

Sample & Buy

### **General PMIC for Intel and AMD Platforms**

Technical Documentation

### **1** General Description

The RT5128A is a multi-output integrated circuit (MOIC) designed for use with Intel MTL-UPH and AMD SVI3 mobile CPU platforms. The RT5128A integrates two buck controllers, four buck converters, and one load switch. Furthermore, the RT5128A supports both DDR5 and LPDDR5 applications.

To prevent abnormal operation or electrical overstress, the RT5128A features UVLO, OVP, UVP, OTP, and overcurrent-limit protections for each rail. The RT5128A is available in a UQFN-42L 5x5 (FC) package.

### 2 Ordering Information

RT5128A Package Type QUF: UQFN-42L 5x5 (FC) (U-Type) Lead Plating System G: Richtek Green Policy Compliant

#### Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

### 3 Features

- High Integration
  - ► Two Controllers, Four Converters, and One Switch
- Input Voltage Range
  - ▶ Controller: 4.5V to 23V
  - ► Converter: 2.7V to 5.5V
- Internal Soft-Start to Reduce Inrush Current
- Stable with POSCAP and MLCC
- Output Load Discharge Function
- DDR Type Selection: DDR5 or LPDDR5
- Cycle-by-Cycle Current Limit
- Output Overvoltage and Undervoltage Protection (OVP and UVP)
- Input Undervoltage Lockout (UVLO)
- Over-Temperature Protection (OTP)
- Support I<sup>2</sup>C Interface for Programming
  - Adjustable Current Limit
  - Selectable Switching Frequency
  - ► Selectable Output Discharge Resistance
  - Provide Four Power Good Indicators

### **4** Applications

- Intel MTL-UPH Mobile CPU
- AMD SVI3 FP7/FP8 Mobile CPU

### **5 Marking Information**

RT5128A GQUF YMDAN RT5128AGQUF: Product Code YMDAN: Date Code



### **6 Simplified Application Circuit**



Figure 1. Simplified Application Circuit for Intel MTL-UPH



Figure 2. Simplified Application Circuit for AMD SVI3

### **Table of Contents**

| 1        | Genera                                                         | I Description1                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Orderin                                                        | ng Information1                                                                                                                                                                                                        |
| 3        | Feature                                                        | es1                                                                                                                                                                                                                    |
| 4        |                                                                | ations 1                                                                                                                                                                                                               |
| 5        | Markin                                                         | g Information1                                                                                                                                                                                                         |
| 6        | Simplif                                                        | ied Application Circuit2                                                                                                                                                                                               |
| 7        | Pin Cor                                                        | nfiguration4                                                                                                                                                                                                           |
| 8        | Functio                                                        | onal Pin Description4                                                                                                                                                                                                  |
| 9        | Functio                                                        | nal Block Diagram7                                                                                                                                                                                                     |
| 10       | Absolu                                                         | te Maximum Ratings8                                                                                                                                                                                                    |
| 11       | Recom                                                          | mended Operating Conditions9                                                                                                                                                                                           |
| 12       | Electric                                                       | cal Characteristics9                                                                                                                                                                                                   |
| 13       | Typical                                                        | Application Circuit19                                                                                                                                                                                                  |
|          |                                                                |                                                                                                                                                                                                                        |
| 14       | Typical                                                        | Operating Characteristics21                                                                                                                                                                                            |
| 14<br>15 |                                                                | Operating Characteristics21<br>ion                                                                                                                                                                                     |
|          |                                                                |                                                                                                                                                                                                                        |
|          | Operat                                                         | ion                                                                                                                                                                                                                    |
|          | <b>Operat</b><br>15.1                                          | Step-Down Converter                                                                                                                                                                                                    |
|          | <b>Operat</b><br>15.1<br>15.2                                  | 30         Step-Down Converter                                                                                                                                                                                         |
|          | <b>Operat</b><br>15.1<br>15.2                                  | ion       30         Step-Down Converter                                                                                                                                                                               |
|          | <b>Operat</b><br>15.1<br>15.2<br>15.3                          | ion       30         Step-Down Converter                                                                                                                                                                               |
|          | <b>Operat</b><br>15.1<br>15.2<br>15.3<br>15.4                  | ion       30         Step-Down Converter.       30         Load Switch       30         VCC Power-On Reset (POR),       30         UVLO       30         Power Good.       30                                          |
|          | <b>Operat</b><br>15.1<br>15.2<br>15.3<br>15.4<br>15.5          | ion       30         Step-Down Converter.       30         Load Switch       30         VCC Power-On Reset (POR),       30         UVLO       30         Power Good.       30         Buck Overcurrent Limit.       31 |
|          | <b>Operati</b><br>15.1<br>15.2<br>15.3<br>15.4<br>15.5<br>15.6 | 30           Step-Down Converter                                                                                                                                                                                       |

| 16 | Application Information |                            |     |
|----|-------------------------|----------------------------|-----|
|    | 16.1                    | Buck Regulator             | .35 |
|    | 16.2                    | Power-Up Sequencing        |     |
|    |                         | and On/Off Controls (ENx)  | .35 |
|    | 16.3                    | DDR Voltage Selection      | .35 |
|    | 16.4                    | Current Limit              | .35 |
|    | 16.5                    | Current Limit Setting      | .36 |
|    | 16.6                    | Inductor Selection         | .36 |
|    | 16.7                    | Output Cap. Selection      | .37 |
|    | 16.8                    | Input Cap. Selection       | .37 |
|    | 16.9                    | Thermal Considerations     | .38 |
|    | 16.10                   | Layout Considerations      | .39 |
|    | 16.11                   | I <sup>2</sup> C Interface | .42 |
| 17 | Functio                 | on Register Table          | .43 |
| 18 | Outline                 | e Dimension                | .60 |
| 19 | Footpr                  | int Information            | .61 |
| 20 | Packin                  | g Information              | .62 |
|    | 20.1                    | Tape and Reel Data         | .62 |
|    | 20.2                    | Tape and Reel Packing      | .63 |
|    | 20.3                    | Packing Material           |     |
|    |                         | Anti-ESD Property          | .64 |
| 21 | Datash                  | neet Revision History      | .65 |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



### 7 Pin Configuration

(TOP VIEW)



UQFN-42L 5x5 (FC)

#### **Functional Pin Description** 8

| Pin No. | Pin Name | Pin Function                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | LSW_IN   | Input voltage pin for the load switch.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2       | LSW_OUT  | Output voltage pin for the load switch.                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3       | EN_LSW   | Enable control input. DO NOT leave this pin floating. As EN_LSW voltage is lower than 0.4V, the load switch is turned off and enters shutdown mode. As EN_LSW is higher than 1V, the load switch wakes up.                                                                                                                                                                                                                                    |
| 4       | SCL      | I <sup>2</sup> C clock pin. This pin is the input of the serial bus clock signal.                                                                                                                                                                                                                                                                                                                                                             |
| 5       | SDA      | I <sup>2</sup> C data pin. This pin is the input and output of the serial bus data signal.                                                                                                                                                                                                                                                                                                                                                    |
| 6       | DRV_VCC  | Bias voltage for the internal gate driver. The typical required bias voltage for DRV_VCC is 5V. To avoid noise disturbance, the supplied bias voltage must remain stable. Besides, a RC filter (R = $2.2\Omega/0603$ and C = $1\mu$ F/0603) from the bias voltage to the DRV_VCC pin is necessary and should be placed as close as physically possible to the DRV_VCC pin. Both DRV_VCC and VCC should be connected to the same power supply. |
| 7       | VCC      | Bias voltage for control logic. The required bias voltage for VCC is typically 5V. To avoid noise disturbance, the supplied bias voltage must be stable. Besides, an RC filter (R = $2.2\Omega/0603$ and C = $1\mu F/0603$ ) from bias voltage to the VCC pin is necessary and should be placed as close as physically possible to the VCC pin. Both DRV_VCC and VCC should be connected to the same power supply.                            |
| 8       | PG4      | PG4 is a power good indicator that can be assigned for any rail using I <sup>2</sup> C (default is VCC_C). PG4 is an open-drain output, pulled low when UVP/OVP/OTP/EN is low or when the output voltage is not regulated (such as before soft-start). A pull-up resistor of $10k\Omega$ to $100k\Omega$ is necessary if this function is used.                                                                                               |



| Pin No.                         | Pin Name | Pin Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9                               | PG3      | PG3 is a power good indicator that can be assigned for any rail using I <sup>2</sup> C (default is VCC_A). PG3 is an open-drain output, pulled low when UVP/OVP/OTP/EN is low or when the output voltage is not regulated (such as before soft-start). A pull-up resistor of $10k\Omega$ to $100k\Omega$ is necessary if this function is used.                                                                                                                                                                                                 |
| 10                              | PG2      | PG2 is a power good indicator that can be assigned for any rail using I <sup>2</sup> C (default is VCC_2). PG2 is an open-drain output, pulled low as UVP/OVP/OTP/EN is low or when the output voltage is not regulated (such as before soft-start). A pull-up resistor of $10k\Omega$ to $100k\Omega$ is necessary if this function is used.                                                                                                                                                                                                   |
| 11                              | PG1      | PG1 is a power good indicator that can be assigned for any rail using I <sup>2</sup> C (default is VCC_1). PG1 is an open-drain output, pulled low as UVP/OVP/OTP/EN is low or when the output voltage is not regulated (such as before soft-start). A pull-up resistor of $10k\Omega$ to $100k\Omega$ is necessary if this function is used.                                                                                                                                                                                                   |
| 12                              | RGNDA    | Remote sense ground of VCC_1. Connect RGNDA to the negative terminal of the output capacitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13                              | FB_A     | VCC_A feedback pin. Connect a pair of voltage dividers to set the target output voltage. The FB_A pin is well regulated at the reference voltage (0.6V) by the internal control loop.                                                                                                                                                                                                                                                                                                                                                           |
| 14, 34, 39,<br>43 (Exposed Pad) | GND      | Ground pin and exposed pad of package. This pin is electrically isolated. It is recommended to directly solder to the large GND plane and add enough thermal vias to enhance heat dissipation and achieve better thermal performance.                                                                                                                                                                                                                                                                                                           |
| 15                              | SW_A     | Switch node of VCC_A. Connect it to the power inductor. Since this pin is noisy, keep the sensitive trace or signal away from the SW_A net.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16                              | SRC_A    | Input voltage for VCC_A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17                              | SRC_D    | Input voltage for VCC_D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18                              | SW_D     | Switch node of VCC_D. Connect it to the power inductor. Since this pin is noisy, keep the sensitive trace or signal away from the SW_D net.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19                              | EN_A     | Enable control input. DO NOT leave this pin floating. If the EN_A voltage is lower than 0.4V, VCC_A is turned off and enters shutdown mode. If EN_A is higher than 1V, VCC_A wakes up.                                                                                                                                                                                                                                                                                                                                                          |
| 20                              | VOUT_D   | VCC_D unity feedback pin. Connect this pin to the positive terminal of the output capacitors for voltage regulation.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21                              | VOUT_2   | VCC_2 unity feedback pin. Connect this pin to the positive terminal of the output capacitors for voltage regulation.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22                              | EN2      | Enable control input. DO NOT leave this pin floating. If the EN2 voltage is lower than 0.4V, both VCC_2 and VCC_D are turned off and enter shutdown mode. If the EN2 voltage is higher than 1V and less than 1.5V, VCC_2 is active and suitable to operate with pure MLCC type output capacitors. If the EN2 voltage is higher than 1.7V, VCC_2 is active and suitable to operate with POSCAP type output capacitors. Furthermore, EN2 is also used to control the VCC_D rail status. VCC_D is powered on if the EN2 voltage is higher than 1V. |
| 23                              | LG2      | VCC_2 low-side gate driver output pin. Connect this pin to the gate of the low-<br>side MOSFET. Note that the trace impedance between the LG2 pin and gate<br>terminal of the low-side MOSFET should be as small as possible. DO NOT<br>connect a resistor between LG2 and gate terminal of the low-side MOSFET;<br>otherwise, it might cause undesired shoot-through since the LG2 voltage is<br>monitored for shoot-through protection.                                                                                                       |



| Pin No. | Pin Name | Pin Function                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24      | BOOT2    | VCC_2 bootstrap supply for high-side gate driver. Connect a high-quality and low-ESR ceramic capacitor (minimum 0.1 $\mu$ F, X7R) from BOOT2 to the SW2 pin. The bootstrap capacitor supplies current to the high-side gate driver and should be placed as close to the BOOT2 pin as possible.                                                                                                         |
| 25      | SW2      | Switch node of VCC_2. This pin is the return node of the high-side MOSFET driver. Connect this pin to the source of the high-side MOSFET together with the drain of the low-side MOSFET and the inductor.                                                                                                                                                                                              |
| 26      | UG2      | VCC_2 upper gate driver with sink and source output. Connect to the gate of the high-side MOSFET through a short and low-inductance path.                                                                                                                                                                                                                                                              |
| 27      | DDR_ID   | DDR type selection. The RT5128A operates in LPDDR5 mode if the DDR_ID voltage is higher than 1V, on the other hand, the RT5128A operates in DDR5 mode if the DDR_ID voltage is lower than 0.4V.                                                                                                                                                                                                        |
| 28      | PWM1     | PWM control output for the VCC_1 driver circuit. When the PWM output is high, the high-side MOSFET is turned on. When the PWM output is in the tri-<br>state level, both MOSFETs are turned off. When the PWM input is low, the low-<br>side MOSFET is turned on.                                                                                                                                      |
| 29      | SW1      | Switch node of VCC_1. Connect this pin to the source of the high-side MOSFET, along with the drain of low-side MOSFET and the inductor.                                                                                                                                                                                                                                                                |
| 30      | EN1      | Enable control input. DO NOT leave this pin floating. When the EN1 voltage is lower than 0.4V, VCC_1 is turned off and enters shutdown mode. When the EN1 voltage is higher than 1V but less than 1.5V, VCC_1 is active and suitable for operation with pure MLCC type output capacitors. When EN1 is higher than 1.7V, VCC_1 is active and suitable for operation with POSCAP type output capacitors. |
| 31      | FB_1     | VCC_1 feedback input. A resistor divider from VOUT to FB sets the desired VOUT level. VOUT is regulated by FB tracking internal reference voltage of 0.6V.                                                                                                                                                                                                                                             |
| 32      | RGND1    | Remote sense ground of VCC_1. RGND1 is for remote negative sense feedback.                                                                                                                                                                                                                                                                                                                             |
| 33      | FB_C     | VCC_C feedback input. Connect a pair of voltage dividers to set the target output voltage. The FB_C is well regulated at the reference voltage (0.6V) by the internal control loop.                                                                                                                                                                                                                    |
| 35      | sw_c     | Switch node of VCC_C. Connect it to the power inductor. This pin is noisy, so keep the sensitive trace or signal away from the SW_C net.                                                                                                                                                                                                                                                               |
| 36      | SRC_C    | Input voltage for VCC_C.                                                                                                                                                                                                                                                                                                                                                                               |
| 37      | SRC_B    | Input voltage for VCC_B.                                                                                                                                                                                                                                                                                                                                                                               |
| 38      | SW_B     | Switch node of VCC_B. Connect to the power inductor. This pin is noisy, so keep the sensitive trace or signal away from the SW_B net.                                                                                                                                                                                                                                                                  |
| 40      | EN_C     | Enable control input. DO NOT leave this pin floating. When the EN_C voltage is lower than 0.4V, VCC_C is turned off and enters shutdown mode. When the EN_C voltage is higher than 1V, VCC_C wakes up.                                                                                                                                                                                                 |
| 41      | EN_B     | Enable control input. DO NOT leave this pin floating. When the EN_B voltage is lower than 0.4V, VCC_B is turned off and enters shutdown mode. When the EN_B voltage is higher than 1V, VCC_B wakes up.                                                                                                                                                                                                 |
| 42      | FB_B     | VCC_B feedback input. Connect a pair of voltage dividers to set the target output voltage. The FB_B is well regulated at the reference voltage (0.6V) by the internal control loop.                                                                                                                                                                                                                    |



### 9 Functional Block Diagram



Copyright © 2024 Richtek Technology Corporation. All rights reserved.

7

www.richtek.com

<u>...</u>



#### **10 Absolute Maximum Ratings**

| ( <u>Note 1</u> )                                              |               |
|----------------------------------------------------------------|---------------|
| Supply Input Voltage, VIN                                      | 0.3V to 30V   |
| Supply Input Voltage, VDRV_VCC, VCC, VSRC                      | 0.3V to 6V    |
| BOOT2 to GND                                                   |               |
| DC                                                             | 0.3V to 36V   |
| <100ns                                                         | 5V to 42V     |
| BOOT2, UG2, LG2 to SW2                                         |               |
| DC                                                             | 0.3V to 6V    |
| <100ns                                                         | 5V to 7.5V    |
| SW1 to GND                                                     |               |
| DC                                                             | 0.3V to 30V   |
| <100ns                                                         | 10V to 42V    |
| SW2 to GND                                                     |               |
| DC                                                             | 5V to 30V     |
| <100ns                                                         | 10V to 42V    |
| UG2 to GND                                                     |               |
| DC                                                             | 5V to 36V     |
| <100ns                                                         |               |
| Other I/O Pins                                                 |               |
| • Power Dissipation, PD @ TA = $25^{\circ}$ C                  |               |
| UQFN-42L 5x5 (FC)                                              | 5 12\W        |
| Package Thermal Resistance (Note 2)                            | 0.1200        |
| UQFN-42L 5x5 (FC), θJA                                         | 10 52°C/\//   |
| UQFN-42L 5x5 (FC), θJC                                         |               |
| <ul> <li>Lead Temperature (Soldering, 10 sec.)</li></ul>       |               |
| Lead Temperature (Soldering, To sec.)     Junction Temperature |               |
|                                                                |               |
| Storage Temperature Range                                      | 65°C to 150°C |
| • ESD Susceptibility ( <u>Note 3</u> )                         |               |
| HBM (Human Body Model)                                         | 2kV           |

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θJA is measured under natural convection (still air) at TA = 25°C with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θJC is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.

### **11 Recommended Operating Conditions**

#### (<u>Note 4</u>)

| • Sup | ply Input Voltage,  | VDRV_VCC, VCC | 4.5V to | 5.5V    |
|-------|---------------------|---------------|---------|---------|
| • Sup | oply Input Voltage, | VIN           | 4.5V to | 23V     |
| • Sup | ply Input Voltage,  | Vsrc          | 2.7V to | 5.5V    |
| • Am  | bient Temperature   | Range         | –40°C t | o 85°C  |
| • Jun | ction Temperature   | Range         | –40°C t | o 125°C |
|       |                     |               |         |         |

Note 4. The device is not guaranteed to function outside its operating conditions.

### **12 Electrical Characteristics**

(VIN = 12V, Vcc = 5V. The typical values are referenced to TA = TJ = 25°C. Both the minimum and maximum values are referenced to TA = TJ from  $-10^{\circ}$ C to  $105^{\circ}$ C. Unless otherwise specified.)

| Parameter                                      | Symbol                                                                   | Test Conditions                                                                | Min | Тур | Мах | Unit |
|------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|-----|-----|------|
| Supply Voltage                                 | ·                                                                        |                                                                                |     |     |     |      |
| VCC Supply Input<br>Voltage                    | Vcc                                                                      |                                                                                | 4.5 |     | 5.5 | V    |
| VCC Shutdown Current                           | IVCC_SHDN                                                                | All ENx = 0V                                                                   |     | 60  |     | μA   |
| UVLO                                           |                                                                          |                                                                                |     |     |     |      |
| VSRC Undervoltage<br>Lockout Falling Threshold | VSRC_A_UVLO_F<br>VSRC_B_UVLO_F<br>VSRC_C_UVLO_F<br>VSRC_D_UVLO_F         | Falling edge                                                                   |     | 2.4 |     | V    |
| VSRC Undervoltage<br>Lockout Hysteresis        | VSRC_A_UVLO_HYS<br>VSRC_B_UVLO_HYS<br>VSRC_C_UVLO_HYS<br>VSRC_D_UVLO_HYS | Hysteresis                                                                     |     | 200 |     | mV   |
| VCC Undervoltage<br>Lockout Falling Threshold  | VCC_UVLO_F                                                               | Falling edge                                                                   |     | 3.8 |     | V    |
| VCC Undervoltage<br>Lockout Hysteresis         | VCC_UVLO_HYS                                                             | Hysteresis                                                                     |     | 200 |     | mV   |
| Logic Threshold                                |                                                                          |                                                                                |     |     |     |      |
|                                                |                                                                          | VCC_1 or 2 is operating in<br>POSCAP mode                                      | 1.7 |     |     |      |
| EN1 and EN2 Threshold<br>Voltage               | VEN1<br>VEN2                                                             | Enable corresponding rail,<br>VCC_1 or 2 is operating in<br>MLCC mode          | 1   |     | 1.5 | V    |
|                                                |                                                                          | Shutdown                                                                       |     |     | 0.4 |      |
| EN_A, EN_B, EN_C,<br>and EN_LSW Threshold      | Ven_a<br>Ven_b<br>Ven c                                                  | ENx > 1V, enable corresponding<br>rail, VCC_1 & 2 is operating in<br>MLCC mode | 1   |     |     | v    |
| Voltage                                        | VEN_LSW                                                                  | Shutdown                                                                       |     |     | 0.4 |      |
| DDR_ID Input Voltage<br>Logic High             | VDDR_ID_IH                                                               | Rising edge                                                                    | 1   |     |     |      |
| DDR_ID Input Voltage<br>Logic Low              | VDDR_ID_IL                                                               | Falling edge                                                                   |     |     | 0.4 | V    |

| Parameter                                   | Symbol          | Test Conditions                                | Min   | Тур  | Max   | Unit |
|---------------------------------------------|-----------------|------------------------------------------------|-------|------|-------|------|
| Thermal Alert                               |                 | I                                              |       |      |       |      |
| Thermal Alert Assert<br>Threshold           | TALERT_H        | GBD, default setting,<br>PROCHOT_SET[1:0] = 01 | 100   | 110  | 120   | °C   |
| Thermal Alert De-Assert<br>Threshold        | TALERT_L        |                                                |       | 90   |       | °C   |
| Over-Temperature<br>Protection Threshold    | Тотр            | GBD                                            | 140   | 150  | 160   | °C   |
| Over-Temperature<br>Protection Hysteresis   | TOTP_HYS        |                                                |       | 25   |       | °C   |
| VCC_1 (HV Buck Control                      | ller)           |                                                |       |      |       |      |
| Quiescent Current                           | IQ_NSW          | Enable, No switching                           |       | 110  |       | μA   |
| Reference Voltage and S                     | oft-Start       |                                                | ·     |      |       |      |
| Reference Voltage                           | VREF            | TA = 25°C                                      | 0.597 | 0.6  | 0.603 | V    |
| Soft-Start Time                             | tss             | VREF 10% to 90%                                |       | 1    |       | ms   |
| Current Limit                               | •               |                                                |       |      |       |      |
|                                             | VCL             | OC_CTRL1[1:0] = 00                             | 60    | 75   | 90    | mV   |
| Current-Limit Threshold                     |                 | OC_CTRL1[1:0] = 01 (default)                   | 110   | 125  | 140   |      |
| Current-Limit Threshold                     |                 | OC_CTRL1[1:0] = 10                             | 160   | 200  | 240   |      |
|                                             |                 | OC_CTRL1[1:0] = 11                             | 184   | 230  | 276   |      |
| Switching Frequency and                     | d Minimum Off T | imer                                           | ·     |      |       |      |
|                                             |                 | FSW_CTRL2[1:0] = 00                            | 320   | 400  | 480   | kHz  |
| Quitabing Fragmany                          | fo.w/           | FSW_CTRL2[1:0] = 01 (default)                  | 480   | 600  | 720   |      |
| Switching Frequency                         | fSW             | FSW_CTRL2[1:0] = 10                            | 640   | 800  | 960   |      |
|                                             |                 | FSW_CTRL2[1:0] = 11                            | 800   | 1000 | 1200  |      |
| Minimum On-Time                             | ton_min         |                                                |       | 50   |       | ns   |
| Minimum Off-Time                            | toff_min        |                                                | 150   | 400  | 500   | ns   |
| Protection                                  |                 |                                                | ·     |      |       |      |
| Output Overvoltage<br>Protection Threshold  | VOVP            | OVP Detect                                     | 115   | 120  | 125   | %    |
| Output Overvoltage<br>Protection Delay Time | tOVP_DLY        |                                                |       | 5    |       | μs   |
| Output Undervoltage<br>Protection Threshold | VUVP            |                                                | 55    | 60   | 65    | %    |
| Output Undervoltage<br>Protection Delay     | tUVP_DLY        |                                                |       | 5    |       | μs   |
| Zero Current Crossing<br>Threshold          | VPHASE_ZC       | GND-SW1                                        |       | 1    |       | mV   |



| Parameter                                   | Symbol            | Test Conditions                    | Min   | Тур  | Мах   | Unit    |
|---------------------------------------------|-------------------|------------------------------------|-------|------|-------|---------|
| Discharge Resistance                        |                   |                                    | •     |      | •     | <u></u> |
|                                             |                   | DISCH_CTRL2[1:0] = 00              |       | Hi-Z |       |         |
| Discharge Resistor                          | RDISCHG           | DISCH_CTRL2[1:0] = 01<br>(default) |       | 100  |       | Ω       |
|                                             |                   | DISCH_CTRL2[1:0] = 10              |       | 200  |       |         |
|                                             |                   | DISCH_CTRL2[1:0] = 11              |       | 500  |       |         |
| Power Good Indicator                        |                   |                                    |       |      |       |         |
| Power-Good Voltage<br>Rising Threshold      | VPGOOD_R          | PGOOD detect, rising edge          | 86    | 90   | 94    | %       |
| Power-Good Voltage<br>Hysteresis            | VPGOOD_HYS        | Hysteresis                         |       | 6    |       | %       |
| PGOOD Available Time                        | tPGOOD_Available  | EN rising to PGOOD rising          |       | 2    | 3     | ms      |
| PWM Driving Capability                      |                   |                                    |       |      |       |         |
| PWM Source                                  | RPWM_SR           | VCC to PWM                         |       |      | 35    | Ω       |
| PWM Sink                                    | RPWM_SK           | PWM to GND                         |       |      | 15    | Ω       |
| VCC_2 (HV Buck Contro                       | ller w/ Driver)   |                                    |       |      |       |         |
| Quiescent Current                           | IQ_NSW            | Enable, no switching               |       | 110  |       | μA      |
| Output Voltage and Soft                     | -Start            |                                    |       |      |       |         |
| Output Maltage                              |                   | DDR_ID = H, TA = 25°C              | 1.044 | 1.05 | 1.056 |         |
| Output Voltage                              | Vout              | DDR_ID = L, TA = 25°C              | 1.094 | 1.1  | 1.106 | V       |
| Soft-Start Time                             | tss               | VCC_2 10% to 90%                   |       | 1    |       | ms      |
| Current Limit                               |                   |                                    |       |      |       |         |
|                                             |                   | OC_CTRL1[3:2] = 00                 | 60    | 75   | 90    |         |
|                                             |                   | OC_CTRL1[3:2] = 01                 | 100   | 125  | 150   |         |
| Current-Limit Threshold                     | VCL               | OC_CTRL1[3:2] = 10 (default)       | 160   | 200  | 240   | mV      |
|                                             |                   | OC_CTRL1[3:2] = 11                 | 184   | 230  | 276   |         |
| Switching Frequency an                      | d Minimum-Off Tin | ner                                |       |      |       |         |
|                                             |                   | FSW_CTRL2[3:2] = 00                | 320   | 400  | 480   |         |
| 0 % L . E                                   | four              | FSW_CTRL2[3:2] = 01 (default)      | 480   | 600  | 720   |         |
| Switching Frequency                         | fsw               | FSW_CTRL2[3:2] = 10                | 640   | 800  | 960   | kHz     |
|                                             |                   | FSW_CTRL2[3:2] = 11                | 800   | 1000 | 1200  |         |
| Minimum On-Time                             | ton_min           |                                    |       | 50   |       | ns      |
| Minimum Off-Time                            | toff_min          |                                    | 150   | 400  | 500   | ns      |
| Protection                                  |                   | 1                                  |       |      |       | <u></u> |
| Output Overvoltage<br>Protection Threshold  | Vovp              | OVP Detect                         | 115   | 120  | 125   | %       |
| Output Overvoltage<br>Protection Delay Time | tovp_dly          |                                    |       | 5    |       | μs      |

#### Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

11

www.richtek.com



| Parameter                                   | Symbol           | Test Conditions                    | Min      | Тур  | Max   | Unit |
|---------------------------------------------|------------------|------------------------------------|----------|------|-------|------|
| Output Undervoltage<br>Protection Threshold | VUVP             |                                    | 55       | 60   | 65    | %    |
| Output Undervoltage<br>Protection Delay     | VUVP_DLY         |                                    |          | 5    |       | μs   |
| Zero Current Crossing<br>Threshold          | VPHASE_ZC        | GND-SW2                            |          | 1    |       | mV   |
| Discharge Resistance                        |                  |                                    |          |      |       |      |
|                                             |                  | DISCH_CTRL2[3:2] = 00              |          | Hi-Z |       |      |
| Discharge Resistor                          | RDISCHG          | DISCH_CTRL2[3:2] = 01<br>(default) |          | 100  |       | Ω    |
| C C                                         |                  | DISCH_CTRL2[3:2] = 10              |          | 200  |       |      |
|                                             |                  | DISCH_CTRL2[3:2] = 11              |          | 500  |       |      |
| Power Good Indicator                        |                  | -                                  |          |      |       |      |
| Power-Good Voltage<br>Rising Threshold      | VPGOOD_R         | PGOOD detect, rising edge          | 86       | 90   | 94    | %    |
| Power-Good Voltage<br>Hysteresis            | VPGOOD_HYS       | Hysteresis                         |          | 6    |       | %    |
| PGOOD Available Time                        | tPGOOD_Available | EN rising to PGOOD rising          |          | 2    | 3     | ms   |
| Driver On-Resistance                        |                  | <u>.</u>                           | •        |      | •     |      |
| UGATE Drive Source<br>Impedance             | RSRC_UGATE       | BOOT2 – SW2 forced to 5V           |          | 2    | 4     | Ω    |
| UGATE Drive Sink<br>Impedance               | RSNK_UGATE       | BOOT2 – SW2 forced to 5V           |          | 1    | 2     | Ω    |
| LGATE Drive Source<br>Impedance             | RSRC_LGATE       | LG2, high state                    |          | 1.5  | 3     | Ω    |
| LGATE Drive Sink<br>Impedance               | RSNK_LGATE       | LG2, low state                     |          | 0.7  | 1.5   | Ω    |
| UGATE Propagation<br>Delay Time             | tDLY_UG          | From LG2 falling to UG2 rising     |          | 30   |       |      |
| LGATE Propagation<br>Delay Time             | tDLY_LG          | From UG2 falling to LG2 rising     |          | 20   |       | ns   |
| Internal Boost Diode<br>Resistor            | RBOOT            | VCC to BOOT2, IBOOT = 10mA         |          | 40   | 80    | Ω    |
| VCC_A (LV Buck Conver                       | ter, 6A)         |                                    |          |      |       |      |
| SRC_A Supply Input<br>Voltage               | VSRC_A           |                                    | 2.7      |      | 5.5   | V    |
| Quiescent Current                           | IQ_NSW           | Enable, no switching               |          | 35   |       | μA   |
| Reference Voltage and S                     | oft-Start        |                                    | <u>.</u> |      |       |      |
| Reference Voltage                           | VREF             | TA = 25°C                          | 0.597    | 0.6  | 0.603 | V    |
| Soft-Start Time                             | tss              | VREF 10% to 90%                    |          | 1    |       | ms   |
| Internal Switch On-Resis                    | stance           | 1                                  |          |      |       |      |
| On-Resistance of High-<br>Side MOSFET       | RDSON_H          |                                    |          | 31   |       | mΩ   |
|                                             |                  |                                    |          |      |       |      |





| Parameter                                   | Symbol            | Test Conditions                                | Min | Тур  | Max  | Unit       |  |
|---------------------------------------------|-------------------|------------------------------------------------|-----|------|------|------------|--|
| On-Resistance of Low-<br>Side MOSFET        | RDSON_L           |                                                |     | 15   |      | m $\Omega$ |  |
| Current Limit                               | ·                 |                                                |     |      |      |            |  |
|                                             |                   | Valley current<br>OC_CTRL1[1:0] = 00 (default) | 8   | 9    | 10   |            |  |
| Low-Side Switch (Valley)                    |                   | Valley current OC_CTRL1[1:0] = 01              | 6.3 | 7.8  | 9.3  |            |  |
| Current Limit                               | ILIM_L            | Valley current<br>OC_CTRL1[1:0] = 10           | 4.6 | 6.6  | 8.6  | A          |  |
|                                             |                   | Valley current<br>OC_CTRL1[1:0] = 11           | 3.3 | 5.3  | 7.3  |            |  |
| Switching Frequency and                     | d Minimum-Off Tim | ner                                            |     |      |      |            |  |
|                                             |                   | FSW_CTRL1[1:0] = 00                            | 480 | 600  | 720  |            |  |
| Switching Frequency                         | fSW               | FSW_CTRL1[1:0] = 01 (default)                  | 640 | 800  | 960  | kHz        |  |
| Switching Frequency                         | 1500              | FSW_CTRL1[1:0] = 10                            | 800 | 1000 | 1200 | κΠΖ        |  |
|                                             |                   | FSW_CTRL1[1:0] = 11                            | 960 | 1200 | 1440 |            |  |
| Minimum Off-Time                            | toff_min          |                                                |     | 100  | I    | ns         |  |
| Protection                                  |                   |                                                |     |      |      |            |  |
| Output Overvoltage<br>Protection Threshold  | VOVP              | OVP Detect                                     |     | 120  |      | %          |  |
| Output Overvoltage<br>Protection Delay Time | tOVP_DLY          |                                                |     | 5    | I    | μs         |  |
| Output Undervoltage<br>Protection Threshold | VUVP              | UVP Detect                                     | 55  | 60   | 65   | %          |  |
| Output Undervoltage<br>Protection Delay     | VUVP_DLY          |                                                |     | 3    |      | μs         |  |
| Power Good Indicator                        | ·                 |                                                |     |      |      |            |  |
| Power-Good Voltage<br>Rising Threshold      | VPGOOD_R          | PGOOD detect, rising edge                      | 86  | 90   | 94   | %          |  |
| Power-Good Voltage<br>Hysteresis            | VPGOOD_HYS        | Hysteresis                                     |     | 6    |      | %          |  |
| PGOOD Available Time                        | tPGOOD_Available  | From EN Rising,<br>VOUT > PGOOD Threshold      |     | 2    | 3    | ms         |  |
| Discharge Resistance                        |                   |                                                |     |      |      |            |  |
|                                             |                   | DISCH_CTRL1[1:0] = 00                          |     | Hi-Z |      |            |  |
| Discharge Resistor                          | RDISCHG           | DISCH_CTRL1[1:0] = 01<br>(Default)             |     | 100  |      | Ω          |  |
|                                             |                   | DISCH_CTRL1[1:0] = 10                          |     | 200  |      |            |  |
|                                             |                   | DISCH_CTRL1[1:0] = 11                          |     | 500  | -    |            |  |
| VCC_B (LV Buck Convert                      | er, 6A)           |                                                |     |      |      |            |  |
| SRC_B Supply Input<br>Voltage               | VSRC_B            |                                                | 2.7 |      | 5.5  | V          |  |
| Quiescent Current                           | IQ_NSW            | Enable, no switching                           |     | 35   |      | μA         |  |

 Copyright © 2024 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 DS5128A-00
 March 2024
 www.richtek.com

## RICHTEK

| Parameter                                   | Symbol            | Test Conditions                                | Min   | Тур  | Мах   | Unit |  |
|---------------------------------------------|-------------------|------------------------------------------------|-------|------|-------|------|--|
| Reference Voltage and S                     | oft-Start         |                                                | •     |      |       |      |  |
| Reference Voltage                           | VREF              | TA = 25°C                                      | 0.597 | 0.6  | 0.603 | V    |  |
| Soft-Start Time                             | tss               | VREF 10% to 90%                                |       | 1    |       | ms   |  |
| Internal Switch On-Resist                   | tance             | -                                              |       |      |       |      |  |
| On-Resistance of High-<br>Side MOSFET       | RDSON_H           |                                                |       | 31   |       | mΩ   |  |
| On-Resistance of Low-<br>Side MOSFET        | RDSON_L           |                                                |       | 15   |       | mΩ   |  |
| Current Limit                               | 1                 |                                                |       | 1    | 1     | 1    |  |
|                                             |                   | Valley current<br>OC_CTRL1[3:2] = 00 (default) | 8     | 9    | 10    |      |  |
| Low-Side Switch (Valley)                    | ILIM_L            | Valley current OC_CTRL1[3:2] = 01              | 6.3   | 7.8  | 9.3   | А    |  |
| Current Limit                               |                   | Valley current<br>OC_CTRL1[3:2] = 10           | 4.6   | 6.6  | 8.6   | ~    |  |
|                                             |                   | Valley current<br>OC_CTRL1[3:2] = 11           | 3.3   | 5.3  | 7.3   |      |  |
| Switching Frequency and                     | d Minimum-Off Tim | ner                                            |       |      |       |      |  |
|                                             |                   | FSW_CTRL1[3:2] = 00 (default)                  | 960   | 1200 | 1440  |      |  |
| Switching Fraguenay                         | fsw               | FSW_CTRL1[3:2] = 01                            | 1120  | 1400 | 1680  |      |  |
| Switching Frequency                         |                   | FSW_CTRL1[3:2] = 10                            | 1280  | 1600 | 1920  | kHz  |  |
|                                             |                   | FSW_CTRL1[3:2] = 11                            | 1440  | 1800 | 2160  |      |  |
| Minimum Off-Time                            | tOFF_MIN          |                                                |       | 100  |       | ns   |  |
| Protection                                  |                   |                                                |       |      |       |      |  |
| Output Overvoltage<br>Protection Threshold  | VOVP              | OVP Detect                                     | 115   | 120  | 125   | %    |  |
| Output Overvoltage<br>Protection Delay Time | tovp_dly          |                                                |       | 5    |       | μs   |  |
| Output Undervoltage<br>Protection Threshold | VUVP              | UVP Detect                                     | 55    | 60   | 65    | %    |  |
| Output Undervoltage<br>Protection Delay     | VUVP_DLY          |                                                |       | 3    |       | μs   |  |
| Power Good Indicator                        | 1                 |                                                |       |      |       |      |  |
| Power-Good Voltage<br>Rising Threshold      | VPGOOD_R          | PGOOD detect, rising edge                      | 86    | 90   | 94    | %    |  |
| Power-Good Voltage<br>Hysteresis            | VPGOOD_HYS        | Hysteresis                                     |       | 6    |       | %    |  |
| PGOOD Available Time                        | tPGOOD_Available  | From EN rising, VOUT > PGOOD threshold         |       | 2    | 3     | ms   |  |
| Discharge Resistance                        |                   |                                                |       |      |       |      |  |
|                                             |                   | DISCH_CTRL1[3:2] = 00                          |       | Hi-Z |       |      |  |
| Discharge Resistor                          | RDISCHG           | DISCH_CTRL1[3:2] = 01<br>(Default)             |       | 100  |       | Ω    |  |
|                                             |                   | DISCH_CTRL1[3:2] = 10                          |       | 200  |       |      |  |

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved. www.richtek.com DS5128A-00 March 2024

## **RT5128A**

| Parameter                                   | Symbol            | Test Conditions                                | Min   | Тур  | Мах   | Unit  |  |
|---------------------------------------------|-------------------|------------------------------------------------|-------|------|-------|-------|--|
|                                             |                   | DISCH_CTRL1[3:2] = 11                          |       | 500  |       |       |  |
| VCC_C (LV Buck Convert                      | ter, 4A)          |                                                | 1     |      |       |       |  |
| SRC_C Supply Input<br>Voltage               | VSRC_C            |                                                | 2.7   |      | 5.5   | V     |  |
| Quiescent Current                           | IQ_NSW            | Enable, No switching                           |       | 35   |       | μA    |  |
| Reference Voltage and S                     | oft-Start         |                                                |       |      |       |       |  |
| Reference Voltage                           | VREF              | TA = 25°C                                      | 0.597 | 0.6  | 0.603 | V     |  |
| Soft-Start Time                             | tss               | VREF 10% to 90%                                |       | 1    |       | ms    |  |
| Internal Switch On-Resis                    | tance             |                                                |       |      |       |       |  |
| On-Resistance of High-<br>side MOSFET       | RDSON_H           |                                                |       | 42   |       | mΩ    |  |
| On-Resistance of Low-<br>side MOSFET        | RDSON_L           |                                                |       | 21   |       | mΩ    |  |
| Current Limit                               |                   |                                                |       |      |       |       |  |
|                                             |                   | Valley current, OC_CTRL1[5:4] = 00             | 4.8   | 6    | 7.8   |       |  |
| Low-Side Switch (Valley)                    |                   | Valley current OC_CTRL1[5:4] = 01              | 4     | 5    | 6.5   |       |  |
| Current Limit                               | ILIM_L            | Valley current<br>OC_CTRL1[5:4] = 10           | 3.2   | 4    | 4.8   | A     |  |
|                                             |                   | Valley current<br>OC_CTRL1[5:4] = 11 (default) | 2.4   | 3    | 3.9   | 9     |  |
| Switching Frequency and                     | d Minimum-Off Tim | ner                                            |       |      |       |       |  |
|                                             |                   | FSW_CTRL1[5:4] = 00 (default)                  | 960   | 1200 | 1440  |       |  |
| Switching Frequency                         | fsw               | FSW_CTRL1[5:4] = 01                            | 1120  | 1400 | 1680  | レ니ㅋ   |  |
| Switching Frequency                         | 1500              | FSW_CTRL1[5:4] = 10                            | 1280  | 1600 | 1920  | - kHz |  |
|                                             |                   | FSW_CTRL1[5:4] = 11                            | 1440  | 1800 | 2160  |       |  |
| Minimum Off-Time                            | tOFF_MIN          |                                                |       | 100  |       | ns    |  |
| Protection                                  |                   |                                                |       |      |       |       |  |
| Output Overvoltage<br>Protection Threshold  | VOVP              | OVP Detect                                     | 115   | 120  | 125   | %     |  |
| Output Overvoltage<br>Protection Delay Time | tovp_dly          |                                                |       | 5    |       | μs    |  |
| Output Undervoltage<br>Protection Threshold | VUVP              | UVP Detect                                     | 55    | 60   | 65    | %     |  |
| Output Undervoltage<br>Protection Delay     | VUVP_DLY          |                                                |       | 3    |       | μs    |  |
| Power Good Indicator                        |                   |                                                |       |      |       |       |  |
| Power-Good Voltage<br>Rising Threshold      | VPGOOD_R          | PGOOD detect, rising edge                      | 86    | 90   | 94    | %     |  |
| Power-Good Voltage<br>Hysteresis            | VPGOOD_HYS        | Hysteresis                                     |       | 6    |       | %     |  |
| PGOOD Available Time                        | tPGOOD_Available  | From EN rising,<br>VOUT > PGOOD threshold      |       | 2    | 3     | ms    |  |



| Parameter                                   | Symbol            | Test Conditions                                | Min   | Тур  | Max   | Unit   |  |
|---------------------------------------------|-------------------|------------------------------------------------|-------|------|-------|--------|--|
| Discharge Resistance                        |                   |                                                | •     |      | •     |        |  |
|                                             |                   | DISCH_CTRL1[5:4] = 00                          |       | Hi-Z |       |        |  |
| Discharge Resistor                          | RDISCHG           | DISCH_CTRL1[5:4] = 01<br>(default)             |       | 100  |       | Ω      |  |
| U U                                         |                   | DISCH_CTRL1[5:4] = 10                          |       | 200  |       |        |  |
|                                             |                   | DISCH_CTRL1[5:4] = 11                          |       | 500  |       |        |  |
| VCC_D (LV Buck Convert                      | er, 3A)           |                                                |       |      |       |        |  |
| SRC_D Supply Input<br>Voltage               | VSRC_D            |                                                | 2.7   |      | 5.5   | V      |  |
| Quiescent Current                           | IQ_NSW            | Enable, no switching                           |       | 35   |       | μA     |  |
| Output Voltage and Soft-                    | Start             | -                                              |       |      |       |        |  |
|                                             | Vout              | DDR_ID = H, TA = 25°C                          | 0.497 | 0.5  | 0.503 | v      |  |
| Output Voltage                              | Vout              | DDR_ID = L, TA = 25°C                          | 1.094 | 1.1  | 1.106 | v      |  |
| Soft-Start Time                             | tss               | VOUT 10% to 90%                                |       | 1    |       | ms     |  |
| Internal Switch On-Resis                    | tance             |                                                |       |      |       |        |  |
| On-Resistance of High-<br>Side MOSFET       | RDSON_H           |                                                |       | 42   |       | mΩ     |  |
| On-Resistance of Low-<br>Side MOSFET        | RDSON_L           |                                                |       | 21   |       | mΩ     |  |
| Current Limit                               |                   |                                                | •     |      | •     |        |  |
|                                             | ILIM_L            | Valley current<br>OC_CTRL1[7:6] = 00           | 4.8   | 6    | 7.8   |        |  |
| Low-Side Switch (Valley)                    |                   | Valley current OC_CTRL1[7:6] = 01              | 4     | 5    | 6.5   | A<br>1 |  |
| Current Limit                               |                   | Valley current<br>OC_CTRL1[7:6] = 10           | 3.2   | 4    | 5.1   |        |  |
|                                             |                   | Valley current<br>OC_CTRL1[7:6] = 11 (default) | 2.4   | 3    | 3.8   |        |  |
| Switching Frequency and                     | d Minimum-Off Tin |                                                |       |      | 1     |        |  |
|                                             |                   | FSW_CTRL1[7:6] = 00 (default)                  | 960   | 1200 | 1440  |        |  |
| Switching Frequency                         | fsw               | FSW_CTRL1[7:6] = 01                            | 1120  | 1400 | 1680  | kHz    |  |
|                                             |                   | FSW_CTRL1[7:6] = 10                            | 1280  | 1600 | 1920  |        |  |
|                                             |                   | FSW_CTRL1[7:6] = 11                            | 1440  | 1800 | 2160  |        |  |
| Minimum Off-Time                            | toff_min          |                                                |       | 100  |       | ns     |  |
| Protection                                  | 1                 |                                                | 1     |      | 1     |        |  |
| Output Overvoltage<br>Protection Threshold  | VOVP              | OVP Detect                                     | 115   | 120  | 125   | %      |  |
| Output Overvoltage<br>Protection Delay Time | tovp_dly          |                                                |       | 5    |       | μS     |  |
| Output Undervoltage<br>Protection Threshold | VUVP              | UVP Detect                                     | 55    | 60   | 65    | %      |  |
| Output Undervoltage<br>Protection Delay     | VUVP_DLY          |                                                |       | 3    |       | μS     |  |



| Parameter                                      | Symbol           | Test Conditions                                                         | Min | Тур  | Max  | Unit |
|------------------------------------------------|------------------|-------------------------------------------------------------------------|-----|------|------|------|
| Power Good Indicator                           |                  |                                                                         |     | ,    |      |      |
| Power-Good Voltage<br>Rising Threshold         | VPGOOD_R         | PGOOD detect, rising edge                                               |     | 90   | 94   | %    |
| Power-Good Voltage<br>Hysteresis               | VPGOOD_HYS       | Hysteresis                                                              |     | 6    |      | %    |
| PGOOD Available Time                           | tPGOOD_Available | From EN rising,<br>VOUT > PGOOD threshold                               |     | 2    | 3    | ms   |
| Discharge Resistance                           |                  |                                                                         |     |      |      |      |
|                                                |                  | DISCH_CTRL1[7:6] = 00                                                   |     | Hi-Z |      |      |
| Discharge Resistor                             | RDISCHG          | DISCH_CTRL1[7:6] = 01<br>(default)                                      |     | 100  |      | Ω    |
| Ũ                                              |                  | DISCH_CTRL1[7:6] = 10                                                   |     | 200  |      |      |
|                                                |                  | DISCH_CTRL1[7:6] = 11                                                   |     | 500  |      |      |
| Load Switch (LSW)                              |                  |                                                                         |     |      |      |      |
| Quiescent Current                              | IQ               | EN_LSW is enable                                                        |     | 2    |      | μA   |
| Soft-Start                                     |                  |                                                                         |     |      |      |      |
| Soft-Start Time                                | tss              | LSW_IN=1.8V, from EN = H to<br>90% LSW_IN, load = 0A,<br>C = $0.1\mu$ F | 800 |      | 3300 | μs   |
| Rising Time                                    | tRising          | LSW_IN = 1.8V, 10% to 90%<br>LSW_IN, load = 0A, C = 0.1µF               | 500 |      | 1600 | μs   |
| On-Resistance                                  | •                |                                                                         |     |      |      | •    |
| Load Switch On-Resistor                        | RON_LSW          | VCC = 5V, LSW_IN = 1.8V,<br>load = 0.1A                                 |     | 24   |      | mΩ   |
| Discharge Resistance                           | •                |                                                                         |     |      |      | •    |
|                                                |                  | LSW_RDIS[1:0] = 00                                                      |     | Hi-Z |      |      |
|                                                |                  | LSW_RDIS[1:0] = 00                                                      |     | 100  |      |      |
| Discharge Resistor                             | RDISCHG          | LSW_RDIS[1:0] = 00 (default)                                            |     | 200  |      | Ω    |
|                                                |                  | LSW_RDIS[1:0] = 00                                                      |     | 500  |      |      |
| I <sup>2</sup> C for Fast Mode                 | 4                |                                                                         |     |      |      |      |
| SCL, SDA High-Level<br>Input Threshold Voltage | VIH_I2C          |                                                                         | 1.2 |      |      | V    |
| SCL, SDA Low-Level<br>Input Threshold Voltage  | VIL_I2C          |                                                                         |     |      | 0.4  | V    |
| SCL Clock Frequency                            | fSCL             |                                                                         |     |      | 400  | kHz  |
| (Repeated) Start Hold<br>Time                  | thd;sta          | After this period, the first clock pulse is generated.                  | 0.6 |      |      | μs   |
| SCL Clock Low Period                           | tLOW             | -                                                                       | 1.3 |      |      | μs   |
| SCL Clock High Period                          | thigh            |                                                                         | 0.6 |      |      | μS   |
| (Repeated) Start Setup<br>Time                 | tsu;sta          |                                                                         | 0.6 |      |      | μs   |
| SDA Data Hold Time                             | thd;dat          |                                                                         | 0   |      | 0.9  | μs   |
| SDA Setup Time                                 | tsu;dat          |                                                                         | 100 |      |      | ns   |
|                                                |                  |                                                                         |     |      |      |      |

## RICHTEK

| Parameter                                      | Symbol  | Test Conditions                                        | Min | Тур | Max | Unit |
|------------------------------------------------|---------|--------------------------------------------------------|-----|-----|-----|------|
| STOP Condition Setup<br>Time                   | tsu;sto |                                                        | 0.6 |     |     | μs   |
| Bus Free Time between<br>Stop and Start        | tBUF    |                                                        | 1.3 |     |     | μs   |
| Rise Time of SDA and SCL Signals               | tR      |                                                        | 20  |     | 300 | ns   |
| Fall Time of SDA and SCL Signals               | tF      |                                                        | 20  |     | 300 | ns   |
| SDA Output Low Sink<br>Current                 | IOL_I2C | SDA voltage = 0.4V                                     | 2   |     |     | mA   |
| I <sup>2</sup> C for High Speed Mode           |         |                                                        |     |     |     |      |
| SCL, SDA High-Level<br>Input Threshold Voltage | VIH_I2C |                                                        | 1.2 |     |     | V    |
| SCL, SDA Low-Level<br>Input Threshold Voltage  | VIL_I2C |                                                        |     |     | 0.4 | V    |
| SCL Clock Frequency                            | fSCL    |                                                        |     |     | 3.4 | MHz  |
| (Repeated) Start Hold<br>Time                  | thd;sta | After this period, the first clock pulse is generated. | 160 |     |     | ns   |
| SCL Clock Low Period                           | tLOW    |                                                        | 160 |     |     | ns   |
| SCL Clock High Period                          | thigh   |                                                        | 60  |     |     | ns   |
| (Repeated) Start Setup<br>Time                 | tsu;sta |                                                        | 60  |     |     | ns   |
| SDA Data Hold Time                             | thd;dat |                                                        | 0   |     | 70  | ns   |
| SDA Setup Time                                 | tsu;dat |                                                        | 10  |     |     | ns   |
| STOP Condition Setup<br>Time                   | tsu;sto |                                                        | 160 |     |     | ns   |
| Rise Time of SDA and SCL Signals               | tR      |                                                        | 10  |     | 80  | ns   |
| Fall Time of SDA and SCL Signals               | tF      |                                                        | 10  |     | 80  | ns   |
| SDA Output Low Sink<br>Current                 | IOL_I2C | SDA voltage = 0.4V                                     | 2   |     |     | mA   |

### **13 Typical Application Circuit**



Figure 3. Typical Application Circuit for Intel MTL-UPH







Figure 4. Typical Application Circuit for AMD SVI3

| Table 1. DDR_ID Sel-Op |             |                |  |  |  |  |  |  |
|------------------------|-------------|----------------|--|--|--|--|--|--|
| DDR_ID                 | Memory Type | Suggestion     |  |  |  |  |  |  |
| High (> 1V)            | LPDDR5      | Connect to VCC |  |  |  |  |  |  |
| Low (< 0.4V)           | DDR5        | Connect to GND |  |  |  |  |  |  |

#### Table 1 DDR ID Set Un

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com



### **14 Typical Operating Characteristics**

RICHTEK

























VCC\_B Output Voltage vs. Output Current 1.81 VSRC\_B = 3.3V  $VSRC_B = 5V$ Output Voltage (V) 1.80 1.79  $V_{CC} = 5V, V_{EN_B} = 3.3V$ 1.78 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Output Current (A)



RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com

















## Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.













VCC\_B Load Transient Response









RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com

25





I<sub>OUT</sub> = 0A-+



VCC\_B Power On from EN\_B











RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com



EN\_A

(5V/Div)

VOUT

(400mV/Div)>

SW A

(5V/Div) PG\_A N

(5V/Div)



**.....** 

 $V_{IN} = 12V, V_{CC} = 5V,$  $V_{EN2} = 3.3V \text{ to } 0V,$  $V_{OUT} = 1.05V, I_{OUT} = 0A$ 



VCC\_A Power Off from EN\_A

Time (5ms/Div)

#### VCC\_2 Power Off from EN2



VCC\_B Power Off from EN\_B









RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com









VCC\_B Undervoltage Protection





VCC\_A Undervoltage Protection





VCC\_D Undervoltage Protection



RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com









VCC\_B Overvoltage Protection





VCC\_A Overvoltage Protection







## Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

### 15 Operation

The RT5128A is a multi-output integrated circuit (MOIC) for use with Intel MTL-UPH and AMD SVI3 mobile CPU platforms. The RT5128A integrates two buck controllers, four buck converters, and one load switch. Furthermore, the RT5128A supports both DDR5 and LPDDR5 applications.

#### 15.1 Step-Down Converter

The VCC\_A to VCC\_D outputs are COT buck converters, while VCC\_1 and VCC\_2 function as controllers. Each of the VCC\_A to VCC D converters integrates a high-side P-MOSFET and a low-side N-MOSFET. These COT buck converters are designed to provide a fast transient response and good stability with minimum output capacitance. To simplify the design and reduce costs, an internal compensation network is utilized, eliminating the need for an external compensation network for loop stability.

The feedback voltage is injected into the feedback network to generate a control signal for the one-shot on-time generator. The duration of the high-side turn-on is determined by the switching frequency, input voltage, and output voltage. Once the on-time duration expires, the low-side MOSFET turns on until the internal ramp is lower than the control signal. The duration of the low-side turn-on is therefore dependent on the output voltage level and the load current. A decrease in load current from a heavy load will cause the inductor current to reduce and eventually approach valley zero current, making the transition from continuous conduction mode to discontinuous conduction mode. To maintain high efficiency, the low-side MOSFET is turned off during off-time when the inductor current nears zero. If the load current continues to decrease, the switching frequency will reduce accordingly.

The buck converters and controllers are implement with OCP, OVP and undervoltage (UVP) to avoid the unexpected events.

#### 15.2 Load Switch

The load switch (LSW) incorporates a low-resistance N-channel power switch MOSFET, which minimizes voltage drop. It features an adjustable slew rate to mitigate inrush current during power-up and boasts an extremely low quiescent current.

#### 15.3 VCC Power-On Reset (POR), UVLO

The power-ready detection circuit, as shown in Figure 5, monitors the VCC voltage for a power-on reset with a typically rising-edge threshold of 3.8V and approximately 200mV of hysteresis voltage for the comparator. When VCC exceeds the POR threshold, the buck regulator initiates startup once EN exceeds 1V. In contrast, driving the EN pin below 0.4V turns off the buck regulator and clears all fault states. To prevent noise disturbance, the supplied bias voltage must be stable. An RC filter (R =  $2.2\Omega$  /0603 and C =  $1\mu$ F/0603) should be connected from the bias voltage to the VCC pin and placed as close as possible to the VCC pin.



Figure 5. Circuit of Power Ready Detection

#### 15.4 Power Good

The PG pin is an open-drain output and requires a pull-up resistor. During the soft-start period, PG remains low. When EN goes high and the output voltage exceeds the PG threshold for more than 2ms (typical), PG is pulled

high and latched. If the output voltage drops below the PG falling threshold, PG is immediately pulled low.

#### 15.5 Buck Overcurrent Limit

The overcurrent limit is implemented using a cycle-by-cycle detected circuit. The switching current is monitored by measuring the low-side voltage between the SW pin and GND. The voltage is proportional to the switch current and the on-resistance of the low-side MOSFET.

If the sensed current exceeds the current-limit threshold, the converter maintains the low-side in the on state until the sensed voltage drops below the voltage proportional to the current limit, at which point a new switching cycle begins.

#### 15.6 Undervoltage Protection (UVP)

The output voltages of all rails except for LSW, are continuously monitored for undervoltage protection. The UVP detection function is enabled after the soft-start process is completed to ensure a correct startup. If the output voltage drops below the UVP threshold, the UVP circuit will turn off the rail and latch it. In the meanwhile, PG will be pulled low if the output voltage is below the PG threshold. A typical Undervoltage Protection mechanism is shown in Figure 6.

The UVP thresholds for VCC\_1/2/A/B/C/D are set at 60% of the output voltage.

To reset the latched state, either recycle the VCC power or toggle the enable pin.





| Copyright © 2024 F | Richtek Tech | nnology Corporation. All rights reserved. | RICHTEK | is a registered trademark of Richtek Technology Corporation. |
|--------------------|--------------|-------------------------------------------|---------|--------------------------------------------------------------|
| DS5128A-00         | March        | 2024                                      |         | www.richtek.com                                              |



#### 15.7 Overvoltage Protection (OVP)

The output voltage of all rails, except for LSW, is continuously monitored for overvoltage protection. The OVP detection is enabled after the soft-start process is completed to ensure a correct startup. Once the output voltage exceeds the OVP threshold, the OVP circuit will turn off the rail and become latched. Meanwhile, the PG will be pulled low. A typical Overvoltage Protection mechanism is shown in <u>Figure 7</u>. The OVP thresholds of VCC\_1/2/A/B/C/D are set at 120% of the output voltage.

To cancel the latched behavior, either re-cycle VCC power or re-toggle the enable.



Figure 7. Typical OVP Mechanism

#### 15.8 **Over-Temperature Protection (OTP)**

If the temperature of the IC exceeds 150°C, the OTP circuit activates, causing all power rails to shut down, and PG will go low. Recovery is possible by toggling the enable once the temperature of the PMIC drops below 125°C. A typical Over-Temperature Protection mechanism is shown in Figure 8.



Figure 8. Typical OTP Mechanism

33

### **16 Application Information**

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The RT5128A provides two buck controllers, four buck converters, and one load switch to satisfy the power system requirements of both Intel or AMD processors. It operates in coordination with EC and communicates via an  $I^2C$  interface. The  $I^2C$  interface allows for flexible configuration of each power rail, including default switching frequency, power-up sequence, and fault handling, among other functions. <u>Table 2</u> summarizes the key characteristics of the voltage rails. This section offers general application information and a detailed description of the RT5128A's features.

| Rail  | Туре                    | Input Voltage<br>(V) |     | Switching frequency | C     | Output Voltage (V        | )     | Current (A)       |
|-------|-------------------------|----------------------|-----|---------------------|-------|--------------------------|-------|-------------------|
|       |                         | Min                  | Max | (kHz)               | Min   | Default                  | Max   |                   |
| VCC_1 | Step-down<br>Controller | 4.5                  | 23  | 600                 | 0.6   | Set by FB_1<br>Pin       | 1.1   | By Ext-<br>MOSFET |
| VCC_2 | Step-down<br>Controller | 4.5                  | 23  | 600                 | 1.044 | 1.05<br>Set by<br>DDR_ID | 1.056 | By Ext-<br>MOSFET |
| VCC_A | Step-down<br>Converter  | 2.7                  | 5.5 | 800                 | 0.6   | Set by FB_A<br>Pin       | 3.8   | 6                 |
| VCC_B | Step-down<br>Converter  | 2.7                  | 5.5 | 1200                | 0.6   | Set by FB_B<br>Pin       | 3.8   | 6                 |
| VCC_C | Step-down<br>Converter  | 2.7                  | 5.5 | 1200                | 0.6   | Set by FB_C<br>Pin       | 3.8   | 4                 |
| VCC_D | Step-down<br>Converter  | 2.7                  | 5.5 | 1200                | 0.497 | 0.5<br>Set by<br>DDR_ID  | 0.503 | 3                 |

#### Table 2. Summary of Voltage Rails

#### 16.1 Buck Regulator

The RT5128A features four high-efficiency, COT-based synchronous buck converters that deliver a range of output voltages.

Each switching regulator is optimized for extreme low quiescent current (<35µA) and maintains high efficiency across the full load range. The high-frequency switching allows for a smaller external LC filter, resulting in minimal output voltage ripple.

Additional features of these buck regulators include soft-start, discharge resistance, undervoltage protection, overvoltage protection, and thermal shutdown protection.

If one of the protections is activated or if EN is driven low during operation, the affected power rail will be shut down and require manual reset.

Other protections cause the rail's output voltage to discharge (if enabled) and will automatically reset once the fault condition no longer exists.

Through the I<sup>2</sup>C interface, users can program the current-limit threshold, adjust the PWM frequency, and toggle the on/off state of each buck converter. Additionally, the PWM controller offers the flexibility to switch between forced PWM mode and PSM.

Note 5. For the power-up sequence of VCC1/2, ensure that VIN is stable before applying power to EN and VCC.

#### 16.2 Power-Up Sequencing and On/Off Controls (ENx)

EN1/2 and EN\_A/B/C/LSW control the power-up sequencing of the two buck controllers, the four buck converters and the one load switch. Among these controls, EN\_2 includes the enable control for both VCC\_2 and VCC\_D. The 0.4V falling edge threshold on ENx can be used to detect a specific analog voltage level and to shut down the rail. Upon shutdown, the 1V rising edge threshold becomes active, providing sufficient hysteresis for most applications. Additionally, the RT5128A EN\_1/2 supports MLCC and POSCAP output capacitor types, determined by the EN\_1/2 level. When EN\_1/2 is between 1V to 1.5V, the operating mode is at MLCC mode. When EN\_1/2 is above 1.7V, the RT5128A operates at POSCAP mode. The RT5128A also provides the enable software control. The compensation mode (Output capacitor type) can be controlled by I<sup>2</sup>C.

When 0x48[0] is set to 1, the RT5128A rails can be powered on through I<sup>2</sup>C setting.

#### 16.3 DDR Voltage Selection

The output voltage of DDR can be set by the DDR\_ID pin. The 0.4V falling edge threshold on DDR\_ID can be used to detect a specific analog voltage level and to set DDR5. Upon reaching the 1V rising edge threshold, the settings switches to LPDDR5.

| DDR_ID      | Memory type | VCC_2 | VCC_D |
|-------------|-------------|-------|-------|
| High (>1V)  | LPDDR5      | 1.05  | 0.5   |
| Low (<0.4V) | DDR5        | 1.1   | 1.1   |

| Table 3 | . DDR | Voltage | Selection  | Recommendation        |
|---------|-------|---------|------------|-----------------------|
|         |       | vonago  | 0010011011 | 1.000 minoria a li on |

#### 16.4 Current Limit

The RT5128A provides cycle-by-cycle current limit control by detecting the switch node voltage drop across the low-side MOSFET when it is turned on. The current limit circuit employs a "valley" current sensing algorithm, as shown in <u>Figure 9</u>.

www.richtek.com







In an overcurrent condition, the current to the load exceeds the average output inductor current. Thus, the output voltage falls and eventually crosses the undervoltage protection threshold, inducing IC shutdown.

#### 16.5 Current Limit Setting

The OC level (VCL) of the buck controller can be programmed via l<sup>2</sup>C. The current limit can be calculated using the following equation:

$$I_{VALLEY} = \frac{V_{CL}}{R_{DS(ON)\_LG}}$$

where IVALLEY represents the desired inductor limit current (valley inductor current). IVALLEY value is based on the VCL and RDS(ON)\_LG.

#### 16.6 Inductor Selection

Selecting the right inductor for a buck converter requires a balance among several factors: inductance, peak current capability, physical size, cost, and circuit efficiency. The choice of inductance is generally flexible, aimed at finding the optimal balance among these factors.

Lower inductor values benefit from reducing physical size and cost. They can also enhance the circuit's transient response. However, they lead to higher inductor ripple current and output voltage ripple, potentially reducing efficiency due to increased peak currents.

Conversely, higher inductor values can improve efficiency by reducing ripple currents but may lead to a larger physical size or higher resistance due to the need for more wire turns. This can also slow down the transient response due to the longer time required to change the inductor current (up or down).

To calculate the inductance value, consider the input and output voltages, switching frequency (f SW), maximum output current (IOUT(MAX)), and estimate a ripple current  $\Delta IL$  as a percentage of the full output load current. A good starting point is to aim for a ripple current ( $\Delta IL$ ) of about 20-50% of the full output load current.

 $L = \frac{V_{OUT} \times (V_{IN(MAX)} - V_{OUT})}{f_{SW} \times \Delta I_L \times V_{IN(MAX)}}$ 

Once an inductor value is determined, the ripple current ( $\Delta IL$ ) is calculated to determine the required peak inductor current.

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{f_{SW} \times L \times V_{IN}} \text{ and } I_{PEAK} = I_{OUT(MAX)} + \frac{\Delta I_{L}}{2}$$

To ensure the required output current, the inductor should have a saturation current rating and a thermal rating that exceeds IL(PEAK). These are the minimum requirements. For controlling inductor current in overload and short-circuit conditions, some applications may require current ratings up to the current limit value. However, the IC's output undervoltage shutdown feature makes this unnecessary for most applications.
For optimal efficiency, select an inductor with a low DC resistance that meets the cost and size requirements. For reduced inductor core losses, shielded ferrite cores are usually preferable. Although they may be larger or more expensive, they tend to cause fewer EMI and other noise issues.

### 16.7 Output Capacitor Selection

The output ripple at the switching frequency is caused by the peak-to-peak inductor current ripple and its effect on the output capacitor's equivalent series resistance (ESR), ESL, and stored charge. These three ripple components are referred to as ESR ripple, ESL ripple, and capacitive ripple. Since ceramic capacitors have extremely low ESR and ESL, and relatively little capacitance, all these components should be considered if minimizing ripple is critical. The formulas to describe each component are listed below:

 $V_{RIPPLE} = V_{RIPPLE(ESR)} + V_{RIPPLE(ESL)} + V_{RIPPLE(C)}$  $V_{RIPPLE(ESR)} = \Delta I_L \times R_{ESR}$  $V_{RIPPLE(ESL)} = \frac{d}{dt} I_L \times ESL$ 

 $V_{\mathsf{RIPPLE}(\mathsf{C})} = \frac{\Delta I_{\mathsf{L}}}{8 \times C_{\mathsf{OUT}} \times f_{\mathsf{SW}}}$ 

where the  $\Delta IL$  is the peak-to-peak inductor ripple current and RESR is the equivalent series resistance of COUT. The output ripple is highest at the maximum input voltage, as  $\Delta IL$  increases with input voltage. To meet the ESR and RMS current handling requirements, it may be necessary to place multiple capacitors in parallel. Regarding the transient loads, the VSAG and VSOAR requirements should be taken into account when selecting the output capacitance value. The magnitude of output sag is a function of the maximum duty cycle, which is determined by the on-time of the switch and the minimum off-time.

$$t_{ON} = \frac{V_{OUT}}{V_{IN} \times f_{SW}}$$

 $\mathsf{D}_{\mathsf{MAX}} = \frac{\mathsf{t}_{\mathsf{ON}}}{\mathsf{t}_{\mathsf{ON}} + \mathsf{t}_{\mathsf{OFF}}\mathsf{_{\mathsf{MIN}}}}$ 

The worst-case output sag voltage can be determined by the following equation:

$$\Delta V_{OUT\_SAG} = \frac{L \times (\Delta I_{OUT})^2}{2 \times C_{OUT} \times (V_{IN} \times D_{MAX} - V_{OUT})}$$

The amount of voltage overshoot due to stored inductor energy when the load is removed can be calculated as:

$$\Delta V_{OUT\_SOAR} = \frac{L \times (\Delta I_{OUT})^2}{2 \times C_{OUT} \times V_{OUT}}$$

Ceramic capacitors are known for their very low ESR and preferred for optimal ripple performance. However, it is important to consider the voltage coefficient of ceramic capacitors when selecting the appropriate value and case size. It should be noted that many ceramic capacitors can lose 50% or more of their rated capacitance when operated near their rated voltage.

#### 16.8 Input Capacitor Selection

An input capacitance, CIN, is required to filter the pulsating current at the drain of the high-side power MOSFET. CIN should be sized to do this without causing a large variation in input voltage. The peak-to-peak voltage ripple

# RT5128A

on the input capacitor can be estimated using the following equation:

$$\Delta V_{CIN} = D \times I_{OUT} \times \frac{1 - D}{C_{IN} \times f_{SW}} + I_{OUT} \times ESR$$

where D is calculated as follows:

$$\mathsf{D} = \frac{\mathsf{V}_{\mathsf{OUT}}}{\mathsf{V}_{\mathsf{IN}} \times \eta}$$

For ceramic capacitors, which have a very low equivalent series resistance (ESR), the ripple caused by ESR can be ignored, and the minimum input capacitance can be estimated using the following equation:



Figure 10. CIN Ripple Voltage and Ripple Current

Besides the ripple-voltage requirement, the ceramic capacitors should meet the thermal stress requirement as well. The input capacitor is used to supply the input RMS current, which can be approximately calculated using the following equation:

$$I_{RMS} = \sqrt{\frac{V_{OUT}}{V_{IN}}} \left[ \left( 1 - \frac{V_{OUT}}{V_{IN}} \right) \times I_{OUT}^2 + \frac{\Delta I_L^2}{12} \right]$$

Note that ripple current ratings from capacitor manufacturers are often based on only 2000 hours of life, which makes it advisable to either further de-rate the capacitor or choose a capacitor with a higher temperature rating than required.

Place the input capacitor as close as possible to the VIN and GND pins of the IC to minimize impedance and improve performance.

Besides, since the ESL of ceramic capacitors plays a significant role on voltage spike at the input and phase node, it is desirable to add a small capacitor with low ESL near the VIN pin.

### 16.9 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA)/\theta JA$ 

where T<sub>J</sub>(MAX) is the maximum junction temperature, TA is the ambient temperature, and  $\theta$ JA is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance,  $\theta$ JA, is highly package dependent. For a UQFN-42L 5x5 (FC) package, the thermal resistance,  $\theta$ JA, is 19.52°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C)/(19.52^{\circ}C/W) = 5.12W$  for a UQFN-42L 5x5 (FC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed T<sub>J</sub>(MAX) and the thermal resistance,  $\theta$ JA. The derating curve in <u>Figure 11</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.



Figure 11. Derating Curve of Maximum Power Dissipation

### 16.10 Layout Considerations

The design of printed circuit board (PCB) layouts for switch-mode power supply ICs is both critical and important. An improper PCB layout can cause numerous problems for the power supply, including poor output voltage regulation, switching jitter, bad thermal performance, excessive noise radiation, and reduced component reliability. To avoid those issues, designers have to understand current trace and signal flow in the switching power supply. The following suggestions are design considerations for PCB layouts in switching power supplies.

- Place the input capacitor close to VIN pin to suppress phase ringing and extra power losses, thereby enhancing device reliability by reducing the influence of parasitic inductance.
- ► Minimize thermal stress and power consumption by ensuring the current paths of VIN and VOUT are as short and wide as possible, thereby decreasing the trace impedance.
- Given the SW node voltage swings from VIN to 0V with rapid rising and falling times, the switching power supply is prone to significant EMI issues. To eliminate EMI problems, the inductor must be put as close as possible to IC to narrow the SW node area. Besides, the SW node should be arranged in the same plate to reduce coupling noise path caused by parasitic capacitance.
- ► For system stability and coupling noise elimination, the sensitive components and signals, such as control signal and feedback loop, should be kept away from SW node.

# RT5128A

- ► To enhance noise immunity on VCC pin, the decoupling capacitor must be connected from VCC to AGND, and the capacitor should be placed close to IC.
- ► The feedback signal path from VOUT to IC should be wide and kept away from high switching path.
- ► The trace width and numbers of via should be designed based on application current. Make sure the switching power supply has great thermal performance and good efficiency.

For reference, <u>Figure 12</u> illustrates an example of PCB layout guidelines.

Copyright  $\textcircled{\sc opt}$  2024 Richtek Technology Corporation. All rights reserved.







to prevent interference.

Figure 12. Layout Suggestions for the RT5128A

**RT5128A** 

### 16.11 I<sup>2</sup>C Interface

The I<sup>2</sup>C Interface facilitates communication with the RT5128A, which is assigned the address 0x34. Figure 13 shows the I<sup>2</sup>C communication format utilized by the RT5128A.

The bus enables both read and write access to the device's internal performance registers. Through these operation speeds of up to 1MHz, allowing for efficient adjustment of the operating parameters via the I<sup>2</sup>C interface.



Figure 13. I<sup>2</sup>C Format and Waveform Information



# 17 Function Register Table

| Table | 4. I <sup>2</sup> C | Register | Мар |
|-------|---------------------|----------|-----|
|-------|---------------------|----------|-----|

| Address | Register                 | Bit 7                    | Bit 6                   | Bit 5                   | Bit 4                   | Bit 3                    | Bit 2                 | Bit 1                 | Bit 0                 | Default | Туре |
|---------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-----------------------|-----------------------|-----------------------|---------|------|
|         | Name                     | 2                        | Die o                   | 2.00                    |                         |                          | 5.12                  | 5                     | Ditt                  |         |      |
| 0x00    |                          |                          | NAA 11                  |                         | VENDOR                  | _ID                      | MIN                   |                       |                       | 0x67    | R    |
| 0x01    | REVID                    |                          | MAJI                    |                         |                         |                          | MIN                   | REV                   | SW_                   | 0xA0    | R    |
| 0x48    | CONTROL                  |                          |                         |                         | Reserved                |                          |                       |                       | CTRL                  | 0x00    | R/W  |
| 0x49    | RESET                    |                          | 1                       | Rese                    | erved                   |                          |                       | CLR_<br>FAULT         | SW_<br>RST            | 0x00    | R/W  |
| 0xD0    | SW_MODE                  | VCC_2_C<br>OMP_MO<br>DE  | VCC_1_<br>COMP_<br>MODE | VCC_D<br>_MOD<br>E      | VCC_C_M<br>ODE          | VCC_B_<br>MODE           | VCC_A<br>_MOD<br>E    | VCC_2<br>_MODE        | VCC_1_<br>MODE        | 0x00    | R/W  |
| 0xD1    | SW_EN                    | Reserved                 | SW_<br>LSW_<br>EN       | SW_<br>VCC_D<br>_EN     | SW_<br>VCC_C<br>_EN     | SW_<br>VCC_B_<br>EN      | SW_<br>VCC_A<br>_EN   | SW_<br>VCC_2<br>_EN   | SW_<br>VCC_1_<br>EN   | 0x00    | R/W  |
| 0xD2    | EN_STATE                 | Reserved                 | LSW_<br>STATE           | VCC_D<br>_STAT<br>E     | VCC_C_S<br>TATE         | VCC_B_<br>STATE          | VCC_A<br>_STAT<br>E   | VCC_2<br>_STAT<br>E   | VCC_1_<br>STATE       | 0x00    | R    |
| 0xD3    | PG_STATE                 | PROCHO<br>T              | VCC_<br>UVLOB           | VCC_D<br>_PG            | VCC_C_P<br>G            | VCC_B_<br>PG             | VCC_A<br>_PG          | VCC_2<br>_PG          | VCC_1_<br>PG          | 0x00    | R    |
| 0xD4    | THSD_<br>UVP_REC         | Reserved                 | THSD_<br>STS            | VCC_D<br>_UVP<br>_STS   | VCC_C_U<br>VP<br>_STS   | VCC_B_<br>UVP<br>_STS    | VCC_A<br>_UVP<br>_STS | VCC_2<br>_UVP<br>_STS | VCC_1<br>_UVP<br>_STS | 0x00    | R    |
| 0xD5    | OVP_REC                  | Reserved                 | Reserve<br>d            | VCC_D<br>_OVP<br>_STS   | VCC_C_O<br>VP<br>_STS   | VCC_B_<br>OVP<br>_STS    | VCC_A<br>_OVP<br>_STS | VCC_2<br>_OVP<br>_STS | VCC_1_<br>OVP<br>_STS | 0x00    | R    |
| 0xD6    | PROCHOT<br>_VCC_2<br>_OS | PROCHO<br>T_EN           | PROCHO                  | PROCHOT_SET Reserved    |                         |                          |                       | _2_OS                 |                       | 0xA8    | R/W  |
| 0xD7    | VCC_D_<br>OS             |                          |                         | Reserved                |                         |                          | ,                     | VCC_D_C               | S                     | 0x02    | R/W  |
| 0xD8    | DISCH_<br>CTRL1          | VCC_D                    | _RDIS                   | S VCC_C_RDIS            |                         | VCC_B_RDIS VCC_          |                       | A_RDIS                | 0x55                  | R/W     |      |
| 0xD9    | DISCH_<br>CTRL2          | Rese                     | rved                    | LSV                     | V_RDIS                  | VCC_2                    | _RDIS                 | VCC_                  | 1_RDIS                | 0x25    | R/W  |
| 0xDA    | OC_CTRL1                 | VCC_I                    | D_CL                    | VCC                     | C_CL                    | VCC_I                    | B_CL                  | VCC                   | _A_CL                 | 0xF0    | R/W  |
| 0xDB    | OC_CTRL2                 |                          | Rese                    | rved                    |                         | VCC_2                    | _VCL                  | VCC_                  | 1_VCL                 | 0x09    | R/W  |
| 0xDC    | FSW_<br>CTRL1            | VCC_D                    | _FSW                    | VCC                     | _C_FSW                  | VCC_B                    | _FSW                  | VCC_                  | A_FSW                 | 0x01    | R/W  |
| 0xDD    | FSW_<br>CTRL2            | VCC_2                    | _FSW                    | VCC_2<br>_SPRE<br>AD_EN | VCC_1_S<br>PREAD_E<br>N | VCC_1_<br>SHR            |                       | VCC_                  | 1_FSW                 | 0x41    | R/W  |
| 0xDE    | PG_<br>CONFIG1           | PG1_<br>TEST_SE<br>TTING | P                       | G1_SETT                 | ING                     | PG2_<br>TEST_S<br>ETTING | P                     | G2_SETT               | ING                   | 0x01    | R/W  |
| 0xDF    | PG_<br>CONFIG2           | PG3_TES<br>T_SETTIN<br>G | P                       | G3_SETT                 | ING                     | PG4_<br>TEST_S<br>ETTING | P                     | G4_SETT               | ING                   | 0x24    | R/W  |

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved. www.richtek.com

#### Table 5. VENDORID

| Address: 0x<br>Description: | (0B<br>: RT5128A II | D Register. |       |       |          |       |       |       |
|-----------------------------|---------------------|-------------|-------|-------|----------|-------|-------|-------|
| Bit                         | Bit 7               | Bit 6       | Bit 5 | Bit 4 | Bit 3    | Bit 2 | Bit 1 | Bit 0 |
| Field                       |                     |             |       | VENDO | RID[7:0] |       |       |       |
| Default                     | 0                   | 1           | 1     | 0     | 0        | 1     | 1     | 1     |
| Туре                        |                     |             |       | F     | २        |       |       |       |

| Bit | Name     | Description |
|-----|----------|-------------|
| 7:0 | VENDORID | Vendor ID   |

### Table 6. REVID

| -       | Address: 0x01<br>Description: PMIC Vendor ID Register. |       |         |       |             |       |       |       |
|---------|--------------------------------------------------------|-------|---------|-------|-------------|-------|-------|-------|
| Bit     | Bit 7                                                  | Bit 6 | Bit 5   | Bit 4 | Bit 3       | Bit 2 | Bit 1 | Bit 0 |
| Field   |                                                        | MAJRE | EV[7:4] |       | MINREV[3:0] |       |       |       |
| Default | 1                                                      | 0     | 1       | 0     | 0           | 0     | 0     | 0     |
| Туре    |                                                        | F     | 2       |       |             | F     | २     |       |

| Bit | Name   | Description                                                         |
|-----|--------|---------------------------------------------------------------------|
| 7:4 | MAJREV | Major Si revision ID. (Hex Number)<br>1010: A<br>1011: B<br>1100: C |
| 3:0 | MINREV | Minor Si revision ID.<br>0000: 0<br>0001: 1<br>0010: 2              |

### Table 7. CONTROL

| Address: 0x<br>Description | ∢48<br>: PMIC Ena | ble Selectio    | n Control Re | egister. |       |       |       |         |
|----------------------------|-------------------|-----------------|--------------|----------|-------|-------|-------|---------|
| Bit                        | Bit 7             | Bit 6           | Bit 5        | Bit 4    | Bit 3 | Bit 2 | Bit 1 | Bit 0   |
| Field                      |                   |                 |              | Reserved |       |       |       | SW_CTRL |
| Default                    | 0                 | 0 0 0 0 0 0 0 0 |              |          |       |       |       |         |
| Туре                       |                   | R R/W           |              |          |       |       |       |         |

| Bit | Name    | Description                                                                                                                      |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------|
| 0   | SW_CTRL | Enable software control function:<br>0: External hardware enables pins control. (default)<br>1: Internal register SW_EN control. |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

|         |                                                    |                                                                                                         |      | Table 8. R | ESET |  |           |        |  |  |
|---------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|------------|------|--|-----------|--------|--|--|
|         | Address: 0x49<br>Description: PMIC Reset Register. |                                                                                                         |      |            |      |  |           |        |  |  |
| Bit     | Bit 7                                              | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |      |            |      |  |           |        |  |  |
| Field   |                                                    |                                                                                                         | Rese | erved      |      |  | CLR_FAULT | SW_RST |  |  |
| Default | 0                                                  | 0 0 0 0 0 0 0                                                                                           |      |            |      |  |           |        |  |  |
| Туре    | R R/W R/W                                          |                                                                                                         |      |            |      |  |           |        |  |  |

| Bit | Name      | Description                                                                                                                                                                                                                                                                                                                                                      |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CLR_FAULT | 0: None (default)<br>1: Clear the fault flags located at the address D4 and D5. Furthermore, the<br>internal latch for fault detection is also reset through the software control<br>configuration. The channel may be re-enabled via the register at address D1<br>or through the HW enable pin. This bit will automatically reset to 0 after the<br>operation. |
| 0   | SW_RST    | Setting reset:<br>0: None (default)<br>1: Reset the registers (address D0 and D6 to DF) back to the default values.<br>This bit will automatically reset to 0 after the operation.                                                                                                                                                                               |

#### Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

45

#### Table 9. SW\_MODE

| -       | Address: 0xD0<br>Description: Controller MLCC/POSCAP, Converter PSM/FCCM Control Register. |                         |                |                |                |                |                |                |
|---------|--------------------------------------------------------------------------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Bit     | Bit 7                                                                                      | Bit 6                   | Bit 5          | Bit 4          | Bit 3          | Bit 2          | Bit 1          | Bit 0          |
| Field   | VCC_2_C<br>OMP_<br>MODE                                                                    | VCC_1_C<br>OMP_<br>MODE | VCC_D_M<br>ODE | VCC_C_<br>MODE | VCC_B_<br>MODE | VCC_A_<br>MODE | VCC_2_<br>MODE | VCC_1_<br>MODE |
| Default | 0                                                                                          | 0                       | 0              | 0              | 0              | 0              | 0              | 0              |
| Туре    | R/W                                                                                        | R/W                     | R/W            | R/W            | R/W            | R/W            | R/W            | R/W            |

| Bit | Name            | Description                                                          |
|-----|-----------------|----------------------------------------------------------------------|
| 7   | VCC_2_COMP_MODE | VCC_2 compensation mode:<br>0: MLCC mode (default)<br>1: POSCAP mode |
| 6   | VCC_1_COMP_MODE | VCC_1 compensation mode:<br>0: MLCC mode (default)<br>1: POSCAP mode |
| 5   | VCC_D_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |
| 4   | VCC_C_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |
| 3   | VCC_B_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |
| 2   | VCC_A_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |
| 1   | VCC_2_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |
| 0   | VCC_1_MODE      | Operation mode:<br>0: PSM (default)<br>1: FCCM                       |

#### Table 10. SW\_EN

| -       | Address: 0xD1<br>Description: PMIC I2C Enable Control Register.     |               |                     |                     |                     |                     |                     |                     |
|---------|---------------------------------------------------------------------|---------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Bit     | Bit   Bit 7   Bit 6   Bit 5   Bit 4   Bit 3   Bit 2   Bit 1   Bit 0 |               |                     |                     |                     |                     |                     |                     |
| Field   | Reserved                                                            | SW_<br>LSW_EN | SW_<br>VCC_<br>D_EN | SW_<br>VCC_C_<br>EN | SW_<br>VCC_B_<br>EN | SW_<br>VCC_A_<br>EN | SW_<br>VCC_2_<br>EN | SW_<br>VCC_1_<br>EN |
| Default | 0                                                                   | 0             | 0                   | 0                   | 0                   | 0                   | 0                   | 0                   |
| Туре    | R                                                                   | R/W           | R/W                 | R/W                 | R/W                 | R/W                 | R/W                 | R/W                 |

| Bit | Name        | Description                                               |
|-----|-------------|-----------------------------------------------------------|
| 6   | SW_LSW_EN   | Software LSW_EN:<br>0: Rail off (default)<br>1: Rail on   |
| 5   | SW_VCC_D_EN | Software VCC_D_EN:<br>0: Rail off (default)<br>1: Rail on |
| 4   | SW_VCC_C_EN | Software VCC_C_EN:<br>0: Rail off (default)<br>1: Rail on |
| 3   | SW_VCC_B_EN | Software VCC_B_EN:<br>0: Rail off (default)<br>1: Rail on |
| 2   | SW_VCC_A_EN | Software VCC_A_EN:<br>0: Rail off (default)<br>1: Rail on |
| 1   | SW_VCC_2_EN | Software VCC_2_EN:<br>0: Rail off (default)<br>1: Rail on |
| 0   | SW_VCC_1_EN | Software VCC_1_EN:<br>0: Rail off (default)<br>1: Rail on |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

47

#### Table 11. EN\_State

| Address:    | 0xD2 |
|-------------|------|
| / (uui 000. |      |

Description: The Enable State of The Bails

| Description | Description. The Enable State of the Rails. |               |                 |                 |                 |                 |                 |                 |
|-------------|---------------------------------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Bit         | Bit 7                                       | Bit 6         | Bit 5           | Bit 4           | Bit 3           | Bit 2           | Bit 1           | Bit 0           |
| Field       | Reserved                                    | LSW_<br>STATE | VCC_D_<br>STATE | VCC_C_<br>STATE | VCC_B_<br>STATE | VCC_A_<br>STATE | VCC_2_<br>STATE | VCC_1_<br>STATE |
| Default     | 0                                           | 0             | 0               | 0               | 0               | 0               | 0               | 0               |
| Туре        | R                                           | R             | R               | R               | R               | R               | R               | R               |

| Bit | Name        | Description                                            |
|-----|-------------|--------------------------------------------------------|
| 6   | LSW_STATE   | LSW_EN state (Real Time):<br>0: Off (default)<br>1: On |
| 5   | VCC_D_STATE | VCC_D state (Real Time):<br>0: Off (default)<br>1: On  |
| 4   | VCC_C_STATE | VCC_C state (Real Time):<br>0: Off (default)<br>1: On  |
| 3   | VCC_B_STATE | VCC_B state (Real Time):<br>0: Off (default)<br>1: On  |
| 2   | VCC_A_STATE | VCC_A state (Real Time):<br>0: Off (default)<br>1: On  |
| 1   | VCC_2_STATE | VCC_2 state (Real Time):<br>0: Off (default)<br>1: On  |
| 0   | VCC_1_STATE | VCC_1 state (Real Time):<br>0: Off (default)<br>1: On  |

### Table 12. PG\_State

| Address: 0xD3<br>Description: Power Good Indicator for Output Rails Status Register. |         |               |              |              |              |              |              |              |
|--------------------------------------------------------------------------------------|---------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Bit                                                                                  | Bit 7   | Bit 6         | Bit 5        | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
| Field                                                                                | PROCHOT | VCC_<br>UVLOB | VCC_D_<br>PG | VCC_C_<br>PG | VCC_B_<br>PG | VCC_A_<br>PG | VCC_2_<br>PG | VCC_1_<br>PG |
| Default                                                                              | 0       | 0             | 0            | 0            | 0            | 0            | 0            | 0            |
| Туре                                                                                 | R       | R             | R            | R            | R            | R            | R            | R            |

| Bit | Name      | Description                                                                                                   |
|-----|-----------|---------------------------------------------------------------------------------------------------------------|
| 7   | PROCHOT   | Thermal alert:<br>0: No thermal alert<br>1: Thermal alert, IC temperature is high, it is a non-latched signal |
| 6   | VCC_UVLOB | PMIC control circuit supply VCC UVLOB:<br>0: In UVLO<br>1: Not in UVLO                                        |
| 5   | VCC_D_PG  | VCC_D rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |
| 4   | VCC_C_PG  | VCC_C rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |
| 3   | VCC_B_PG  | VCC_B rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |
| 2   | VCC_A_PG  | VCC_A rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |
| 1   | VCC_2_PG  | VCC_2 rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |
| 0   | VCC_1_PG  | VCC_1 rail's power good signal for both hardware and software control:<br>0: Power not ready<br>1: Power Good |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

49

Г

## Table 13. THSD\_UVP\_REC

|         | Address: 0xD4<br>Description: Status Bits to Indicate Whether OT/UV Is Triggered. |              |                       |                       |                       |                       |                       |                       |
|---------|-----------------------------------------------------------------------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Bit     | Bit 7                                                                             | Bit 6        | Bit 5                 | Bit 4                 | Bit 3                 | Bit 2                 | Bit 1                 | Bit 0                 |
| Field   | Reserved                                                                          | THSD_<br>STS | VCC_D<br>_UVP_<br>STS | VCC_C<br>_UVP<br>_STS | VCC_B<br>_UVP<br>_STS | VCC_A<br>_UVP<br>_STS | VCC_2<br>_UVP<br>_STS | VCC_1<br>_UVP<br>_STS |
| Default | 0                                                                                 | 0            | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |
| Туре    | R                                                                                 | R            | R                     | R                     | R                     | R                     | R                     | R                     |

| Bit | Name              | Description                                                                                       |
|-----|-------------------|---------------------------------------------------------------------------------------------------|
| 6   | THSD_STS          | Thermal shutdown protection:<br>0: No thermal shutdown event occurred<br>1: An OTP event occurred |
| 5   | VCC_D_<br>UVP_STS | VCC_D's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |
| 4   | VCC_C_<br>UVP_STS | VCC_C's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |
| 3   | VCC_B_<br>UVP_STS | VCC_B's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |
| 2   | VCC_A_<br>UVP_STS | VCC_A's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |
| 1   | VCC_2_<br>UVP_STS | VCC_2's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |
| 0   | VCC_1_<br>UVP_STS | VCC_1's undervoltage protection:<br>0: No UVP event occurred<br>1: An UVP event occurred          |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

### Table 14. OVP\_REC

| Address:    | 0xD5 |
|-------------|------|
| / (uui 000. | 0,00 |

Description: Status Bits to Indicate Whether OV Is Triggered.

| Description: Status Bits to Indicate whether OV is Triggered. |          |          |                       |                       |                       |                       |                       |                       |
|---------------------------------------------------------------|----------|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Bit                                                           | Bit 7    | Bit 6    | Bit 5                 | Bit 4                 | Bit 3                 | Bit 2                 | Bit 1                 | Bit 0                 |
| Field                                                         | Reserved | Reserved | VCC_D<br>_OVP<br>_STS | VCC_C<br>_OVP<br>_STS | VCC_B<br>_OVP<br>_STS | VCC_A<br>_OVP<br>_STS | VCC_2<br>_OVP<br>_STS | VCC_1<br>_OVP<br>_STS |
| Default                                                       | 0        | 0        | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |
| Туре                                                          | R        | R        | R                     | R                     | R                     | R                     | R                     | R                     |

| Bit | Name              | Description                                                                             |
|-----|-------------------|-----------------------------------------------------------------------------------------|
| 5   | VCC_D_<br>OVP_STS | VCC_D's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |
| 4   | VCC_C_<br>OVP_STS | VCC_C's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |
| 3   | VCC_B_<br>OVP_STS | VCC_B's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |
| 2   | VCC_A_<br>OVP_STS | VCC_A's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |
| 1   | VCC_2_<br>OVP_STS | VCC_2's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |
| 0   | VCC_1_<br>OVP_STS | VCC_1's overvoltage protection:<br>0: No OVP event occurred<br>1: An OVP event occurred |

51

## Table 15. PROCHOT\_VCC\_2\_OS

| -       | Address: 0xD6<br>Description: Thermal Alert Setting and The Offset Setting of The VCC2. |       |             |       |          |       |       |       |  |
|---------|-----------------------------------------------------------------------------------------|-------|-------------|-------|----------|-------|-------|-------|--|
| Bit     | Bit 7                                                                                   | Bit 6 | Bit 5       | Bit 4 | Bit 3    | Bit 2 | Bit 1 | Bit 0 |  |
| Field   | PROCHOT_EN                                                                              | PROCH | PROCHOT_SET |       | VCC_2_OS |       |       |       |  |
| Default | 1                                                                                       | 0     | 1           | 0     | 1        | 0     | 0     | 0     |  |
| Туре    | R/W                                                                                     | R/W   | R/W         | R     | R/W      | R/W   | R/W   | R/W   |  |

| Bit | Name        | Description                                                                                                                                                                                                                                                                                                    |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | PROCHOT_EN  | <ul> <li>Enable of thermal alert function. The thermal alert function is controlled by the register 0xD3 bit&lt;7&gt;. Modifying this bit will enable and disable the function as follows:</li> <li>0: Thermal alert function is disabled.</li> <li>1: Thermal alert function is enabled. (default)</li> </ul> |
| 6:5 | PROCHOT_SET | Thermal alert setting:<br>00:90°C<br>01:100°C (default)<br>10:110°C<br>11:120°C                                                                                                                                                                                                                                |
| 3:0 | VCC_2_OS    | VCC_2 will be 1.1V/1.065V plus the following offset:<br>1111: +35mV<br>1110: +30mV<br>1101: +25mV<br>1100: +20mV<br>1011: +15mV<br>1010: +10mV<br>1001: +5mV<br>1000: +0mV (default)<br>0111: -5mV<br>0110: -10mV<br>0101: -15mV<br>0100: -20mV<br>0011: -25mV<br>0010: -35mV<br>0001: -35mV<br>0000: -40mV    |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

|         | Table 16. VCC_D_OS                                             |                                                                                                         |          |  |  |  |          |  |  |
|---------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|--|--|--|----------|--|--|
| -       | Address: 0xD7<br>Description: The Offset Setting of the VCC_D. |                                                                                                         |          |  |  |  |          |  |  |
| Bit     | Bit 7                                                          | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |          |  |  |  |          |  |  |
| Field   |                                                                |                                                                                                         | Reserved |  |  |  | VCC_D_OS |  |  |
| Default | 0                                                              | 0 0 0 0 0 1 0                                                                                           |          |  |  |  |          |  |  |
| Туре    | e R                                                            |                                                                                                         |          |  |  |  | R/W      |  |  |

| Bit | Name     | Description                                                                                                                                                                 |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0 | VCC_D_OS | VCC_D will be 1.1V/0.5V plus the following offset:<br>111: +50mV<br>110: +40mV<br>101: +30mV<br>100: +20mV<br>011: +10mV<br>010: +0mV (default)<br>001: -10mV<br>000: -20mV |

## Table 17. DISCH\_CTRL1

| -       | Address: 0xD8<br>Description: The Discharge Resistor Setting of VCC_A/B/C/D. |            |       |            |       |            |       |            |  |
|---------|------------------------------------------------------------------------------|------------|-------|------------|-------|------------|-------|------------|--|
| Bit     | Bit 7                                                                        | Bit 6      | Bit 5 | Bit 4      | Bit 3 | Bit 2      | Bit 1 | Bit 0      |  |
| Field   | VCC_E                                                                        | VCC_D_RDIS |       | VCC_C_RDIS |       | VCC_B_RDIS |       | VCC_A_RDIS |  |
| Default | 0                                                                            | 1          | 0     | 1          | 0     | 1          | 0     | 1          |  |
| Туре    | R/W                                                                          |            | R/W   |            | R/W   |            | R/W   |            |  |

| Bit | Name                                                                                                                                           | Description                                                                                                              |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| 7:6 | VCC_D_RDIS                                                                                                                                     | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |  |  |
| 5:4 | VCC_C_RDIS                                                                                                                                     | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |  |  |
| 3:2 | VCC_B_RDIS         Dummy loading at output when rail is OFF:           11: 500Ω         10: 200Ω           01: 100Ω (default)         00: Hi-Z |                                                                                                                          |  |  |
| 1:0 | VCC_A_RDIS                                                                                                                                     | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |  |  |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

## Table 18. DISCH\_CTRL2

|         | Address: 0xD9<br>Description: The Discharge Resistor Setting of LSW and VCC_1/2. |          |       |          |       |            |       |            |  |
|---------|----------------------------------------------------------------------------------|----------|-------|----------|-------|------------|-------|------------|--|
| Bit     | Bit 7                                                                            | Bit 6    | Bit 5 | Bit 4    | Bit 3 | Bit 2      | Bit 1 | Bit 0      |  |
| Field   | Rese                                                                             | Reserved |       | LSW_RDIS |       | VCC_2_RDIS |       | VCC_1_RDIS |  |
| Default | 0                                                                                | 0        | 1     | 0        | 0     | 1          | 0     | 1          |  |
| Туре    | R                                                                                |          | R/W   |          | R/W   |            | R/W   |            |  |

| Bit | Name       | Description                                                                                                              |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------|
| 5:4 | LSW_RDIS   | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |
| 3:2 | VCC_2_RDIS | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |
| 1:0 | VCC_1_RDIS | Dummy loading at output when rail is OFF:<br>11: $500\Omega$<br>10: $200\Omega$<br>01: $100\Omega$ (default)<br>00: Hi-Z |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

### Table 19. OC\_CTRL1

| -       | Address: 0xDA<br>Description: The Current Limit Setting of VCC_A/B/C/D.                                 |      |          |     |          |     |          |     |  |
|---------|---------------------------------------------------------------------------------------------------------|------|----------|-----|----------|-----|----------|-----|--|
| Bit     | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |      |          |     |          |     |          |     |  |
| Field   | VCC_                                                                                                    | D_CL | VCC_C_CL |     | VCC_B_CL |     | VCC_A_CL |     |  |
| Default | 1                                                                                                       | 1    | 1        | 1   | 0        | 0   | 0        | 0   |  |
| Туре    | R/                                                                                                      | R/W  |          | R/W |          | R/W |          | R/W |  |

| Bit | Name     | Description                                                         |
|-----|----------|---------------------------------------------------------------------|
| 7:6 | VCC_D_CL | OC Setting:<br>00: 6A<br>01: 5A<br>10: 4A<br>11: 3A (default)       |
| 5:4 | VCC_C_CL | OC Setting:<br>00: 6A<br>01: 5A<br>10: 4A<br>11: 3A (default)       |
| 3:2 | VCC_B_CL | OC Setting:<br>00: 9A (default)<br>01: 7.8A<br>10: 6.6A<br>11: 5.3A |
| 1:0 | VCC_A_CL | OC Setting:<br>00: 9A (default)<br>01: 7.8A<br>10: 6.6A<br>11: 5.3A |

### Table 20. OC\_CTRL2

| -       | Address: 0xDB<br>Description: The Current Limit Setting of VCC_1/2. |       |       |       |       |       |       |       |
|---------|---------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Bit     | Bit 7                                                               | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Field   |                                                                     | Rese  | erved |       | VCC_  | 2_VCL | VCC_  | 1_VCL |
| Default | 0                                                                   | 0     | 0     | 0     | 1     | 0     | 0     | 1     |
| Туре    |                                                                     | R     |       |       |       | W     | R/    | W     |

| Bit | Name      | Description                                                                               |
|-----|-----------|-------------------------------------------------------------------------------------------|
| 3:2 | VCC_2_VCL | VCC_2 current limit setting:<br>11: 230mV<br>10: 200mV (default)<br>01: 125mV<br>00: 75mV |
| 1:0 | VCC_1_VCL | VCC_1 current limit setting:<br>11: 230mV<br>10: 200mV<br>01: 125mV (default)<br>00: 75mV |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

## Table 21. FSW\_CTRL1

| Address: 0xDC<br>Description: The Frequency Setting of VCC_A/B/C/D.                                                 |                                            |   |   |     |  |   |     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---|---|-----|--|---|-----|--|--|--|
| Bit         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |                                            |   |   |     |  |   |     |  |  |  |
| Field                                                                                                               | ld VCC_D_FSW VCC_C_FSW VCC_B_FSW VCC_A_FSW |   |   |     |  |   |     |  |  |  |
| Default                                                                                                             | 0                                          | 0 | 0 | 0 0 |  | 0 | 0 1 |  |  |  |
| Туре                                                                                                                | Type R/W R/W R/W R/W                       |   |   |     |  |   |     |  |  |  |

| Bit | Name      | Description                                                                                           |
|-----|-----------|-------------------------------------------------------------------------------------------------------|
| 7:6 | VCC_D_FSW | Rail switching frequency setting:<br>11: 1.8MHz<br>10: 1.6MHz<br>01: 1.4MHz<br>00: 1.2MHz (default)   |
| 5:4 | VCC_C_FSW | Rail switching frequency setting:<br>11: 1.8MHz<br>10: 1.6MHz<br>01: 1.4MHz<br>00: 1.2MHz (default)   |
| 3:2 | VCC_B_FSW | Rail switching frequency setting:<br>11: 1.8MHz<br>10: 1.6MHz<br>01: 1.4MHz<br>00: 1.2MHz (default)   |
| 1:0 | VCC_A_FSW | Rail switching frequency setting:<br>11: 1200kHz<br>10: 1000kHz<br>01: 800kHz (default)<br>00: 600kHz |

### Copyright © 2024 Richtek Technology Corporation. All rights reserved.

## Table 22. FSW\_CTRL2

| Address: 0xDD                                  |                                                                                                         |   |         |  |   |   |  |       |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|---------|--|---|---|--|-------|--|--|
| Description: The Frequency Setting of VCC_1/2. |                                                                                                         |   |         |  |   |   |  |       |  |  |
| Bit                                            | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |   |         |  |   |   |  |       |  |  |
| Field                                          | Id     VCC_2_SP     VCC_1_SP     VCC_1_TON       READ_EN     READ_EN     _SHRINK     VCC_1_FSW          |   |         |  |   |   |  | I_FSW |  |  |
| Default                                        | 0                                                                                                       | 1 | 0 0 0 0 |  | 0 | 1 |  |       |  |  |
| Туре                                           | Type R/W R/W R/W R/W                                                                                    |   |         |  |   |   |  |       |  |  |

| Bit | Name             | Description                                                                                             |
|-----|------------------|---------------------------------------------------------------------------------------------------------|
| 7:6 | VCC_2_FSW        | Rail switching frequency setting:<br>11: 1MHz<br>10: 800kHz<br>01: 600kHz (default)<br>00: 400kHz       |
| 5   | VCC_2_SPREAD_EN  | Rail PSM spread spectrum enable:<br>0: Disable (default)<br>1: Enable                                   |
| 4   | VCC_1_SPREAD_EN  | Rail PSM spread spectrum enable:<br>0: Disable (default)<br>1: Enable                                   |
| 3:2 | VCC_1_TON_SHRINK | VCC_1 TON width shrink percent in PSM:<br>11: 60%<br>10: 80%<br>01: 90%<br>00: 100% No shrink (default) |
| 1:0 | VCC_1_FSW        | Rail switching frequency setting:<br>11: 1MHz<br>10: 800kHz<br>01: 600kHz (default)<br>00: 400kHz       |

57

#### Table 23. PG\_CONFIG1

| -       | Address: 0xDE<br>Description: The PG1/2 Setting of VCC_1/2/A/B/C/D.                                                 |   |   |   |   |   |   |   |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|--|--|--|
| Bit     | Bit         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |   |   |   |   |   |   |   |  |  |  |
| Field   | Field         PG1_<br>TEST_SETTING         PG1_SETTING         PG2_<br>TEST_SETTING         PG2_SETTING             |   |   |   |   |   |   |   |  |  |  |
| Default | 0                                                                                                                   | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| Туре    | Type R/W R/W R/W R/W                                                                                                |   |   |   |   |   |   |   |  |  |  |

| Bit | Name                 | Description                                                                                                                                                     |
|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | PG1_TEST_<br>SETTING | This pin can be written in test mode only.<br>When this bit = 1, DO_PG_1 listens to<br>010: DI_EN_A<br>001: DI_EN1<br>000: DI_UVLO_BK12                         |
| 6:4 | PG1_SETTING          | DO_PG_1 listen to<br>101: VCC_D_PG<br>100: VCC_C_PG<br>011: VCC_B_PG<br>010: VCC_A_PG<br>001: VCC_2_PG<br>000: VCC_1_PG (default)                               |
| 3   | PG2_TEST_<br>SETTING | This pin can be written in test mode only.<br>When this bit = 1, DO_PG_2 listens to<br>010: DI_EN_B<br>001: DI_EN2<br>000: DI_UVLO_BKAD                         |
| 2:0 | PG2_SETTING          | DO_PG_2 listen to<br>110: VCC_2_PG AND VCC_D_PG<br>101: VCC_D_PG<br>100: VCC_C_PG<br>011: VCC_B_PG<br>010: VCC_A_PG<br>001: VCC_2_PG (default)<br>000: VCC_1_PG |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

## Table 24. PG\_CONFIG2

| -       | Address: 0xDF<br>Description: The PG3/4 Setting of VCC_1/2/A/B/C/D. |   |   |   |   |       |  |  |  |  |  |
|---------|---------------------------------------------------------------------|---|---|---|---|-------|--|--|--|--|--|
| Bit     | BitBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0                         |   |   |   |   |       |  |  |  |  |  |
| Field   | PG3_PG3_PG3_SETTING PG4_PG4_SETTING PG4_SETTING                     |   |   |   |   |       |  |  |  |  |  |
| Default | 0                                                                   | 0 | 1 | 0 | 0 | 1 0 0 |  |  |  |  |  |
| Туре    | Type R/W R/W R/W                                                    |   |   |   |   |       |  |  |  |  |  |

| Bit | Name                 | Description                                                                                                                                                      |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | PG3_TEST_<br>SETTING | This pin can be written in test mode only.<br>When this bit = 1, DO_PG_3 listen to<br>010: DI_EN_C<br>001: DI_DDR_ID<br>000: DI_UVLO_BKBC                        |
| 6:4 | PG3_SETTING          | DO_PG_3 listens to<br>101: VCC_D_PG<br>100: VCC_C_PG<br>011: VCC_B_PG<br>010: VCC_A_PG (default)<br>001: VCC_2_PG<br>000: VCC_1_PG                               |
| 3   | PG4_TEST_<br>SETTING | This pin can be written in test mode only.<br>When this bit = 1, DO_PG_4 listen to<br>010: DI_EN_LSW<br>001: DI_PROCHOT<br>000: DI_OTP                           |
| 2:0 | PG4_SETTING          | DO_PG_4 listens to<br>110: VCC_B_PG AND VCC_C_PG<br>101: VCC_D_PG<br>100: VCC_C_PG (default)<br>011: VCC_B_PG<br>010: VCC_A_PG<br>001: VCC_2_PG<br>000: VCC_1_PG |



# 18 Outline Dimension

**RT5128A** 



| Symbol | Dimensions I | n Millimeters | Dimension |       |           |
|--------|--------------|---------------|-----------|-------|-----------|
| Symbol | Min          | Мах           | Min       | Max   |           |
| A      | 0.500        | 0.600         | 0.020     | 0.024 |           |
| A1     | 0.000        | 0.050         | 0.000     | 0.002 | Tolerance |
| A3     | 0.100        | 0.200         | 0.004     | 0.008 | ±0.050    |

U-Type 42L QFN 5x5 Package (FC)

Copyright © 2024 Richtek Technology Corporation. All rights reserved. www.richtek.com

RICHTEK



**RT5128A** 

# **19 Footprint Information**



| Package              | Number of Pin | Tolerance |
|----------------------|---------------|-----------|
| V/W/U/XQFN5x5-42(FC) | 42            | ±0.05 mm  |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

# **RT5128A**

RICHTEK

# **20 Packing Information**

#### 20.1 **Tape and Reel Data**



|                | Tape Size | Pocket Pitch | Pocket Pitch Reel Si |      | Units       | Trailer | Leade | Reel Width (W2) |  |
|----------------|-----------|--------------|----------------------|------|-------------|---------|-------|-----------------|--|
| Package Type   | (W1) (mm) | (P) (mm)     | (mm)                 | (in) | per<br>Reel | (mm)    | r(mm) | Min./Max. (mm)  |  |
| QFN/DFN<br>5x5 | 12        | 8            | 180                  | 7    | 1,500       | 160     | 600   | 12.4/14.4       |  |



C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

| Tana Siza | W1     | Р     |       | В      |        | F     |       | ØJ    |       | Н     |
|-----------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-------|
| Tape Size | Max.   | Min.  | Max.  | Min.   | Max.   | Min.  | Max.  | Min.  | Max.  | Max.  |
| 12mm      | 12.3mm | 7.9mm | 8.1mm | 1.65mm | 1.85mm | 3.9mm | 4.1mm | 1.5mm | 1.6mm | 0.6mm |

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com DS5128A-00 March 2024





#### 20.2 Tape and Reel Packing

| 1 |                                        | 4 |                              |
|---|----------------------------------------|---|------------------------------|
|   | Reel 7"                                |   | 3 reels per inner box A      |
| 2 | HIC & Desiccant (1 Unit) inside        | 5 | 12 inner boxes per outer box |
| 3 | Caution label is on backside of Al bag | 6 | Outer box Carton A           |

| Container   | Reel |          | Box   |               |            |       | Carton |                               |                |       |        |
|-------------|------|----------|-------|---------------|------------|-------|--------|-------------------------------|----------------|-------|--------|
| Package     | Size | Units    | Item  | Size(cm)      | Weight(Kg) | Reels | Units  | Item                          | Size(cm)       | Boxes | Unit   |
|             | 7"   | 4 500    | Box A | 18.3*18.3*8.0 | 0.1        | 3     | 4,500  | Carton A                      | 38.3*27.2*40.0 | 12    | 54,000 |
| QFN/DFN 5x5 |      | 7" 1,500 | Box E | 18.6*18.6*3.5 | 0.03       | 1     | 1,500  | For Combined or Partial Reel. |                |       |        |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.



#### 20.3 Packing Material Anti-ESD Property

| Surface<br>Resistance | Aluminum Bag                        | Reel                                | Cover tape                          | Carrier tape                        | Tube                                | Protection Band                     |
|-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $\Omega/cm^2$         | 10 <sup>4</sup> to 10 <sup>11</sup> |

## **Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1<sup>st</sup> Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.





# 21 Datasheet Revision History

| Version | Date      | Description | Item |
|---------|-----------|-------------|------|
| 00      | 2024/3/29 | Final       |      |