EXTALO Clock Timing

A
A

Z 1/2 vDD

Xin
(EXTALO) J

tSCLKDLY
_> <—
SeHe m

Figure 17-3. Xin(EXTALO)/SCLK Timing

ELECTRONICS 17-5

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

AV AVAVAVAVAVAVAYAS
tAD tAD
—>{ [« —>| [———
A[23:0] X
tCSD tCSD
—> [« —> [———
nCS
tOED tOED
—>| [« — j———
nOE
tWED tWED
—> — —> [
nWE / \
tWBED tWBED
— — —> [
nWBE / \
tRDH tRDH
_> <—
DATA
(Read)
RD RD
twWDD <t S » t S—>
—>
DATA I
(Write)

Figure 17-4. ROM/SRAM Bus Timing

17-6 ELECTRONICS

S3C3410X RISC MICROPROCESSOR

ELECTRICAL DATA

= AVAVAYAVAVAVAYAVAVAVAN
tDAD tDAD tDAD
—> —> —p
A[23:0] X
tDRASD tDRASD
’ ——
nRAS
tDCASD tDCASD tDCASD tDCASD
—» —» —>
nCAS
tOED/tWED tOED/WED
—> — >
nOE/
nWBEO
tPDRDH tPDRDH
—>| [« —> [«
DATA
(Read)
tEDRDH tEDRDH
—> [——— —> [———
DATA //
(Read) \\
tDWDD tDWDD tDWDD
— — —» — —
DATA
(Write)

Figure 17-5. DRAM (Fast Page/EDO) Bus Timing

tDRASD
—>

nRAS

—»]

tDCASD

nCAS

—~
—~

tDCASD

tDRASD

=
—~

Figure 17-6. DRAM CBR Refresh Timing

ELECTRONICS

ELECTRICAL DATA

S3C3410X RISC MICROPROCESSOR

SCLK _j

AYAVAVAVAUAVAVAY AW

L\

SCKE

nSCS

nSRAS

| tRASD

tCASD

nSCAS

ADDR

BA

A10/AP

nWE

DATA

tSDWD

Da

(CL=2)

—
v
(o

=l

_ tDQMD

DQM

Figure 17-7. SDRAM Bus Timing (Single Write and Burst Read)

17-8

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

sax [(UAVA

tDR

] EQH_
NnDREQ /

tDACKD

—>]
nDACK /
)

Figure 17-8. External DMA Timing

\
\—

=
~

s

—
)

tscL
tSCLHIGH | tSCLLOW |
Lad

< L

IICSCL \

tSTOPH tBUF tSTART tSDAS] tSDAH

IICSDA [

Figure 17-9. lIC Interface Timing

A A

ELECTRONICS 17-9

ELECTRICAL DATA

S3C3410X RISC MICROPROCESSOR

Table 17-3. Clock Timing

(Voo = 3.3 £ 0.3V, To = 0to 70 °C, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit
Crystal clock input frequency fXTAL 40 MHz
Crystal clock input cycle time tXTALCYC 25 ns
Xin to SCLK delay time tSCLKDLY 17.2 ns
Table 17-4. DMA Controller Timing
(Voo = 3.3+ 0.3V, To =0to 70 °C, Operating Frequency = 40 MHz)
Parameter Symbol Min Typ Max Unit
NDREQ hold time tDREQS 4.46 ns
nDACk delay time tDACKD 2.62 ns
Table 17-5. 1IC Interface Timing
(Voo = 3.3+ 0.3V, To =0to 70 °C, Operating Frequency = 40 MHz)
Parameter Symbol Min Typ Max Unit
SCL high level pulse width | 100 KHz tSCLHIGH 4.0 us
400 KHz 0.6
SCL low level pulse width 100 KHz tSCLLOW 4.7 us
400 KHz 1.3
Bus free time 100 KHz tBUF 4.7 us
between STOP and START | 400 KHz 1.3
START hold time 100 KHz tSTAH 4.0 us
400 KHz 0.6
SDA hold time 100 KHz tSDAH 0 us
400 KHz 0 0.9
SDA setup time 100 KHz tSDAS 250 ns
400 KHz 100
STOP hold time 100 KHz tSTOS 4.7 us
400 KHz 0.6

17-10

ELECTRONICS

S3C3410X RISC MICROPROCESSOR ELECTRICAL DATA

Table 17-6. Memory Interface Timing

(Voo = 3.3+ 0.3V, To =0to 70 °C, Operating Frequency = 40 MHz)

Parameter Symbol Min Typ Max Unit
ROM/SRAM address delay time tap 13.41 ns
ROM/SRAM chip select delay time tcsp 10.87 ns
ROM/SRAM read enable delay time toep 10.44 ns
ROM/SRAM write enable delay time twep 12.83 ns
ROM/SRAM write byte enable delay time tweED 12.50 ns
ROM/SRAM read data setup time trps 5.14 ns
ROM/SRAM read data hold time trpH 0 ns
ROM/SRAM write data delay time twoD 14.30 ns
DRAM column address delay time thcap 12.03 ns
DRAM row address delay time tbrAD 11.28 ns
DRAM RAS delay time tbrASD 11.76 ns
DRAM CAS delay time thcasp 12.40 ns
DRAM read enable delay time thoED 10.37 ns
DRAM write enable delay time tbweD 12.02 ns
DRAM(FP) read data hold time toDRDH 2.18 ns
DRAM(EDO) read data hold time teDRDH 2.79 ns
DRAM write data delay time towob 11.23 ns
SDRAM chip select delay time tscsp 16.25 ns
SDRAM SRAS delay time thaASD 14.89 ns
SDRAM SCAS delay time teasp 15.00 ns
SDRAM address delay time tsap 13.27 ns
SDRAM bank address delay time tsaD 13.14 ns
SDRAM A10 address delay time tapD 13.20 ns
SDRAM data write delay time tspwo 14.30 ns
SDRAM data read hold time tsprH 0 ns
SDRAM write enable delay time tspwED 14.83 ns
SDRAM DQM delay time tomD 14.48 ns
SDRAM SCKE delay time tsckep 14.59 ns
NWAIT setup time twalT 10 ns

ELECTRONICS 17-11

ELECTRICAL DATA S3C3410X RISC MICROPROCESSOR

NOTES

17-12 ELECTRONICS

S3C3410X RISC MICROPROCESSOR MECHANICAL DATA

1 8 MECHANICAL DATA

OVERVIEW

The S3C3410X is available in a 128-QFP-1420 package.

22.00+0.30

20.00 £ 0.20 0-8

A
\ 4

+0.10
¥ 0.15-0.05

A
\ 4

16.00 +0.30

14.00 +0.20

S[010WAX

== 128-QFP-1420

BEB oo o

|.75)

" TRy | S

‘| |‘ 0.50 +0.20

v
Y

11 [}
#1 : : +0.10 :
P 0.20 -0.05 ‘

G010 VAX

‘0.05 MIN

(0.75) >

<P

2.10 +0.10

A
A

2.40 MAX

A

S[otomAY]

0.50 +0.20 |

|

A

NOTE: Dimensions are in millimeters.

Figure 18-1. 128-QFP-1420 Package Dimensions

ELECTRONICS 18-1

MECHANICAL DATA S3C3410X RISC MICROPROCESSOR

NOTES

18-2 ELECTRONICS

