

Thyristors

S2400 Series

4.5-A Silicon Controlled Rectifiers For Capacitive-Discharge Systems

Features:

- 200-A surge current capability
- Low switching losses
- High di/dt and dv/dt capabilities
- Shorted-emitter gatecathode construction
- □ Forward and reverse gate-
- dissipation ratings
- Low forward voltage drop at high current levels

Voltage	100 V	200 V	400 V	600 V
Package	Type	Туре	Туре	Туре
то-66	S2400A (40942)	S2400B (40943)	S2400D (40944)	S2400M (40945)

Numbers in parentheses are former RCA type numbers.

These RCA types are all-diffused silicon controlled rectifiers (reverse-blocking triode thyristors) designed for high-peak-current low-average-current applications. Typical applications are ignition service, crowbars, and other capacitive-discharge systems.

These SCR's have an rms on-state current rating (IT [RMS]) of 4.5 amperes and have voltage ratings (VDROM) of 100, 200, 400, and 600 volts.

MAXIMUM RATINGS, Absolute-Maximum Values:		S2400A	S2400B	S2400D	S2400N	1
Non-repetitive peak reverse voltage [▲]						
Gate open	VRSOM	150	250	500	700	V
Non-repetitive peak forward voltage ^A						
Gate open	V _{DSOM}	150	250	500	700	V
Repetitive peak reverse voltage [▲]						
Gate open	V RROM	100	200	400	600	V
Repetitive peak off-state voltage ⁴						
Gate open	v_{DROM}	100	200	400	600	V
On-state current:						
T _C = 75°C, conduction angle = 180°						
RMS	T(RMS)		4.	5		Α
Average	IT(AV)		 3.	3 ——		Α
For other conditions				ig.3		
Peak surge (non-repetitive) on-state current:	^I TSM			3		
For one cycle of applied principal voltage, $T_C = 75^{\circ}C$						
50-Hz, sinusoidal			17	0		. A
60-Hz, sinusoidal			20	0		Α
For more than one full cycle of applied principal voltage			See F	ig.4		
Rate of change of on-state current				J		
$V_D = V_{DROM}$, $I_{GT} = 200 \text{ mA}$, $t_r = 0.5 \mu \text{s}$ (See Fig.12)	di/dt .		20	0		A/μs
Fusing current (for SCR protection):	2					_
$T_J = -40 \text{ to } 100^{\circ}\text{C}, t = 1.5 \text{ to } 10 \text{ ms} \dots$	1 ² t .		 15	0		A²s
Gate power dissipation:						
Peak forward (for 1 μs max.)	P _G M -		4	0		w
Peak reverse	PRGM -		See F	ig.8 ——		
Average (averaging time = 10 ms, max.)	PG(AV) -		—— 0.	5 ——		W

MAXIMUM RATINGS, Absolute-Maximum Values (Cont'd.):		S2400A	S2400B	S2400D	S2400M	
Temperature range: Storage Operating (case)			40 to	150 —— 100 ——		- 00
Pin temperature (during soldering):	Тр			25		. or

ELECTRICAL CHARACTERISTICS, At Maximum Ratings Unless Otherwise Specified and at Indicated Case Temperature (Tc)

			UNITS		
CHARACTERISTIC	SYMBOL	For All Types			
		Min.	Тур.	Max.	
Peak Off-State Current: (Gate open, T _C = 100°C)					
Forward at VD = VDROM	IDOM		0.2	3	mA
Reverse at $V_R = V_{RROM}$	IROM	-	0.1	2	IIIA
Instantaneous On-State Voltage: i _T = 100 A, T _C = 25°C, See Fig.5	ν _T	_	2.5	3	v
DC Gate Trigger Voltage: $V_D = 12 \ V \ (dc), \ R_L = 30 \ \Omega, \ T_C = 25^{o}C$ For other conditions	V _{GT}	- ;	1.1 See Fig.10	2	V
DC Gate Trigger Current: $V_D = 12 \ V \ (dc), \ R_L = 30 \ \Omega, \ T_C = 25^{o}C$ For other conditions	IGТ	_	8 Sée Fig.9	15	mA
DC Holding Current: Gate open, initial principal current = 150 mA, T _C = 25°C For other conditions	Іно	-	9 See Fig.6	20	mA
Gate-Controlled Turn-On Time: (Delay Time + Rise Time) $V_D = V_{DROM}$, $I_{GT} = 200$ mA, $t_r = 0.1 \mu$ s, $i_T = 30$ A (peak), $T_C = 25^{\circ}C$ (See Fig.11)	^t gt	-	1.6	2.5	μs
Circuit-Commutated Turn-Off Time: $V_D = V_{DROM}$, $i_T = 18$ A, pulse duration $= 50 \mu$ s, $dv/dt = 20 V/\mu$ s, di/dt $= -30 A/\mu$ s, $I_{GT} = 200 m$ A, $T_C = 75^{\circ}$ C See Fig.14	tq	_	20	40	μs
Critical Rate of Rise of Off-State Voltage: VD = VDROM, exponential voltage rise, gate open, T _C = 100°C, See Fig.15	dv/dt	10	100	_	V/μs
Thermal Resistance: Steady-state Junction-to-case Junction-to-ambient	R _∂ JC R _∂ JA	-	<u> </u>	5 40	°C/W

These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.

Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.

Temperature measurement point is shown on the DIMENSIONAL OUTLINE.

File No. 567. S2400 Series

Fig. 1-Principal voltage-current characteristics.

Fig. 2-Power dissipation vs. on-state current.

LOAD: RESISTIVE
RMS ON-STATE CURRENT [IT(RMS)]=4.5

AT CASE TEMPERATURE (TC)= 75°C

CATE CONTROL MAY BE LOST DURING AND IMMEDIATELY FOLLOWING SURGE CURRENT INTERVAL.

OVERLOAD MAY NOT BE REPEATED UNTIL JUNCTION TEMPERATURE HAS RETURNE TO STEADY-STATE RATED VALUE. SURGE CURRENT DURATION - FULL CYCLES

Fig. 3-Maximum allowable case temperature vs. on-state current.

Fig. 4—Peak surge on-state current vs. surge current duration.

Fig. 5-Instantaneous on-state current vs. on-state voltage.

81000

Fig. 6-DC holding current vs. case temperature.

Fig. 8-Reverse gate voltage vs. reverse gate current.

Fig. 9-DC gate-trigger current (forward) vs. case temperature.

Fig. 10-DC gate-trigger voltage (forward) vs. case temperature.

Fig. 11-Gate-controlled turn-on time vs. gate-trigger current.

Fig. 12—Rate of change of on-state current with time (defining di/dt).

Fig. 13—Relationship between off-state voltage, on-state current, and gate-trigger voltage showing reference points for definition of turn-on time (t_{qt}).

Fig. 14—Relationship between instantaneous on-state current and voltage showing reference points for definition of circuit-commutated turn-off time (t_q).

Fig. 15—Rate of rise of off-state voltage with time (defining critical dv/dt).

TERMINAL CONNECTIONS

Pin 1 — Cathode

Pin 2 — Gate

Case, Pin 3 - Anode