Data Sheet, V1.0, Aug. 1999

THREEP

FOA3251B1

High Speed Clock and Data Recovery for Fiber Optic Applications

ICs for Communications

Never stop thinking.

FOA325 S1028C Revisio		1999-08	V1.0
Previous	s Version:		
Page Subjects (major changes since last revision)			
	Documen	t's layout has been changed: 2002-Sep.	

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com.

ABM[®], AOP[®], ARCOFI[®], ARCOFI[®]-BA, ARCOFI[®]-SP, DigiTape[®], EPIC[®]-1, EPIC[®]-S, ELIC[®], FALC[®]54, FALC[®]56, FALC[®]-E1, FALC[®]-LH, IDEC[®], IOM[®], IOM[®]-1, IOM[®]-2, IPAT[®]-2, ISAC[®]-P, ISAC[®]-S, ISAC[®]-S TE, ISAC[®]-P TE, ITAC[®], IWE[®], MUSAC[®]-A, OCTAT[®]-P, QUAT[®]-S, SICAT[®], SICOFI[®], SICOFI[®]-2, SICOFI[®]-4, SICOFI[®]-4µC, SLICOFI[®] are registered trademarks of Infineon Technologies AG.

ACE[™], ASM[™], ASP[™], POTSWIRE[™], QuadFALC[™], SCOUT[™] are trademarks of Infineon Technologies AG.

Edition 1999-08

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2002. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Preface

The transceiver IC FOA3251 is designed for fibre optic application in the data bit range of 2.5 GBit. The FOA3251 fulfills the jitter requirements specified in ITU G958 and Bellcore GR253.

Organization of this Document

This Data Sheet is divided into 8 chapters. It is organized as follows:

- Chapter 1, Overview Gives a general description of the product, lists the key features, and presents some typical applications.
- Chapter 2, Functional Description
 Lists pin locations with associated signals, categorizes signals according to function, and describes signals.

 Blockdiagram and block description.
- Chapter 3, Operational Description
- Chapter 4, Electrical Characteristics DC and AC Characteristics, Power consumption, interface specification.
- Chapter 5, External Components Application notes and recommended suppliers
- Chapter 6, Measurement Results
- Chapter 7, Package Outlines

Table of Contents

Page

1 1.1 1.2	Overview5Features5Applications5
2 2.1 2.2 2.3 2.4	Functional Description6Pin Configuration (top view)6Pin Definition and Function7Functional Block Diagram9Functional Block Description9
3 3.1	Operational Description 11 Operating States of Delay Line 11
4 4.1 4.2 4.3 4.4	Electrical Characteristics12Absolute Maximum Ratings12Operating Range12DC Characteristics13AC Characteristics13
5	External Components 16
6	Measurement Results 19
7	Package Outlines

High Speed Clock and Data Recovery for Fiber Optic Applications

FOA3251B1 S1028C1

BIPOLAR

1 Overview

The transceiver IC FOA3251 is designed for fibre optic application in the data bit range of 2.5 GBit. The FOA3251 fulfills the jitter requirements specified in ITU G958 and Bellcore GR253.

1.1 Features

- Data rate up to 2.633 Gb/s
- All jitter data meet ITU-T G958 and GR-253-Core requirements
- Supply range from +3.0 V to 5.0 V
- Supply current < 210 mA
- Input sensitivity < 5 mVpp differential (BER = 10⁻¹²)
- Loss of signal (LOS) detection
- · Programmable delay element to adjust clock- to data output
- Lock indication

1.2 Applications

- Fibre optic communication systems
- SDH / SONET / ATM applications

A CONTRACTOR OF	
P-LQFP-48-1	

Туре	Ordering Code	Package
FOA3251B1		P-LQFP-48-1

2 Functional Description

The FOA3251 consists of a clock and data recovery block (CDR), a clock multiplier unit (CMU) and a programmable delay line.

2.1 Pin Configuration (top view)

Figure 1 Pin Configuration

2.2 Pin Definition and Function

Table 1Pin Definition and Function

Pin	Symbol	Input (I) Output (O)	Function
1	TESTCLK	In	Clock signal for test mode only
2	TESTLOS	In	
3	V _{CC}		
4	V _{CC}		Can be open.
5	V _{CC}		Can be open.
6	V _{CC}		
7	V _{CC}	In	Can be open.
8	PLL2 DN	Out	Inverted down signal from PLL2
9	PLL2 UP	Out	Inverted up signal from PLL2
10	V _{F02}	In	Control voltage for VCO2
11	V _{CCLC}		V _{CC} V _{CO2}
12	V_{EELC}		V _{EE} V _{CO2}
13	V_{EE}		
14	V_{EE}		
15	V _{CC}		
16	V _{CC}		
17	DATA TR	Out	Inverted recovered data signal
18	DATA TR	Out	Recovered data signal
19	V _{CC}		
20	CLK TR	Out	Recovered clock signal
21	CLK TR	Out	Inverted recovered clock signal
22	V _{CC}		
23	V _{CC}		
24	V _{CC}		
25	DELAY0	In	Delay select bit 0. (See Table 2)
26	DELAY1	In	Delay select bit 1. (See Table 2)
27	DELAY2	In	Delay select bit 2. (See Table 2)
28	V _{CC}		

Table 1 Pin Definition and Function (cont'd)					
Pin	Symbol	Input (I) Output (O)	Function		
29	V _{CC}				
30	XTAL OUT	Out	Crystal		
31	XTAL IN	In	Crystal		
32	RESET	In	Reset for test mode only		
33	LOS	Out	Loss of signal (ESD only to V_{EE})		
34	LOL	Out	Loss of Lock		
35	V _{CC alarm}		$V_{\text{CC alarm}}$ supply. Max. 5 V, Min 0 V = V_{CC} (no ESD)		
36	V _{EE}				
37	LLOS	In	Adjustment for Level LOS		
38	N2V5	In	Negative supply voltage for V_{CO1}		
39	V _{CC}				
40	DATA IN	In	Inverted data input (no ESD)		
41	V _{CC}				
42	DATA IN	In	Data input (no ESD)		
43	V _{CC}				
44	V _{F01}	In	Control voltage V _{CO1}		
45	V _{CC}				
46	PLL1 UP		Inverted up signal PLL1		
47	PLL1 DN		Inverted down signal PLL1		
48	TEST	In	Test mode on/off		

2.3 Functional Block Diagram

Figure 2 Block Diagram

2.4 Functional Block Description

The clock and data recovery block (CDR) consists of a bang-bang phase detector (PD), a frequency window detector (FWD) and a VCO. The PD also provides a kind of statistical BER signal that is used to generate a loss of signal (LOS) signal. The FWD moves the VCO in the right frequency range. The frequency window is about 10000 ppm of the center frequency. When the frequency is out of range a los of lock signal (LOL) is generated. The center frequency is given by a reference clock signal which is (signal frequency)/128. The VCO is a 3 stage ring oscillator type.

The clock multiplier unit (CMU) consist of a phase frequency detector (PFD), a VCO and a retiming Flip-Flop. The PFD is type 4 phase and frequency detector. The low pass filtered PFD signal as a function of the phase error is shown in **Figure 3**.

Figure 3 PFD Characteristic

The VCO is a LC type with a center frequency of 2.5 GHz. The measured tuning range is shown in **Figure 4**.

Figure 4 Tuning Range LC VCO

The delay line is programmable in 8 steps of about 50 ps. The clock signal is adjustable over 1 period (400 as) and can be easily adapted to different applications.

Operational Description

3 Operational Description

3.1 Operating States of Delay Line

For clock to data output adjustment a adjustable delay line is available. The clock output signal is adjustable by the signals DELAY0..2.

	maan rabie belay Line		
DELAY0	DELAY1	DELAY2	Delta
LOW	LOW	LOW	0 ps
LOW	HIGH	LOW	50 ps
LOW	LOW	HIGH	100 ps
LOW	HIGH	HIGH	150 ps
HIGH	LOW	LOW	200 ps
HIGH	HIGH	LOW	250 ps
HIGH	LOW	HIGH	300 ps
HIGH	HIGH	HIGH	350 ps

Table 2Truth Table Delay Line

4.1 Absolute Maximum Ratings

Table 3Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
IC supply voltage (V _{CC} - V _{EE})			6	V
Voltage on any pin	V _S	-0.4	V _{DDP} + 0.4	
Maximum junction temperature			125	°C
Storage temperature	T _{stg}	-40	150	
Protection supply voltage	V _{DDP}	V _{EE} - 0.5	V _{CC}	V
ESD robustness HBM: 1.5 kΩ, 100 pF	V _{ESD,HBM}		500	
Lead temperature range			Package	

The RF Pin 40, 42 are not ESD protected. The high frequency performance prohibits the use of a adequate protective structure. Pin 33 is only protected to V_{EE} .

4.2 **Operating Range**

Table 4Operating Range

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Ambient temperature	T _A	-40	85	°C
Supply voltage	V _{DD}	3.0	5	V

4.3 DC Characteristics

Table 5DC Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Control and Test inputs	V _{IL} V _{IH}	V _{CC} - 1	V _{CC}	V
Output current CML Pin 17, 18, 20, 21	I _{oc}	8	0.45	mA
Supply current	I _{EE} (AV)	200	TBD	mA

4.4 AC Characteristics

Table 6 Electrical Characteristics

Parameter	Condition	Limit Values		es	Unit
		min.	typ.	max.	
Quantisizer					
DC Characteristics ¹⁾	Pin or Nin	V _{EE} +2.5		V _{CC}	V
Input Voltage Range ²⁾	Pin-Nin, BER < 10 ⁻¹²		10		mV
Input Sensitivity, V _{sense}	Pin-Nin, BER < 10 ⁻¹²				V
Input Overdrive, V _{od}			2		mV
Input Offset Voltage				10	μA
Input Current					
Input RMS Noise	BER < 10 ⁻¹²		TBD		μV
Input Pk-Pk Noise	BER < 10 ⁻¹²		TBD		
Quantisizer					
AC Characteristics			2.5		GHz
Upper -3 dB Bandwidth extern)			50		Ω
Input Resistance	Package			0.8	pF
Input Capacitance					
Pulse Width Distortion					
VSWR				2.5	

Table 6	Electrical Characteristics	(cont'd)
		(

Parameter	Condition	L	Limit Values		
		min.	typ.	max.	
Level Detect					
Response Time	AC coupled			95	μs
Hysteresis (Electrical) ³⁾		1		3	db
ALM Output Logic High4)	$V_{\rm CC \ alarm} = 5 \ {\rm V}$		4.5		V
ALM Output Logic Low	$V_{EE\ alarm} = GND$		1		
ALM Output Logic High	$V_{\rm CC \ alarm} = {\rm GND}$		-0.5		
ALM Output Logic Low	$V_{EE\ alarm} = -5\ V$		-4		
Phase-Locked Loop					
Nominal Center Frequency f_0			2.48832		GHz
Capture Range ⁵⁾		-0.2% x f ₀		+0.2% x f ₀	GHz
Tracking Range		-0.2% x f ₀		+0.2% x f ₀	
Static Phase Error ⁶⁾		-3.6		+3.6	deg.
Phase drift ⁷⁾		100			Bit
Jitter	SONET STS-48 Frame (with Scrambler 2E7-1) and 2E23-1 PRN Sequence ITU-T G958 and Gr-253-Core objective < 0.005 UIrms (2ps)				
Jitter Tolerance	SONET STS-48 Frame (with Scrambler 2E7-1) and 2E23-1 PRN Sequence ITU-T G958 and Gr-253-Core				
Jitter Transfer	SONET STS-48 Frame (with Scrambler 2E7-1) and 2E23-1 PRN Sequence ITU-T G958 and Gr-253-Core				
Open collector output	Referenced to $V_{\rm CC}$				
Voltage levels					
Output logic High, V _{oh}			0		V
Output logic Low, Vol			400		V
Symmetry (Duty Cycle)					
Recovered Clock Output		46		54	

Table 6 Electrical Characteristics	(cont'd)
--	----------

Parameter	Condition	Limit Values			Unit
		min.	typ.	max.	
Output Rise/Fall Times					
Clock Output					
Rise Time	20% - 80%, 50 Ω		100		ps
Fall Time	20% - 80%, 50 Ω		100		ps
Data Output					
Rise Time	20% - 80%, 50 Ω		120		ps
Fall Time	20% - 80%, 50 Ω		120		ps
Control and test inputs ⁸⁾	Referenced to V _{CC}				
Input logic High, V _{ih}			0		V
Input logic Low, V _{il}			-1		V
Control and test outputs	Referenced to V _{CC}				
Output logic High, V _{ih}			0		V
Output logic Low, V _{il}			-1		V
Power Supply Voltage		3	5	5.8	V
Power Supply Current ⁹⁾			210		mA
Operating Temperature					
Package Ambient		-40		+85	°C
Bare Chip Ambient		-40		+100	°C
Bare Chip Size		< 3.0 mm x 3.0 mm			

¹⁾ Min value Pin, Nin: V_{CC} -Pin, Nin < 800 mV

²⁾ Voltage (Pin-Nin) = 4 mVpp @Pin = -23 dBm

- ³⁾ Hysteresis can be installed by a combination of Signal LOS and LLOS.
- ⁴⁾ Open Collector Output type, I = 2 mA. Datarate depends on output load. Termination with pullup resistor > 4.7 k Ω
- ⁵⁾ No skipping clock cycles allowed down to < 10⁻³ BER External adjustable.
- ⁶⁾ Clock drift with no input 25 MHz
- ⁷⁾ The alarm shall be asserted before 500 ns of phase shift on the RX clock is realized.
- ⁸⁾ Consecutive identical bits 72 bits.
- ⁹⁾ Supply current = I_{EE} (current without ECL output current).

External Components

Table 7External Devices

Device	Number	Recommended Types	Remark
Reference Voltage	1 - 2	TL 431	2.5 V VCO Supply
Operational Amplifier	1	Burr Brown OPA2353 Burr Brown OPA2350	Integrator
Capacitor	10 5		Integrator, Blocking
Resistor	14		Integrator, Reference voltage
Crystal Oscillator	1	Toyocom TSX-2	19.44 MHz
Ferrite Bead Inductor	2	muRata BLM11B601S	$V_{\rm EE}$ blocking to GND ($V_{\rm CC}$)

The external circuits are shown in Figure 6, Figure 7, Figure 8 and Figure 9.

External Components

Figure 6 Reference Voltage for VCO (Ring Oscillator).

Figure 7 Loop Filter PLL1 (CDR)

External Components

Measurement Results

6 Measurement Results

All measurements were done with 50 mVpp input swing and a 2E23 bit sequence.

Temperature was 25°C, supply voltage was 3.3 V.

Figure 10 STM 16 Jitter Tolerance

Figure 11 STM 16 Jitter Transfer

Measurement Results

Figure 12 Gitter Generation Results

Package Outlines

7 Package Outlines

(Plastic Low Profile Quad Flat Package)

Figure 13

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Dimensions in mm

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

www.infineon.com

Variables Target Specification

Variable Name	Variable Definition	Description	
Business Unit	ICs for Communications		
Dev_NameLong1	High Speed Clock and Data Recovery for Fiber Optic Applications	Long product name	
Dev_NameLong2			
Dev_NameLong3			
Dev_NameLong4	<dev_namelong4></dev_namelong4>		
Dev_NameShort1	FOA3251B1	Short product name	
Dev_NameShort2	<dev_nameshort2></dev_nameshort2>		
Dev_NameShort3	<dev_nameshort3></dev_nameshort3>		
Dev_NameShort4	<dev_nameshort4></dev_nameshort4>		
Dev_Package1	P-LQFP-48-1	Package type	
Dev_Package2	<dev_package2></dev_package2>		
Dev_Package3	<dev_package3></dev_package3>		
Dev_Package4	<dev_package4></dev_package4>		
Dev_Version1	<dev_version1></dev_version1>	Device version	
Dev_Version2	<dev_version2></dev_version2>		
Dev_Version3	<dev_version3></dev_version3>		
Dev_Version4	<dev_version4></dev_version4>		
Device1	evice1 FOA3251B1		
Device2	<device2></device2>		
Device3	<device3></device3>		
Device4	<device4></device4>		
Doc_Author	<author></author>	Author of the document	
Doc_ConfidentialStatus		"CONFIDENTIAL", "PRELIMINARY" or left blank	

Variable Name	Variable Definition	Description
Doc_Distribution		"Distribution with NDA" or "Distribution by marketing only" or "Distribution with NDA by marketing only" or left blank
Doc_IssueDate	1999-08	Complete date of releasing the document
Doc_State	V1.0	Revision state of the document
Doc_TopRight1	FOA3251B1	Defines the expression
Doc_TopRight2	S1028C1	appearing on the top right of the page layout Document type
Doc_Type	Data Sheet	Document type
Doc_Type_Cover	Data Sheet	Document type
Modification Date Short		
Status		
Technologie	BIPOLAR	
Title_IssueDate	Aug. 1999	Issue date of the document appearing on the upper right corner of the 1st cover page

Instructions

Defining all variables

- 1. Double-Click on the Variable Definiton that you want to define.
- 2. Choose "Edit Definition"
- 3. In the variable dialog box redefine the user variable in the "**Definition**" box. If this variable should not be defined, enter a blank.
- 4. Click on "Change".
- 5. Click "**Done**" to return to the variable dialog box.
- 6. Click "Done" again.

Importing the variables into the FrameMaker document/book

- 1. Make certain that both documents (your FrameMaker file/book and file variables.fm) are open.
- 2. From the "File" menu, click on "Import".
- 3. Select "Format".
- 4. From the "Import from File" (document) pop-up list, choose "variables.fm".
- 5. From the "**Import and Update**" box, make sure that *only* the "**Variable Definition**" check box is selected.

Click on "Import" to finish.