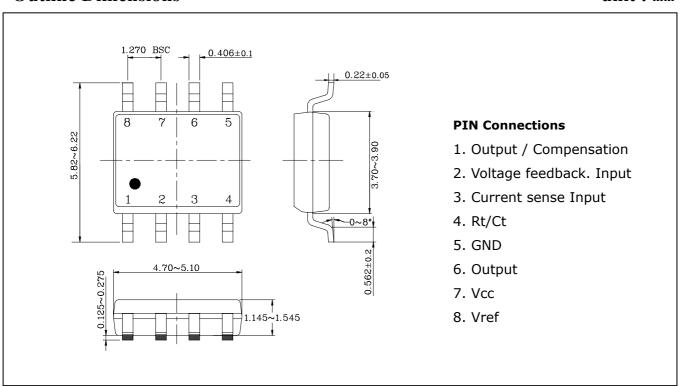


Descriptions

The S3842, high performance current mode controller, Provides the necessary features to off-line and DC-DC fixed frequency current control applications offering the designer a cost effective solution with minimal external components. Internally protection circuity includes built-in input and reference under-voltage lockout and current limiting with hysteresis. Also other characteristics of internal circuit provide improved line regulation, enhanced load response, trimmed oscillation for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator and totempole output designed to source and sink high peak current from a capacitive load such as the gate of a power MOSFET.


Features

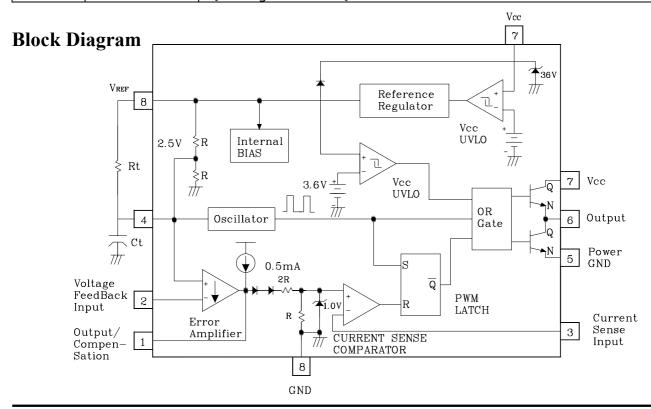
- Optimized for off-line control
- Low start up and operating current
- Pulse by pulse current limiting
- Enhanced load response characteristic
 Automatic feed forward compensation
- Current mode operation to 500 klb
- Under voltage lockout with 6V hysteresis
- Internally trimmed bandgap reference about 5V

Ordering Information

Type NO.	Marking	Package Code
S3842	S3842	SOP-8

Outline Dimensions unit: mm

Absolute Maximum Ratings


Ta=25°C

Characteristic	Symbol	Ratings	Unit
Supply voltage	V_{cc}	30	V
Current Sense and V _{fb} Input	V_{IN}	-0.3 to V_{cc}	V
Total Power Supply and Zener Current	$I_{CC}+I_{Z}$	30	mA
Output Sink of Source Current	I_{o}	1	Α
Error AMP Output Sink Current	$ m I_{eo}$	10	mA
Operating Ambient Temperature	T _a	0 to 70	°C
Storage Temperature Range	T_{stg}	-65 to 150	°C
Power Dissipation at T _a ≤ 50°C	P_d	1	W

note) All voltages are with respect to PIN5, and current are positive into the specified pin.

PIN Description

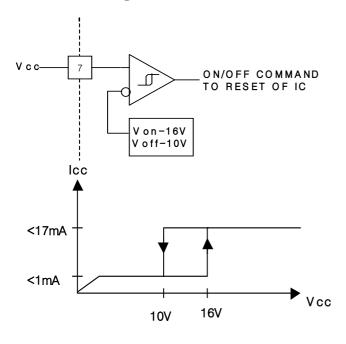
I II (Deposition				
PIN NO	Function	Description		
1	Compensation	Error amplifier output and is made available for loop compensation.		
2	Voltage feedback	Inverting input of error amplifier, normally connected to the switching power supply output through a resistor driver.		
3	Current sense	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output.		
4	R _t /C _t	The oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_t to Vref and capacitor C_t to ground.		
5	Ground	This pin is the combined control circuitry and power ground.		
6	Output	This output directly drives the gate of a power MOSFET. Peak current up to 1.0A are sourced and sinked by this pin.		
7	V_{CC}	This pin is the positive supply of the control IC.		
8	Vref	This is the reference output. it provides charging current for capacitor C_t through resistor R_t .		

Electrical Characteristics

(Unless otherwise stated, these specifications apply for $0 \le \text{Ta} \le 70^{\circ}\text{C}$; $V_{CC} = 15V(\text{Note.4})$, $R_L = 10^{\text{k}\Omega}$, $C_L = 3.3 \text{nF}$)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. Reference Section					•	
$ \begin{array}{c} \text{Load Regulation} & \triangle \text{Vref} & \text{ImA} \leq I_0 \leq 20 \text{mA} & - & 6 & 25 & \text{mV} \\ \text{Temperature Stability} & \triangle V_T / \triangle V_T & (\text{Note 1}) & - & 0.2 & 0.4 & \text{mV}/^{\circ}C \\ \text{Output Noise Voltage} & V_n & 10 \text{Hz} \leq f \leq 10 \text{KHz}, T_a = 25^{\circ}C(\text{Note}) & - & 50 & - & \text{uV} \\ \text{Long Term Stability} & S & T_a = 125^{\circ}C, 1000 \text{Hrs} & (\text{Note 1}) & - & 5 & - & \text{mV} \\ \text{Output Short Circuit} & I_{SC} & - & -30 & -100 & -180 & \text{mA} \\ \textbf{2. Oscillator Section} & & & & & & & & & & & & & & & & & & &$	Output Voltage	Vref	$Ta=25$ °C, $I_O=1$ mA	4.90	5.00	5.10	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Line Regulation	△Vref	$12V \le V_{CC} \le 25V$	1	6	20	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load Regulation	△Vref	$1mA \leq I_O \leq 20mA$	-	6	25	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature Stability	$\triangle V_T / \triangle V_T$	(Note 1)	-	0.2	0.4	mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Noise Voltage	V _n		-	50	-	uV
2. Oscillator Section Initial Accuracy f_{SC} $T_a=25^{\circ}C$ 47 52 57 KHz Voltage Stability $\triangle f/\triangle V$ $12 \le V_a \le 25V$ $-$ 0.05 1.0 % Temperature Stability $\triangle f/\triangle T$ $T_{min} \le T_a \le T_{max}$ (Note 1) $-$ 5 $-$ % Amplitude V_4 V_{PIN4} Peak to Peak $-$ 1.7 $ V$ 3. Error Amp Section Input Voltage V_2 $V_{PIN1}=2.5V$ 2.42 2.50 2.58 V Input Bias Current I_b $ -0.3$ -2.0 $/A$ Open Loop Voltage Gain A_{VO1} $2V \le V_O \le 4V$ 65 90 $ 48$ Supply Voltage Rejection SVR $12V \le V_a \le 25V$ 60 70 $ 48$ Output Sink Current I_0 $V_{PIN2}=2.7V$, $V_{PIN1}=1.1V$ 2 6 $ mA$ Output Source Current I_0 $V_{PIN2}=2.3V$, $V_{PIN2}=5V$ -0.5 -0.8 $ mA$ Vou High V_c V_{C1} $V_{PIN2}=2.7V$, $V_{PIN2}=2.7V$, $V_{PIN3}=5V$ -0.5 -0.8 $ -$	Long Term Stability	S	T _a =125°C, 1000Hrs (Note 1)	-	5	-	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Short Circuit	I_{SC}	-	-30	-100	-180	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Oscillator Section	1	,		ī	T	
Temperature Stability $\triangle f/\triangle T$ $T_{min} \le T_a \le T_{max}$ (Note 1) - 5 - 9% Amplitude V_4 V_{PIN4} Peak to Peak - 1.7 - V_5	Initial Accuracy	f _{SC}	T _a =25°C	47	52	57	KHz
Amplitude	Voltage Stability	$\triangle f / \triangle V$	12 ≤ V _a ≤25V	-	0.05	1.0	%
Sample Section Section Section Section Section Input Voltage V2 V2 V2 V2 V3 V4 V4 V5 V5 V5 V5 V5 V5	Temperature Stability	△f /△T	$T_{min} \le T_a \le T_{max}$ (Note 1)	-	5	-	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Amplitude	V_4	V _{PIN4} Peak to Peak	-	1.7	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. Error Amp Section						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Voltage	V ₂	V _{PIN1} =2.5V	2.42	2.50	2.58	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Bias Current	${ m I_b}$	-	ı	-0.3	-2.0	μA
Output Sink Current I_{O} $V_{PIN2}=2.7V, V_{PIN1}=1.1V$ 2 6 $ mA$ Output Source Current I_{O} $V_{PIN2}=2.3V, V_{PIN1}=5V$ -0.5 -0.8 $ mA$ V_{OUT} High V_{Ch} $V_{PIN2}=2.3V, R_{L}=15 ^{kQ}$ to Ground 5 6 $ V$ V_{OUT} Low V_{C1} $V_{PIN2}=2.7V, R_{L}=15 ^{kQ}$ Pin8 $ 0.7$ 1.1 V 0.7	Open Loop Voltage Gain	A _{VO1}	$2V \leq V_0 \leq 4V$	65	90	-	dB
Output Source Current I_O $V_{PIN2} = 2.3V$, $V_{PIN1} = 5V$ -0.5 -0.8 $-$ mA V_{OUT} High V_{ch} $V_{PIN2} = 2.3V$, $R_L = 15 \text{k} \odot$ to Ground 5 6 $ V$ V_{OUT} Low V_{c1} $V_{PIN2} = 2.7V$, $R_L = 15 \text{k} \odot$ Pin8 $ 0.7$ 1.1 V 4. Current Sense Section G_V (Note 2 & 3) 2.8 3.0 3.2 V/V Maximum Input Signal V_3 $V_{PIN 1} = 5V$ (Note 2) 0.9 1.0 1.1 V Supply Volt Rejection SVR $12 \le V_a \le 25V$ (Note 2) $ 70$ $ dB$ Input Bias Current I_b $ -$	Supply Voltage Rejection	SVR	$12V \leq V_a \leq 25V$	60	70	-	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Sink Current	I_{O}	V _{PIN2} =2.7V, V _{PIN1} =1.1V	2	6	-	mA
$V_{\text{OUT}} \text{Low} \qquad V_{\text{C1}} \qquad V_{\text{PIN2}} = 2.7 \text{V}, \; R_{\text{L}} = 15 \text{k} \odot \; \text{Pin8} \qquad - \qquad 0.7 \qquad 1.1 \qquad \text{V}$ $\textbf{4. Current Sense Section}$ $Gain \qquad G_{\text{V}} \qquad (\text{Note 2 & 3}) \qquad 2.8 \qquad 3.0 \qquad 3.2 \qquad \text{V/V}$ $\text{Maximum Input Signal} \qquad V_{3} \qquad V_{\text{PIN 1}} = 5 \text{V} \; (\text{Note 2}) \qquad 0.9 \qquad 1.0 \qquad 1.1 \qquad \text{V}$ $\text{Supply Volt Rejection} \qquad \text{SVR} \qquad 12 \leq V_{\text{a}} \leq 25 \text{V} \; (\text{Note 2}) \qquad - \qquad 70 \qquad - \qquad \text{dB}$ $\text{Input Bias Current} \qquad I_{\text{b}} \qquad - \qquad - \qquad - \qquad 2 \qquad -10 \qquad \mu \text{A}$ $\textbf{5. Output Section}$ $Output \text{Low Level} \qquad V_{\text{Ol}} \qquad \frac{I_{\text{SINK}} = 20 \text{mA}}{I_{\text{SINK}} = 20 \text{mA}} \qquad - \qquad 0.1 \qquad 0.4 \qquad \text{V}$ $\text{Output High Level} \qquad V_{\text{Oh}} \qquad \frac{I_{\text{SOURCE}} = 20 \text{mA}}{I_{\text{SOURCE}} = 200 \text{mA}} \qquad 13.0 \qquad 13.5 \qquad - \qquad \text{V}$ $\text{Rise time} \qquad t_{\text{r}} \qquad T_{\text{a}} = 25 ^{\circ}\text{C}, \text{Cl} = 1 \text{nF} \; (\text{Note 1}) \qquad - \qquad 50 \qquad 150 \qquad \text{ns}$	Output Source Current	I_{O}	V _{PIN2} =2.3V, V _{PIN1} =5V	-0.5	-0.8	-	mA
4. Current Sense Section Gain G_V (Note 2 & 3) 2.8 3.0 3.2 V/V Maximum Input Signal V_3 $V_{PIN 1} = 5V$ (Note 2) 0.9 1.0 1.1 V Supply Volt Rejection SVR $12 \le V_a \le 25V$ (Note 2) - 70 - dB Input Bias Current I_b 2 -10 $\not\!$	V _{OUT} High	V_{ch}	V_{PIN2} =2.3V, R_L =15 k Ω to Ground	5	6	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OUT} Low	V _{c1}	V_{PIN2} =2.7V, R_L =15 k Ω Pin8	-	0.7	1.1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4. Current Sense Sect	ion					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gain	G _V	(Note 2 & 3)	2.8	3.0	3.2	V/V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maximum Input Signal	V ₃	V _{PIN 1} =5V (Note 2)	0.9	1.0	1.1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Supply Volt Rejection	SVR	$12 \le V_a \le 25V$ (Note 2)	-	70	-	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Bias Current	I_b	-	-	-2	-10	μA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.Output Section	_					
$I_{SINK} = 200 \text{mA} \qquad - \qquad 1.5 \qquad 2.2 \qquad V$ Output High Level $V_{Oh} \qquad \frac{I_{SOURCE} = 20 \text{mA}}{I_{SOURCE} = 200 \text{mA}} \qquad 13.0 \qquad 13.5 \qquad - \qquad V$ Rise time $t_r \qquad T_a = 25^{\circ}\text{C}, \text{ Cl} = 1 \text{nF (Note 1)} \qquad - \qquad 50 \qquad 150 \qquad \text{ns}$	Output Low Lovel	V	I _{SINK} =20mA	-	0.1	0.4	V
Output High Level V_{Oh} I_{SOURCE} =200mA $I_{2.0}$ $I_{3.5}$ - V Rise time t_r T_a =25°C, Cl =1nF (Note 1) - 50 150 ns	Output Low Level	v Ol	I _{SINK} =200mA	ı	1.5	2.2	V
	Output High Lavel		I _{SOURCE} =20mA	13.0	13.5	-	V
	Output nign Level	V _{Oh}	I _{SOURCE} =200mA	12.0	13.5	-	V
Fall time $ \hspace{1cm} t_f \hspace{1cm} T_a = 25^{\circ}C, \hspace{1cm} Cl = 1 nF \hspace{1cm} (Note \hspace{1cm} 1) \hspace{1cm} - \hspace{1cm} 50 \hspace{1cm} 150 \hspace{1cm} ns $	Rise time	t _r	T _a =25°C, Cl=1nF (Note 1)	-	50	150	ns
	Fall time	t _f	T _a =25°C, Cl=1nF (Note 1)	-	50	150	ns

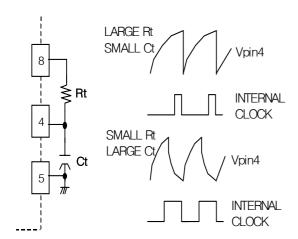
Electrical Characteristics	(continued)	١
Electrical Characteristics	(Comunica)	,


Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit		
6. Under-Voltage Lock	6. Under-Voltage Lockout Section							
Start Threshold	V_{th}	V_{PIN7} where $V_{\text{PIN8}} \geq 4.9 \text{V}$	14.5	16.0	17.5	V		
Min. Operation Voltage After Turn-On	V _{CC(min)}	$V_{\text{PIN7}} \text{ where } V_{\text{PIN8}} \leq 1 \text{V}$	8.5	10.0	11.5	V		
7. PWM Section								
Maximum Duty Cycle	DC_{max}	-	93	97	100	ns		
8. Total Standby Section								
Start-Up Current	I_{st}	$V_{CC} = 15V$ before turn on	-	0.4	0.7	mA		
Operating Supply Current	I_{CC}	$V_{PIN2} = V_{PIN3} = 0V$	-	11	20	mA		
Zener Voltage	V _Z	I _{CC} =25mA	-	36	-	V		

NOTE: 1.Thes parameters, although guaranteed.are not 100% tested in production

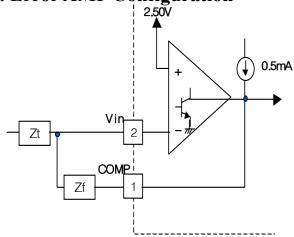
- 2. Parameter measured at trip piont of latch with $V_{pin2} = 0$
- 3. Gain defined as : A = $\triangle V_{PIN1} / \triangle V_{PIN3}$; $0 \le V_{PIN3} \le 0.8 V$
- 4. Adjust V_{CC} above the start threshold before setting at 15V

Information in Using IC

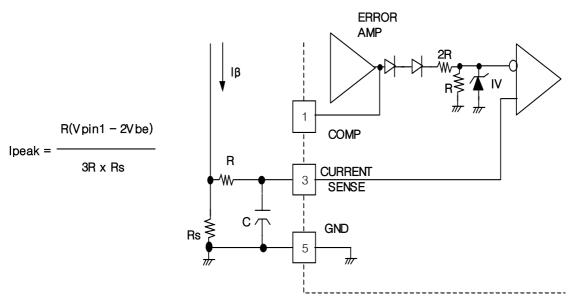

1. Under voltage Lockout

To prevent erratic output behavior which activating the power switch with extraneous leakage currents, during under voltage lockout. Output(pin6) should be shunted to ground with a bleeder resister.

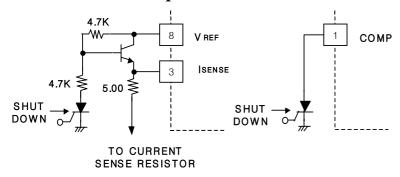
The Vcc comparator upper and lower threshold are 16V/10V. The large hysteresis and low start up currents makes it ideally suited in off-line converter application where efficient bootstrap start-up techniques are required.


2. Oscillator Waveforms and Maximum Duty Cycle

The oscillator frequency is programmed by the values selected for the timing components Rt and Ct. Ct is charged from 5V, Vref, through resistor Rt to approximately 2.8V and discharged to 1.2V by an internal current sink.

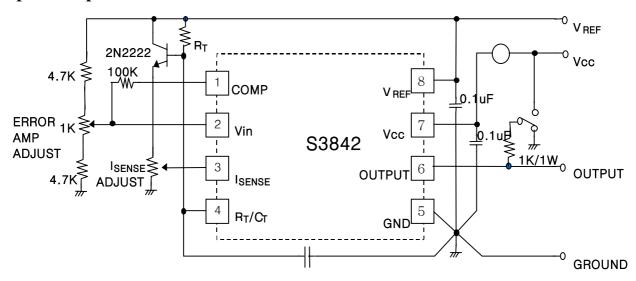

During the discharge of Ct, the oscillator generates an internal blanking pulse and the center input NOR gate high. This makes output to be in a low state and control the amount of output dead time.

3. Error AMP Configuration

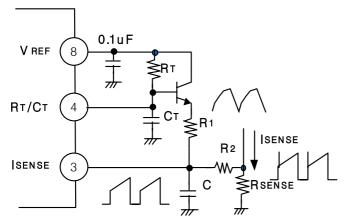

Error amp output(Pin1) is provided for external loop Compensation and error amp can source or sink up to 0.5mA. The non-inverting input is internally biased at 2.5V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input(pin2).

4. Current Sense Circuit

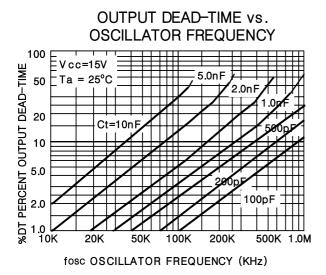
A normal operating conditions occurs when the power supply output is overloaded or it output voltage to 1.0V Therefore the maximum peak switch current is $lpk(max)=1.0V/R_s$, and under the normal operating conditions the peak inductor current controlled by the voltage at pin1.

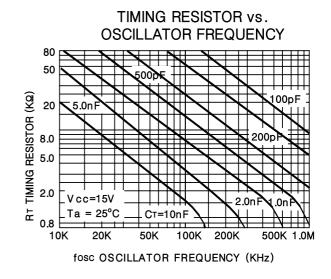

5. Shutdown Techniques

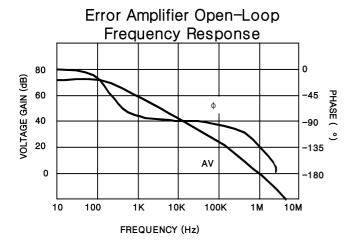
Shutdown of the S3842 can be accomplished by two methods; either raise pin3 above 1V or pull pin1 below a voltage two diodes drops above ground. Either causes the output of the PWM method comparator to be high (refer to

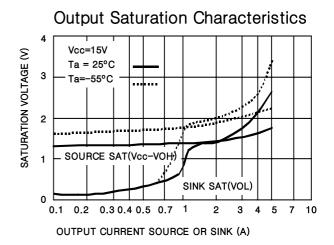

block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SCR which turn off, allowing the SCR to reset.

6. Open Loop Test


High peak currents associated with capacitive leads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to Pin5 in a single point ground. The transistor and $5 \text{ k}\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to Pin3.


7. Slope Compensation




A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycle over 50%. Note that capacitor C, forms a filter with R_2 to suppress the leading edge switch spikes.

Electrical Characteristic Curves

These AUK products are intended for usage in general electronic equipments (Office and communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).

AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.