
RQA0005MXAQS Silicon N-Channel MOS FET

REJ03G1568-0100 Rev.1.00 Jul 04, 2007

Features

- High Output Power, High Gain, High Efficiency Pout = +33 dBm, Linear Gain = 21 dB, PAE = 68% (f = 520 MHz)
- Compact package capable of surface mounting

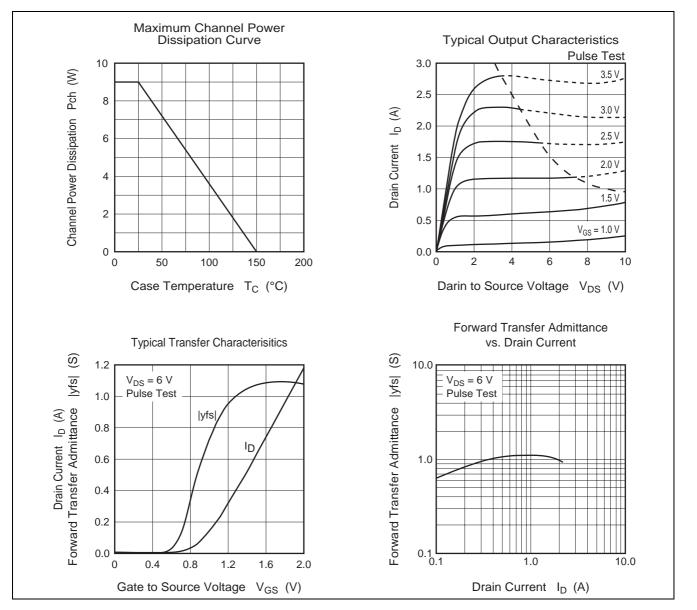
Outline

 $\ast \textsc{UPAK}$ is a trademark of Renesas Technology Corp.

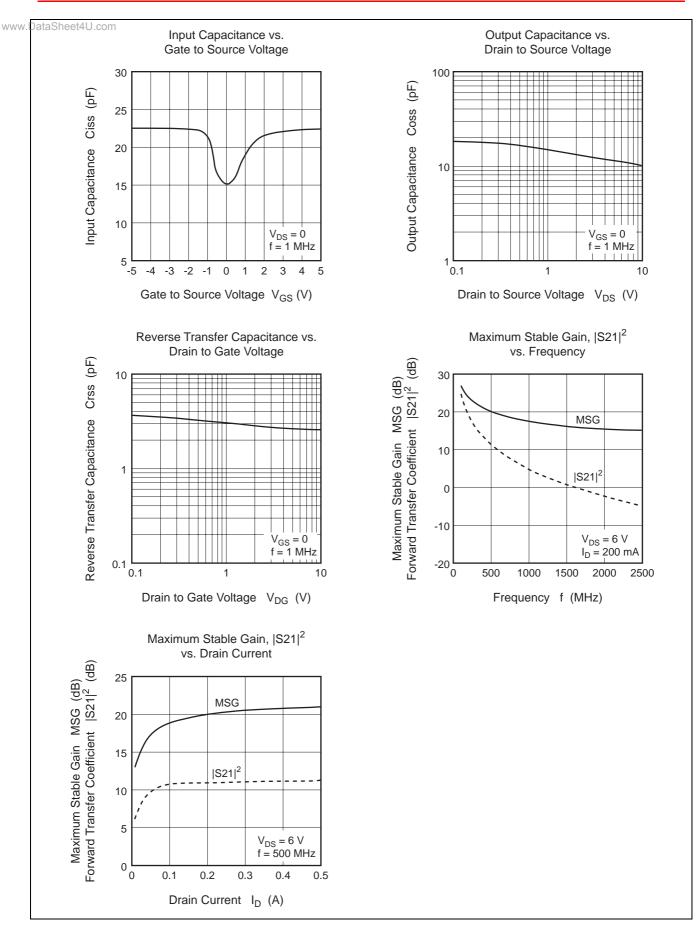
Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	16	V
Gate to source voltage	V _{GSS}	±5	V
Drain current	Ι _D	0.8	А
Channel dissipation	Pch ^{note}	9	W
Channel temperature	Tch	150	۵°
Storage temperature	Tstg	-50 to +150	°C

Note: Value at $Tc = 25^{\circ}C$

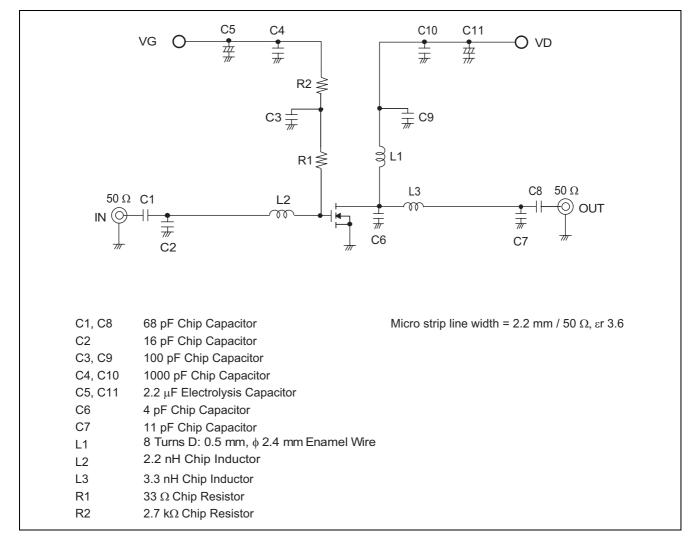

This device is sensitive to electro static discharge. An adequate careful handling procedure is requested.

 $(T_0 - 25^{\circ}C)$

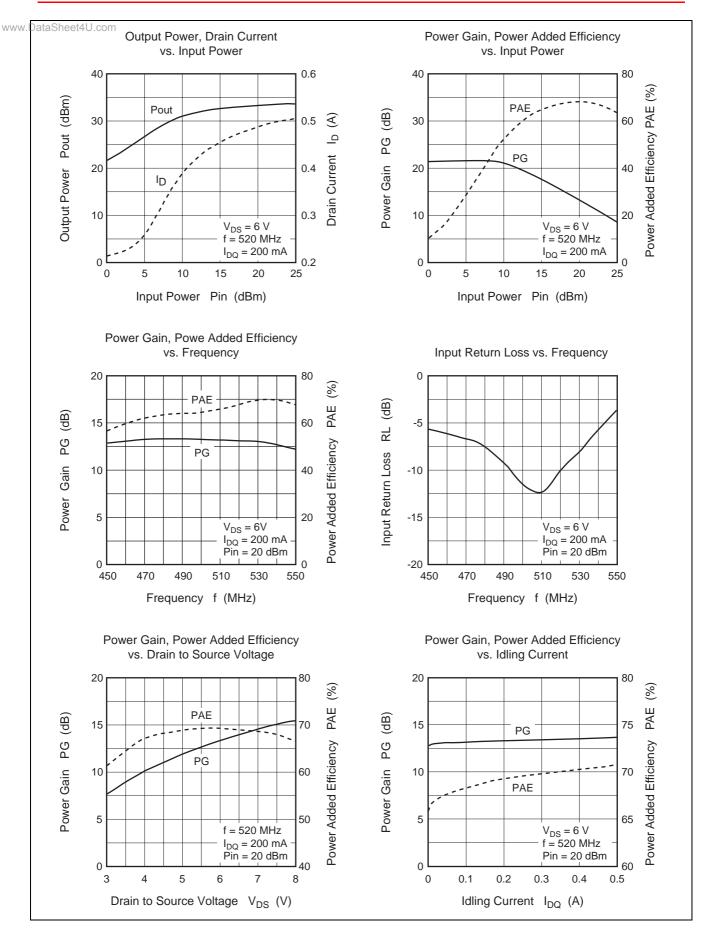

www.DaElectrical Characteristics

						$(Ta = 25^{\circ}C)$
Item	Symbol	Min.	Тур	Max.	Unit	Test Conditions
Zero gate voltage drain current	I _{DSS}	_	—	10	μA	$V_{DS} = 16 V, V_{GS} = 0$
Gate to source leakage current	I _{GSS}	_	—	±2	μA	$V_{GS} = \pm 5 V, V_{DS} = 0$
Gate to source cutoff voltage	V _{GS(off)}	0.15	0.45	0.75	V	$V_{DS} = 6 V$, $I_D = 1mA$
Forward Transfer Admittance	yfs	—	1.1	—	s	$V_{DS} = 6 V, I_D = 600 mA$
Input capacitance	Ciss	—	22	—	pF	$V_{GS} = 5 \text{ V}, V_{DS} = 0, f = 1 \text{ MHz}$
Output capacitance	Coss	—	12	—	pF	$V_{DS} = 6 V$, $V_{GS} = 0$, $f = 1 MHz$
Reverse transfer capacitance	Crss	—	2.6	—	pF	$V_{DG} = 6 \text{ V}, V_{GS} = 0, f = 1 \text{MHz}$
Output Power	Pout	—	33	—	dBm	$V_{DS} = 6V, I_{DQ} = 200 \text{ mA}$
		_	2		W	f = 520 MHz, Pin = +20 dBm
Power Added Efficiency	PAE		68	—	%]

Main Characteristics



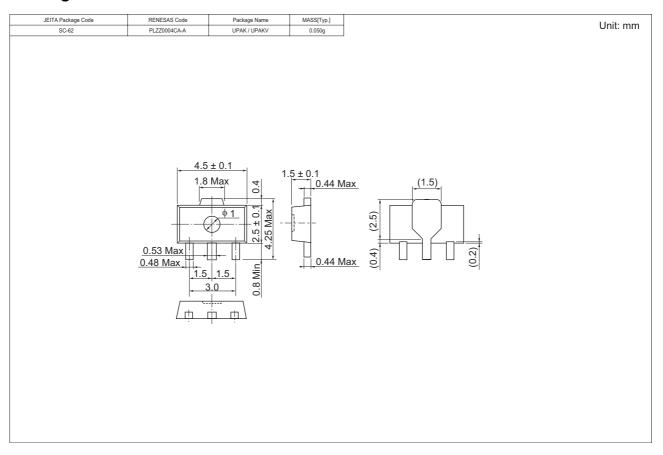
RQA0005MXAQS



RENESAS

www.DaEvaluation Circuit (f = 520 MHz)

RQA0005MXAQS


RENESAS

www.DatS^{SI}Parameter

 $(V_{DS} = 6 \text{ V}, I_{DQ} = 200 \text{ mA}, \text{Zo} = 50 \Omega)$

	5	S11	S21		S	S12	$7, I_{DQ} = 200 \text{ mA}, 20 = 50 \Omega$		
f (MHz)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)	MAG	ANG (deg.)	
100	0.843	-136.4	12.72	104.1	0.037	-5.7	0.765	-150.7	
150	0.863	-154.9	11.92	89.1	0.037	-6.3	0.727	-162.2	
200	0.853	-161.8	9.13	79.6	0.037	-7.4	0.728	-166.8	
250	0.847	-167.1	7.38	72.5	0.037	-13.4	0.730	-170.8	
300	0.844	-170.8	6.16	66.1	0.037	-19.0	0.733	-173.5	
350	0.843	-173.7	5.27	60.0	0.037	-24.0	0.734	-175.5	
400	0.841	-176.2	4.59	54.2	0.037	-29.2	0.735	-177.3	
450	0.840	-178.2	4.08	48.7	0.037	-33.6	0.736	-178.8	
500	0.841	180.0	3.65	43.3	0.036	-38.4	0.738	180.0	
550	0.842	178.4	3.31	37.9	0.036	-42.7	0.741	178.8	
600	0.843	176.9	3.02	32.6	0.035	-47.0	0.743	177.8	
650	0.844	175.6	2.78	27.5	0.035	-51.4	0.746	176.9	
700	0.845	173.0	2.56	22.2	0.035	-55.3	0.746	176.0	
750	0.843	174.3	2.38			-59.6		176.0	
				17.1	0.034		0.748		
800	0.845	171.8	2.21	12.0	0.034	-63.9	0.750	174.0	
850	0.845	170.6	2.07	6.9	0.033	-67.9	0.753	173.2	
900	0.848	169.5	1.94	1.9	0.033	-71.9	0.755	172.4	
950	0.851	168.4	1.83	-3.1	0.032	-76.0	0.758	171.4	
1000	0.853	167.4	1.73	-8.0	0.032	-79.8	0.760	170.5	
1050	0.856	166.4	1.64	-12.9	0.031	-83.8	0.764	169.7	
1100	0.858	165.5	1.55	-17.7	0.031	-87.6	0.765	168.7	
1150	0.860	164.5	1.47	-22.5	0.030	-91.4	0.769	167.8	
1200	0.861	163.5	1.40	-27.4	0.030	-95.3	0.774	166.9	
1250	0.862	162.5	1.33	-32.1	0.029	-98.9	0.778	166.1	
1300	0.864	161.5	1.27	-37.0	0.029	-102.6	0.780	165.3	
1350	0.865	160.5	1.21	-41.8	0.028	-106.3	0.784	164.4	
1400	0.867	159.4	1.16	-46.6	0.028	-109.9	0.789	163.5	
1450	0.868	158.5	1.11	-51.3	0.027	-113.4	0.792	162.8	
1500	0.871	157.5	1.06	-56.0	0.027	-116.7	0.794	161.9	
1550	0.874	156.6	1.02	-60.6	0.026	-120.2	0.796	161.1	
1600	0.876	155.7	0.98	-65.4	0.025	-123.4	0.799	160.2	
1650	0.878	154.8	0.94	-70.1	0.025	-126.8	0.801	159.3	
1700	0.879	154.0	0.91	-74.8	0.024	-130.3	0.803	158.5	
1750	0.879	153.2	0.88	-79.3	0.024	-133.2	0.805	157.4	
1800	0.880	152.4	0.85	-83.8	0.023	-136.4	0.808	156.4	
1850	0.882	151.5	0.82	-88.2	0.023	-139.6	0.812	155.5	
1900	0.886	150.2	0.79	-92.7	0.022	-142.7	0.814	154.5	
1950	0.888	148.9	0.76	-97.3	0.022	-146.0	0.818	153.4	
2000	0.890	147.8	0.74	-101.7	0.021	-149.0	0.820	152.5	
2050	0.893	146.8	0.71	-106.2	0.021	-151.9	0.825	151.7	
2100	0.897	145.9	0.69	-110.6	0.020	-155.0	0.826	150.7	
2150	0.900	145.0	0.67	-115.2	0.020	-157.7	0.829	149.6	
2200	0.902	144.1	0.65	-119.7	0.019	-160.4	0.832	148.6	
2250	0.904	143.3	0.63	-124.1	0.019	-163.0	0.837	147.8	
2300	0.904	142.5	0.61	-128.6	0.019	-165.3	0.839	146.9	
2350	0.904	142.5	0.59	-133.0	0.019	-168.3	0.839	145.9	
2330	0.904	141.7	0.59	-137.5	0.018	-170.7	0.839	145.9	
2400	0.903	139.9	0.55	-137.5	0.018	-170.7	0.843	144.0	
2450 2500	0.898	139.9	0.55	-142.0	0.018	-175.5	0.843	144.0	

www.Datpackage Dimensions

Ordering Information

RQA0005MXTL-E 1000 pcs. 0178 mm reel, 12 mm emboss taping	Part Name	Quantity	Shipping Container						
	RQA0005MXTL-E	1000 pcs.	φ178 mm reel, 12 mm emboss taping						

Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is additional and different information in the date this document, but Renesas assumes no liability whattosever for any damages incurred as a constrained by the explorable care in compling the information in this document, but Renesas assumes no liability othat socret or any damages incurred as a disclosed by Renesas states and the socret information in the date this document.
 When using or otherwise relevance the date this document, but Renesas assumes no liability whattosever for any damages incurred as a disclosed by Renesas states and the product so the technology described herein, our should be applications on order to the socret and the product so are technology described herein.
 When using or otherwise relevance the date date date data

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com