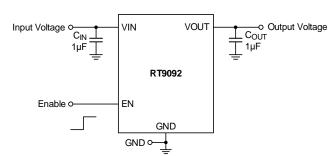
250mA, Ultra-Low Noise, Low Quiescent Current, LDO Regulator

General Description

The RT9092 is a high performance positive low dropout (LDO) regulator designed for applications requiring very low dropout voltage and ultra-high Power Supply Ripple Rejection (PSRR) low noise, low guiescent current, and the IC can supply up to 250mA output current. The input voltage range is from 2.2V to 5.5V. The device is designed to work with a 1µF input and a 1µF output ceramic capacitor (no separate noise bypass capacitor is required).


The RT9092 features a precise 2% output regulation over line, load, and temperature variations in WL-CSP-4B 0.67x0.67 (BSC), ZQFN-4L 1x1 and SOT-23-5 packages. The output voltage is available from 1.2V to 4.5V in 25mV steps.

The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85°C.

Applications

- Mobile Phones, Tablets
- Digital Cameras and Audio Devices
- Portable and Battery-Powered Equipment
- Portable Medical Equipment
- Smart Meters
- IP Cameras
- Drones
- Telecom/Networking Cards
- Wireless Infrastructures
- Medical Equipment

Simplified Application Circuit

Features

- Input Voltage Range: 2.2V to 5.5V
- Adjustable Output Voltage: 1.2V to 4.5V
- PSRR
 - 80dB @ 1kHz (20mA)
 - 70dB @ 10kHz (20mA)
- Output Current: 250mA
- Very Low Dropout: 120mV
- Very Low IQ (Enabled): 16μA
- Virtually Zero IQ (Disable): < 1μA
- Very Low IG (Enabled): 16μA
- Start-Up Time: 250µs
- –40°C to 125°C Operating Junction Temperature Range
- Excellent Noise Immunity
- Fast Response Over Load and Line Transient
- Stable with a 1µF Input and Output Ceramic Capacitors
- Accurate Output Voltage 2% Over Load, Line, **Process, and Temperature Variations**
- Overcurrent Protection
- Over-Temperature Protection

RT9092

contact

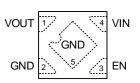
our

sales

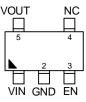
Ordering Information

RT90920-00 Packing A: Standrad Output Voltage (Refer to Output Voltage Table)

Package Type P: WL-CSP-4B 0.67x0.67 (BSC) N: ZQFN-4L 1x1 D: SOT-23-5


Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.


Pin Configuration

(TOP VIEW)

ZQFN-4L 1x1

Marking Information

information,

representative directly or through a Richtek distributor

marking

located in your area.

For

SOT-23-5

Functional Pin Description

WL-CSP-4B 0.67x0.67 (BSC)

Pin No.		Pin No.			
WL-CSP-4B 0.67x0.67 (BSC)	ZQFN-4L 1x1	SOT-23-5	Pin Name	Pin Function	
A1	4	1	VIN	Supply input. A minimum of $1\mu F$ ceramic capacitor should be placed as close as possible to this pin for better noise rejection.	
A2	1	5	VOUT	Output of the regulator. Decouple this pin to GND with at least $1\mu F$ for stability.	
B1	3	3	EN	Enable control input. Connecting this pin to logic high enables the regulator or driving this pin low puts it into shutdown mode. EN can be connected to GND if not used.	
B2	2	2	GND	Common ground.	
		4	NC	No internal connection.	
	5 (Exposed Pad)		GND	Thermal pad for ZQFN-4L 1x1 package, connect to GND.	

RT9092

RT9092 Output Voltage Table

Vout = 1.2V to 1.575V		
Vouт	Output Voltage Code	
1.2	AA	
1.225	AB	
1.25	AC	
1.275	AD	
1.3	AE	
1.325	AF	
1.35	AG	
1.375	AH	
1.4	AI	
1.425	AJ	
1.45	AK	
1.475	AL	
1.5	AM	
1.525	AN	
1.55	AO	
1.575	AP	

Vout = 2.4V to 2.775V

νουτ

2.4

2.425

2.45

2.475

2.5

2.525

2.55 2.575

2.6

2.625

2.65

2.675

2.7

2.725

2.75

2.775

Output Voltage

Code

BW

ВΧ

ΒY

ΒZ

CA

CB CC

CD

CE

CF

CG

СН

CI

CJ

СК

CL

Vout = 1.6V to 1.975V		
Vout	Output Voltage Code	
1.6	AQ	
1.625	AR	
1.65	AS	
1.675	AT	
1.7	AU	
1.725	AV	
1.75	AW	
1.775	AX	
1.8	AY	
1.825	AZ	
1.85	BA	
1.875	BB	
1.9	BC	
1.925	BD	
1.95	BE	
1.975	BF	

Vout = 2V to 2.375V		
Output Voltage Code		
BG		
BH		
BI		
BJ		
BK		
BL		
BM		
BN		
BO		
BP		
BQ		
BR		
BS		
BT		
BU		
BV		

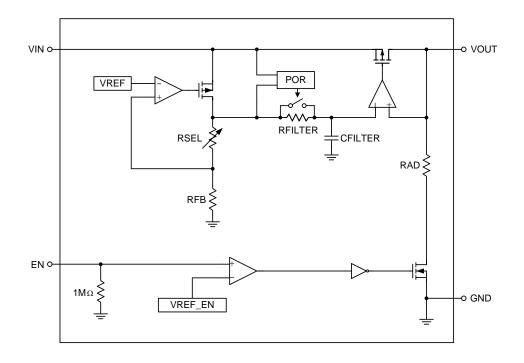
Vout =	2.8V to 3.175V		Vout = 3.2V to 3.575V	
νουτ	Output Voltage Code		νουτ	Output Voltage Code
2.8	СМ		3.2	DC
2.825	CN		3.225	DD
2.85	СО		3.25	DE
2.875	СР		3.275	DF
2.9	CQ		3.3	DG
2.925	CR		3.325	DH
2.95	CS		3.35	DI
2.975	СТ		3.375	DJ
3	CU		3.4	DK
3.025	CV		3.425	DL
3.05	CW		3.45	DM
3.075	CX		3.475	DN
3.1	CY		3.5	DO
3.125	CZ		3.525	DP
3.15	DA		3.55	DQ
3.175	DB]	3.575	DR

Copyright © 2023 Richter Technology Corporation. All rights reserved.	Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK is a registered trademark of Richtek Technology Corporation.
---	---	---

RT9092

RICHTEK

V _{OUT} = 3.6V to 3.975V		
νουτ	Output Voltage Code	
3.6	DS	
3.625	DT	
3.65	DU	
3.675	DV	
3.7	DW	
3.725	DX	
3.75	DY	
3.775	DZ	
3.8	FA	
3.825	FB	
3.85	FC	
3.875	FD	
3.9	FE	
3.925	FF	
3.95	FG	
3.975	FH	


V _{OUT} = 4V to 4.375V		
νουτ	Output Voltage Code	
4	FI	
4.025	FJ	
4.05	FK	
4.075	FL	
4.1	FM	
4.125	FN	
4.15	FO	
4.175	FP	
4.2	FQ	
4.225	FR	
4.25	FS	
4.275	FT	
4.3	FU	
4.325	FV	
4.35	FW	
4.375	FX	

V _{OUT} = 4.4V to 4.5V		
Vouт	Output Voltage Code	
4.4	FY	
4.425	FZ	
4.45	GA	
4.475	GB	
4.5	GC	

Functional Block Diagram

Operation

Basic Operation

The RT9092 is a high performance positive low dropout (LDO) regulator designed for applications requiring very low dropout voltage, ultra-high Power Supply Ripple Rejection (PSRR), low noise and low quiescent current that can supply up to 250mA output current. The input voltage range is from 2.2V to 5.5V. The RT9092 features a precise 2% output regulation over line, load, and temperature variations. The output voltage is available from 1.2V to 4.5V in 25mV steps. The minimum required output capacitance for stable operation is 1μ F (X5R or X7R) effective capacitance after consideration of the temperature and voltage coefficient of the capacitor.

Enable and Shutdown Operation

The RT9092 goes into shutdown mode when the EN pin is in a logic low condition. In this condition, the pass transistor, error amplifier, and bandgap are all turned off, reducing the supply current to only $1\mu A$ (max.). If the shutdown mode is not required, the EN pin can be directly tied to VIN pin to keep the LDO on.

Over-Temperature Protection (OTP)

The over-temperature protection function will turn off the P-MOSFET when the junction temperature exceeds 160°C (typ.), and the output current exceeds 250mA. Once the junction temperature cools down by approximately 26°C (typ.), the regulator will automatically resume operation.

Current-limit Protection

The RT9092 provides current limit function to prevent the device from damages during overload or shorted-circuit condition. This current is detected by an internal sensing transistor.

Error Amplifier

The Error Amplifier compares the internal reference voltage with the output feedback voltage from the internal divider, and controls the Gate voltage of P-MOSFET to support good line regulation and load regulation at output voltage.

Output Automatic Discharge

The RT9092 output employs an internal 10Ω (typ.) pull down resistance to discharge the output when the EN pin is low, and the device is disabled.

RT9092

Absolute Maximum Ratings (Note 1)

• VIN, EN to GND	0.3V to 6V
VOUT to GND	0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WL-CSP-4B 0.67x0.67 (BSC)	- 1.08W
ZQFN-4L 1x1	- 1.11W
SOT-23-5	- 0.57W
Package Thermal Resistance (Note 2)	
WL-CSP-4B 0.67x0.67 (BSC), θJA	- 91.8°C/W
ZQFN-4L 1x1, θJA	- 89.8°C/W
ZQFN-4L 1x1, θJC	- 34°C/W
SOT-23-5, θJA	- 174.5°C/W
SOT-23-5, θJC	- 76.8°C/W
Lead Temperature (Soldering, 10 sec.)	- 260°C
Junction Temperature	- 150°C
Storage Temperature Range	- −65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV

Recommended Operating Conditions (Note 4)

Input Voltage Range	2.2V to 5.5V
Output Current	0mA to 250mA
EN Voltage	0V to VIN
Ambient Temperature Range	–40°C to 85°C
Junction Temperature Range	40°C to 125°C

Electrical Characteristics

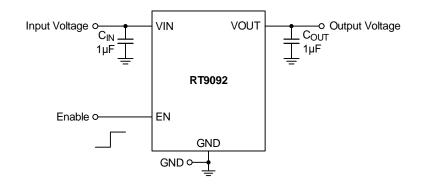
 $(V_{IN} = V_{OUT} + 1V, V_{EN} = 1.2V, I_{OUT} = 1mA, C_{IN} = 1\mu F, C_{OUT} = 1\mu F, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input Voltage	VIN	VIN = VOUT + 1V	2.2		5.5	V
Output Voltage Accuracy (Note 5)	Vout_acc	VIN = (VOUT + 1V) to 5.5V, IOUT = 1 mA to 250mA, package: WL-CSP-4B 0.67x0.67 (BSC)	-2		2	%Vout
		VIN = (VOUT + 1V) to 5.5V, IOUT = 1 mA to 250mA, package: ZQFN-4L 1x1 and SOT-23-5	-3		3	
Line Regulation	VOUT_LineReg	VIN = (VOUT + 1V) to 5.5V, IOUT = 1mA		0.02		%/V
Load Regulation	VOUT_LoadReg	IOUT = 1mA to 250mA		0.001		%/mA
LOAD Current	Ιουτ	Operation in stable and regulated output voltage	0		250	mA

RT9092

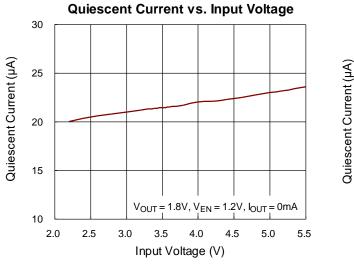
Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Maximum Output Current	IOUT_MAX		250			mA
		V _{EN} = 1.2V, I _{OUT} = 0mA		16	25	
Quiescent Current (Note 6)	lq	V _{EN} = 1.2V, I _{OUT} = 250mA (Note 7)		300	425	μA
		V _{EN} = 0.3V (Disable)		0.2	1	
Ground Current (Note 8)	lg	VEN = 1.2V, IOUT = 0mA		16		μA
		Vout \ge 2.2V, lout = 100mA		50		
Dropout Voltage (Note 9)	Vdrop	Vou⊤ ≥ 2.2V, Iou⊤ = 250mA (WL-CSP-4B 0.67x0.67 (BSC) and SOT-23-5 package)		120	200	mV
		Vou⊤ ≥ 2.2V, lou⊤ = 250mA (ZQFN-4L 1x1 package)			250	
		f = 100Hz, I _{OUT} = 20mA		80		
Power Supply Rejection		f = 1kHz, Iout = 20mA		80		
Ration (Note 7)	PSRR	f = 10kHz, Iout = 20mA		70		dB
		f = 100kHz, Iout = 20mA		60		
Output Noise Voltage		BW = 10Hz to 100kHz, I _{OUT} = 1mA		10		Maria
(Note 7)	eN	BW = 10Hz to 100kHz, IOUT = 250mA		6.5		μVrms
Output Automatic Discharge Pulldown Resistance	Rad	VEN < 0.3V		10		Ω
EN Pin Logic Input Three	shold			1		
Low Input Threshold	VIL	VIN = 2.2 to 5.5V, VEN falling until the output is disabled			0.4	V
High Input Threshold	VIH	VIN = 2.2 to 5.5V, VEN rising until the output is enabled	1.2			V
	1	VEN = 5.5V and VIN = 5.5V		5.5		
Input Current at EN PIN	IEN	$V_{EN} = 0V$ and $V_{IN} = 5.5V$		0.001		μA
Transient Characteristics	6					
Line Transient		VIN = VOUT + 1V to VOUT + 1.6V in 30μs	-1			m)/
(Note 7)	$\Delta VOUT_Line$	$V_{IN} = V_{OUT} + 1.6V$ to $V_{OUT} + 1V$ in 30μ s			1	mV
Load Transient		I _{OUT} = 1mA to 250mA in 10μs	-40			
(Note 7)	$\Delta VOUT_Load$	IOUT = 250mA to 1mA in 10μs			40	mV
Overshoot on Start-Up	$\Delta VOUT_Startup$	Stated as a percentage of VOUT(NOM)			5	%
Set Up Time	t SETUP	From VEN > VIH to VOUT start rising		250		μS
Soft-Start Time	tss	Time from 10% rising to 90% of VOUT setting	50		700	μs
Protection						
Short Circuit Current Limit	Isc	Temp = 25°C	250	500		mA

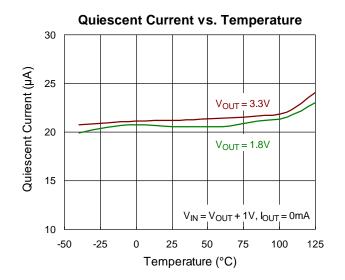
RT9092

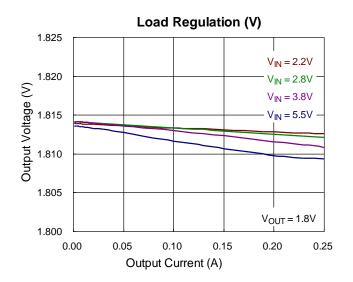

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Thermal Shutdown	TSD			160		°C
Thermal Hysteresis	TSD_H			26		°C

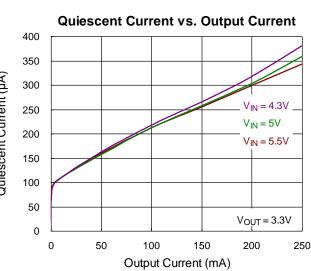
- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the ZQFN-4L 1x1 package and at the case top of the SOT-23-5 package.
- Note 3. Devices are ESD sensitive.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Maximum available load I_{OUT_SUPPORT} with different V_{IN} due to thermal consideration refers to the curves at Typical Operating Characteristics.
- Note 6. Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT.
- Note 7. This specification is guaranteed by design.
- Note 8. Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device.
- **Note 9.** Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100mV below its nominal value.

Typical Application Circuit

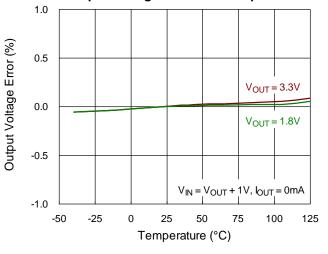


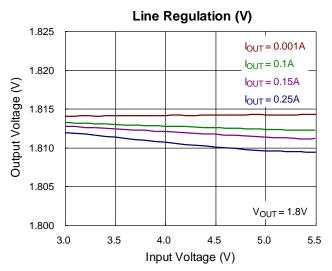

BOM List


Reference	Part Number	Value	Package	Manufacturer
CIN, COUT	GRM155R61A105KE01	1μF/10V/X5R	0402	MURATA

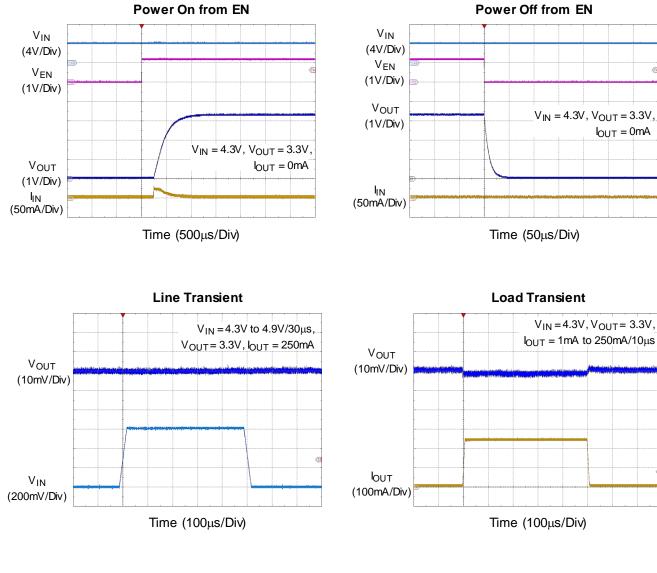

RT9092

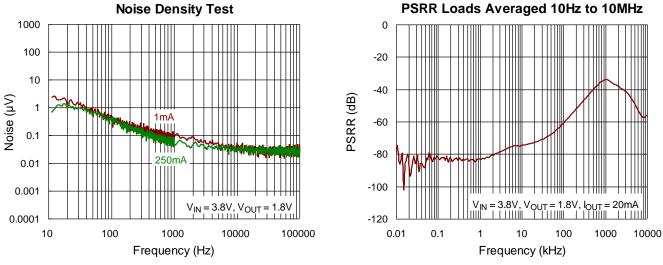
Typical Operating Characteristics





Output Voltage Error vs. Temperature





Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS9092-02 October 2023 www.richtek.com

RT9092

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
Www.richtek.com
DS9092-02
October 2023

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

Like any low dropout linear regulator, the RT9092's external input and output capacitors must be properly selected for stability and performance. Use a 1μ F (X5R or X7R) or larger input capacitor and place it close to the IC's VIN and GND pins. Output capacitor effective capacitance larger than 1μ F (X5R or X7R) requirement may be used. Place the output capacitor close to the IC's VOUT and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

Chip Enable Operation

The RT9092 EN pin internal resistor is $1M\Omega$ to GND The EN pin is the chip enable input. Pulling the EN pin low (< 0.4V) will shut down the device. During shutdown mode, the RT9092 quiescent current drops to lower than 1µA. Driving the EN pin to high (> 1.2V, < 5.5V) will turn on the device again.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP can also be expressed as the voltage drop on the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance RDS(ON). Thus the dropout voltage can be defined as (VDROP = VVIN -VVOUT = RDS(ON) x IRATED). For normal operation, the suggested LDO operating range is (VVIN > VVOUT + 0.2V) for good transient response and PSRR ability. Conversely, operating at the ohmic region will degrade these performance severely. Additionally, the output of RT9092 is automatically discharged through an internal 10Ω pull-down resistance when the EN pin is low and the device is disabled.

CIN and COUT Selection

Like any low dropout regulator, the external capacitors of the RT9092 must be carefully selected for regulator stability and performance. Using a capacitor of at least 1μ F (X5R or X7R) is suitable. With a reasonable PCB layout, the ceramic output capacitor can be placed up to 5cm and the ceramic input capacitor can be placed up to 1cm of the chip. Any good quality ceramic capacitor can be used. However, a capacitor with larger value and lower ESR (Equivalent Series Resistance) is recommended since it will provide better PSRR and line transient response.

The RT9092 is designed specifically to work with low ESR ceramic output capacitor for space saving and performance consideration. Using a ceramic capacitor with capacitance of at least 1μ F (X5R or X7R) on the RT9092 output ensures stability.

Minimum Operating Input Voltage (VIN)

The RT9092 does not include any dedicated UVLO circuitry. The RT9092 internal circuitry is not fully functional until VIN is at least 2.2V. The output voltage is not regulated until VIN has reached at least the greater of 2.2 V or (VOUT + 0.2 V).

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

RT9092

where $T_{J(MAX)}$ is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Conditions 125°C. The Operating is junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-4B 0.67x0.67 (BSC) package, the thermal resistance, θ_{JA} , is 91.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a ZQFN-4L 1x1 package, the thermal resistance, θ_{JA} , is 89.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a SOT-23-5 package, the thermal resistance, θ_{JA} , is 174.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (91.8^{\circ}C/W) = 1.08W$ for a WL-CSP-4B 0.67x0.67 (BSC) package.

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (89.8^{\circ}C/W) = 1.11W$ for a ZQFN-4L 1x1 package.

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (174.5^{\circ}C/W) = 0.57W$ for a SOT-23-5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

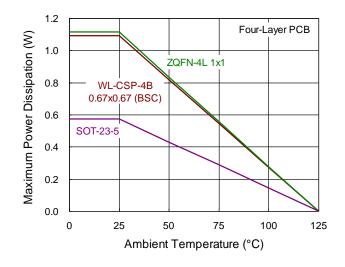
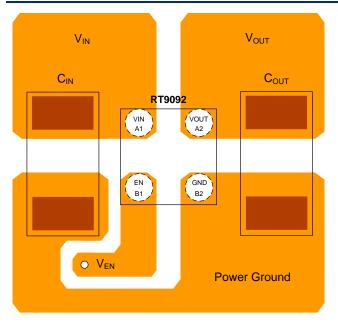
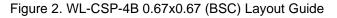


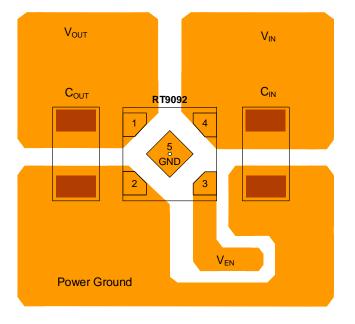
Figure 1. Derating Curve of Maximum Power Dissipation

Layout Considerations

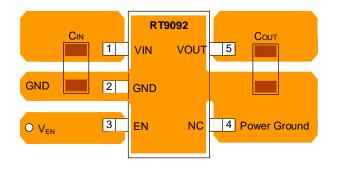

The dynamic performance of the RT9092 is dependent on the layout of the PCB. PCB layout practices that are adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the RT9092.

Best performance is achieved by placing C_{IN} and C_{OUT} on the same side of the PCB as the RT9092, and as close to the package as possible is practical. The ground connections for C_{IN} and C_{OUT} must be back to the RT9092 ground pin using a copper trace as wide and short as possible.


Connections using long trace lengths, narrow trace widths, and/or connections through vias must be avoided. These added parasitic inductances and resistance may result in inferior performance especially during transient conditions.


Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RT9092


GND ball (B2) connect to second layer ground path by Via to increase cooling area directly.

GND Pad (2) and (5) connect to second layer ground path by Via to increase cooling area directly.

Figure 3. ZQFN-4L 1x1 Layout Guide

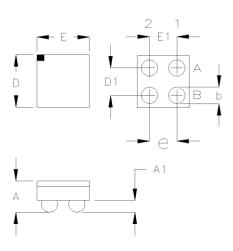
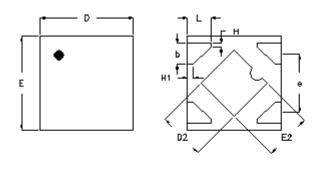
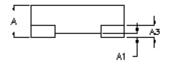
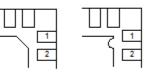

GND Pin (2) connect to second layer ground path by Via to increase cooling area directly.

Figure 4. SOT-23-5 Layout Guide

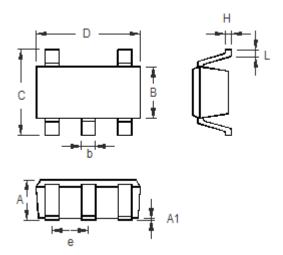

Outline Dimension


RT9092



Symbol	Dimensions I	n Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
A	0.355	0.445	0.014	0.018	
A1	0.145	0.175	0.006	0.007	
b	0.190	0.230 0.00		0.009	
D	0.630	0.710	0.025	0.028	
D1	0.3	350	0.014		
E	0.630	0.710	0.025	0.028	
E1	0.3	350	0.014		
е	0.3	350	0.014		

4B WL-CSP 0.67x0.67 Package (BSC)

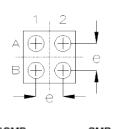


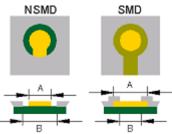
Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches		
Symbol	Min	Мах	Min	Max		
A	0.300	0.400	0.012	0.016		
A1	0.000	0.050	0.000	0.002		
A3	0.117	0.162	0.005	0.006		
b	0.175	0.275	0.007	0.011		
D	0.900	1.100 0.035		0.043		
D2	0.450	0.550	0.018	0.022		
E	0.900	1.100	0.035	0.043		
E2	0.450	0.550	0.018	0.022		
е	0.6	625	0.0)25		
L	0.200	0.300	0.008	0.012		
Н	0.0)39	0.002			
H1	0.0)64	0.003			

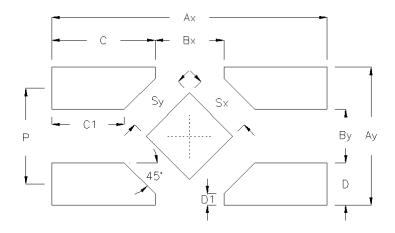
Z-Type 4L QFN 1x1 Package

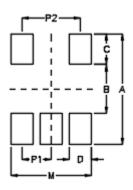
Cumbal	Dimensions	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.889	1.295	0.035	0.051
A1	0.000	0.152	0.000	0.006
В	1.397	1.803	0.055	0.071
b	0.356	0.559	0.014	0.022
С	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
е	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024


SOT-23-5 Surface Mount Package

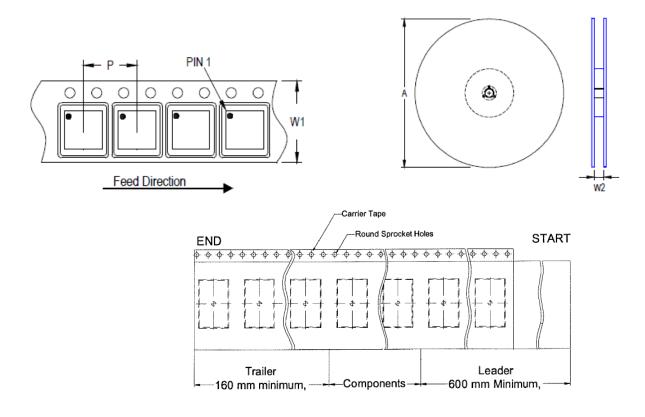

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

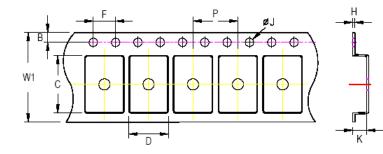
RT9092


Footprint Information



Dealvage	Number of		Footpri	Toloronoo			
Package	Pin	Туре	е	А	В	Tolerance	
	4	NSMD	0.250	0.180	0.280	±0.025	
WL-CSP0.67x0.67-4(BSC)	4	SMD	0.350	0.210	0.180		


	Number of		Footprint Dimension (mm)									Teleronae	
Package	Р	Ax	Ay	Bx	Ву	С	C1	D	D1	Sx	Sy	Tolerance	
U/X/ZQFN1x1-4	4	0.625	1.800	0.900	0.450	0.350	0.675	0.474	0.275	0.074	0.400	0.400	±0.050

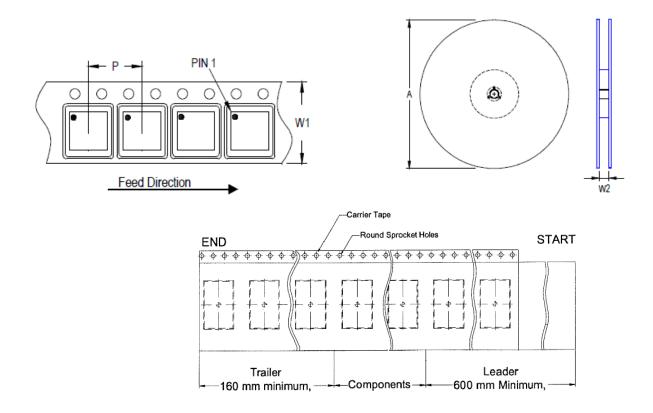

Packago	Number of	Footprint Dimension (mm)							Tolerance
Package	Pin	P1	P2	А	В	С	D	М	TOIETATICE
TSOT-25/TSOT-25(FC)/SOT-25	5	0.95	1.90	3.60	1.60	1.00	0.70	2.60	±0.10

Packing Information

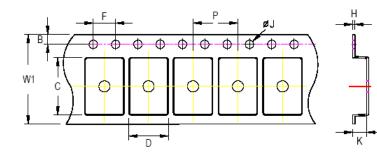
Tape and Reel Data (WL-CSP 0.67x0.67)

Package Type	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)
WL-CSP 0.67x0.67	8	2	180	7	10,000	160	600	8.4/9.9

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

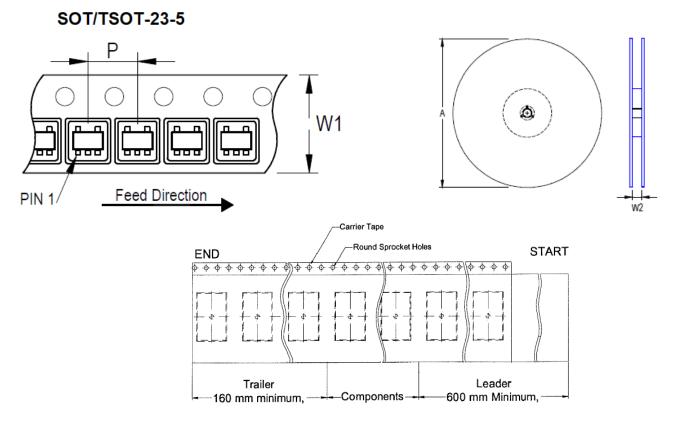

- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	F	D	В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

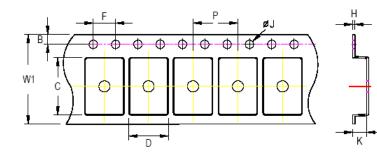


Tape and Reel Data (QFN/DFN 1x1)

De ske se Tres	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
QFN/DFN 1x1	8	4	180	7	2,500	160	600	8.4/9.9	


C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.


Tape Size	W1	Р		В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Tape and Reel Data (SOT/TSOT-23-5)

Package Type	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)
SOT/TSOT-2 3-5	8	4	180	7	3,000	160	600	8.4/9.9

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing (WL-CSP 0.67x0.67)

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		12 inner boxes per outer box
2		5	RICHTEK INFORMER BARINA
	Packing by Anti-Static Bag		Outer box Carton A
3		6	
	3 reels per inner box Box A		

Container	R	eel	Box				Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
WL-CSP	-7"	10,000	Box A	18.3*18.3*8.0	3	30,000	Carton A	38.3*27.2*38.3	12	360,000
0.67x0.67	1	10,000	Box E	18.6*18.6*3.5	1	10,000		For Combined or Pa	artial Reel.	

Tape and Reel Packing (QFN/DFN 1x1)

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	RCHTEK MANNE BARTAR
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	Reel	Вох				Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
		0.500	Box A	18.3*18.3*8.0	3	7,500	Carton A	38.3*27.2*38.3	12	90,000
QFN & DFN 1x1	1	2,500	Box E	18.6*18.6*3.5	1	2,500		For Combined or F	Partial Reel.	

RT9092

Tape and Reel Packing (SOT/TSOT-23-5)

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	RCHTEK MANNE Rectored
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	leel		Box			Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
SOT/TSOT-23-5	7"	2 000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000
301/1301-23-5	1	3,000	Box E	18.6*18.6*3.5	1	3,000		For Combined or F	Partial Reel.	

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

RT9092

Datasheet Revision History

Version	Date	Description	Item
00	2023/2/20	Final	Ordering Information on P2 Application Information on P12 Packing Information on P16, 17, 18
01	2023/6/12	Modify (Added ZQFN-4L 1x1 and SOT-23-5 Package)	General Description on P1 Ordering Information on P1 Pin Configuration on P2 Functional Pin Description on P2 RT9092 Output Voltage Table on P3, 4 Absolute Maximum Ratings on P7 Electrical Characteristics on P7, 8 Note 2 on P9 Typical Application Circuit on P10 Application Information on P13, 14, 15 Outline Dimension on P17, 18 Footprint Information on P20, 21 Packing Information on P23, 24, 26, 27
02	2023/10/24	Modify	General Description on P1 Recommended Operating Conditions on P7 Application Information on P13