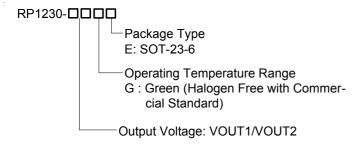
Portable Power Management 300mA Dual LDO Regulator

General Description


The RP1230 is a dual channel, low noise, and low dropout regulator sourcing up to 300mA at each channel. The range of output voltage is from 1.2V to 3.6V by operating from 2.5V to 5.5V input.

The RP1230 offers 2% accuracy, extremely low dropout voltage (240mV @ 300mA), and extremely low ground current, only 27 μ A per LDO. The shutdown current is near zero current which is suitable for battery-power devices. Other features include current limiting, over temperature, output short circuit protection.

The RP1230 is short circuit thermal folded back protected. The IC lowers its OTP trip point from 165° C to 110° C when output short circuit occurs (VOUT < 0.4V) providing maximum safety to end users.

The RP1230 can operate stably with very small ceramic output capacitors, reducing required board space and component cost. The RP1230 is available in fixed output voltages in the SOT-23-6 package.

Ordering Information

Note:

Richpower Green products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Features

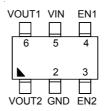
- Wide Operating Voltage Ranges: 2.5V to 5.5V
- Low-Noise for RF Application
- No Noise Bypass Capacitor Required
- Fast Response in Line/Load Transient
- TTL-Logic-Controlled Shutdown Input
- Low Temperature Coefficient
- Dual LDO Outputs (300mA/300mA)
- Ultra-low Quiescent Current 27μA/LDO
- High Output Accuracy 2%
- Short Circuit Protection
- Thermal Shutdown Protection
- Current Limit Protection
- Short Circuit Thermal Folded Back Protection
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- CDMA/GSM Cellular Handsets
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- PCMCIA Cards
- Portable Information Appliances

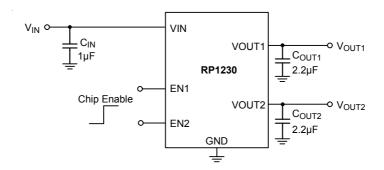
Marking Information

For marking information, contact our sales representative directly or through a Richpower distributor located in your area.


Available Voltage Version

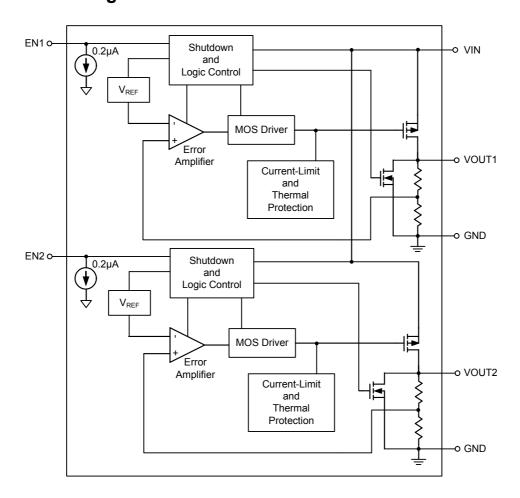
VOUT1/VOUT2	VOUT1/VOUT2			
Code	Voltage(V)			
MG	2.8V/1.8V			

Note: For other specific voltage version, please contact our sales representative.


Pin Configurations

SOT-23-6

Typical Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function			
1	VOUT2	Channel 2 Output Voltage.			
2	GND	Common Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.			
3	EN2	Chip Enable 2 (Active High).			
4	EN1	Chip Enable 1 (Active High).			
5	VIN	Supply Input.			
6	VOUT1	Channel 1 Output Voltage.			

Function Block Diagram

Absolute Maximum Ratings (Note 1)

•	Supply Input Voltage	-0.3V to 7V
•	Other I/O Pin Voltages	-0.3V to 7V
•	Power Dissipation, P _D @ T _A = 25°C	
	SOT-23-6	0.4W
•	Package Thermal Resistance (Note 4)	
	SOT-23-6, θ_{JA}	250°C/W
•	Junction Temperature	150°C
•	Lead Temperature (Soldering, 10 sec.)	260°C
•	Storage Temperature Range	–65°C to 150°C
•	ESD Susceptibility (Note 2)	
	HBM (Human Body Mode)	2kV
	MM (Machine Mode)	200V

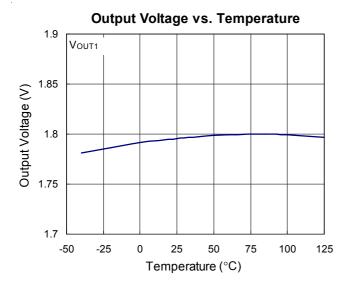
Recommended Operating Conditions (Note 3)

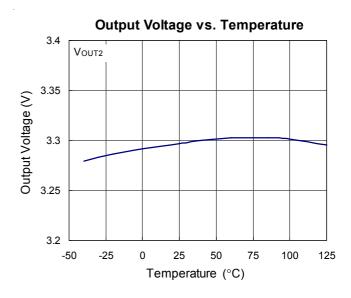
• Supply Input Voltage	2.5V to 5.5V
• Enable Input Voltage	0V to 5.5V
• Junction Temperature Range	40°C to 125°C
• Ambient Temperature Range	40°C to 85°C

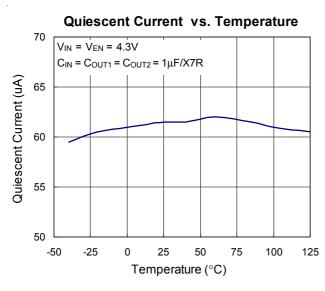
Electrical Characteristics

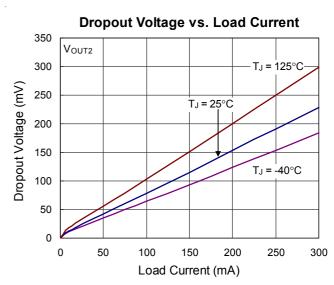
(V_{IN} = V_{OUT} + 1V, V_{EN} = V_{IN} , C_{IN} = C_{OUT} = 1 μ F, T_A = 25 $^{\circ}$ C, unless otherwise specified.)

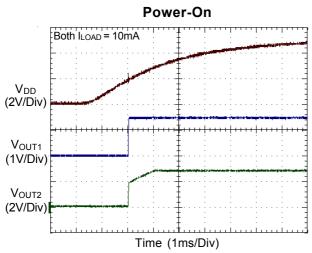
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Input Voltage		V _{IN} = 2.5V to 5.5V	2.5		5.5	V
Dropout Voltage (Note 5)	V _{DROP}	I _{OUT} = 300mA		240	330	mV
V _{OUT} Accuracy	ΔV	I _{OUT} = 10mA	-2		+2	%
Line Regulation	ΔV_{LINE}	V_{IN} = (V_{OUT} + 0.3V) to 5.5V or V_{IN} > 2.5V, whichever is larger			0.2	%/V
Load Regulation	ΔV_{LOAD}	1mA < I _{OUT} < 300mA	-		0.6	%
Current Limit		$R_{LOAD} = 1\Omega$	330	450	700	mA
Quiescent Current	IQ	V _{EN} > 1.5V		58	80	μΑ
Shutdown Current	I _{Q_SD}	V _{EN} < 0.4V	-		1	μΑ
EN Threshold	V _{IH}	V _{IN} = 2.5V to 5.5V, Power On	1.5			V
LIV THESHOLD	V _{IL}	V _{IN} = 2.5V to 5.5V, Shutdown			0.4	V

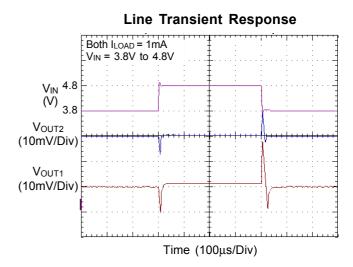

To be continued

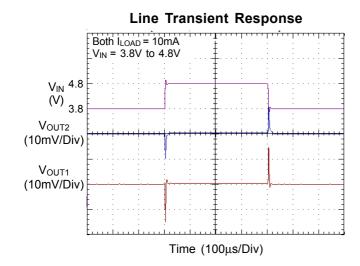


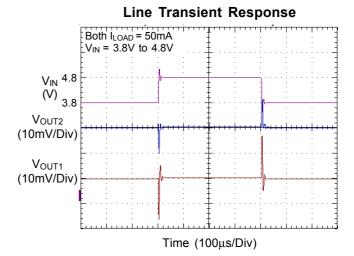

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
V _{OUT} Discharge Resistance in Shutdown (Note 6)		V _{IN} = 5V, EN1 = EN2 = GND	1	3	-1	kΩ
EN Pull Low Current	I _{EN}			0.2		μΑ
Themal Shutdown	T _{SD}			170		°C
Thermal Shutdown Hysteresis	ΔT_{SD}			40		°C
	PSRR	f = 100Hz		70		- dB
		f = 1kHz		70		
PSRR $V_{IN} = V_{OUT} + 1V$, $C_{OUT} = 2.2\mu F$ $I_{LOAD} = 50mA$		f = 10kHz		50		
		f = 100kHz		40		
		f = 200kHz		35		
		f = 300kHz		35		
Output Voltage Noise		$C_{OUT1} = C_{OUT2} = 10\mu F$, 10Hz to 100kHz, $I_{OUT1} = I_{OUT2} = 1mA$		100		uVrms

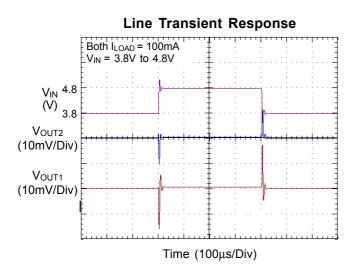

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution recommended.
- Note 3. The device is not guaranteed to function outside its operating conditions.
- Note 4. θ_{JA} is measured in the natural convection at T_A = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
- Note 5. The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} is $V_{OUT(NORMAL)}$ 100mV.
- Note 6. It is guaranteed by design.

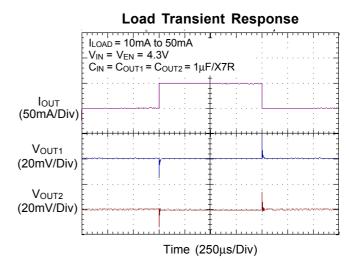

Typical Operating Characteristics

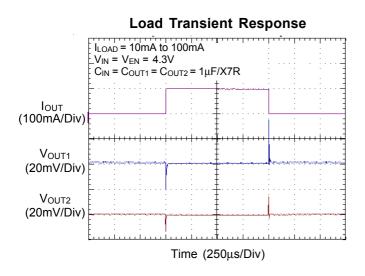


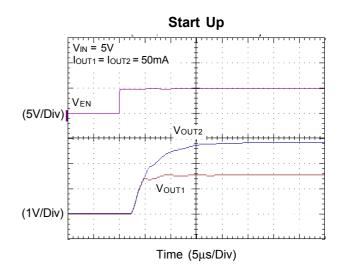


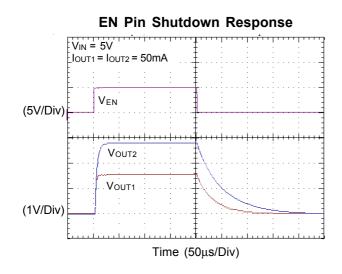


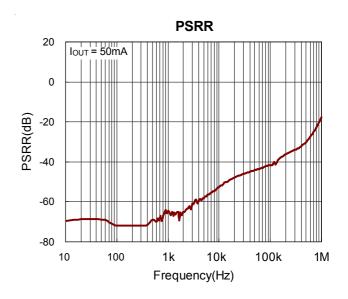


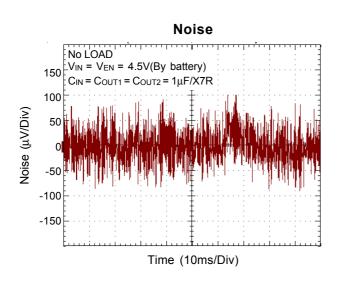


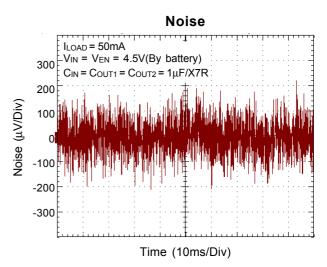


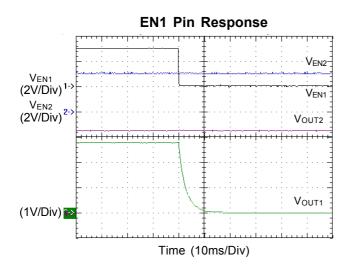


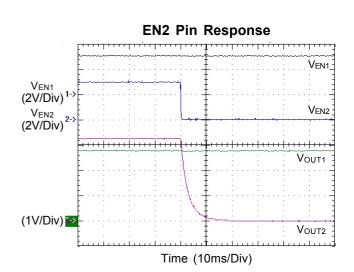












Applications Information

Like any low-dropout regulator, the external capacitors used with the RP1230 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > $1\mu F$ on the RP1230 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response.

The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RP1230 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 2.2 μ F with ESR is > 20m Ω on the RP1230 output ensures stability. The RP1230 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1 shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the RP1230 and returned to a clean analog ground.

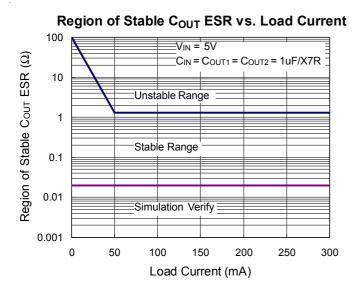


Figure 1. Stable Cout ESR Range

Thermal Considerations

Thermal protection limits power dissipation in RP1230. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turns on again after the junction temperature cools by 40°C. RP1230 lowers its OTP trip level from 170°C to 110°C when output short circuit occurs ($V_{OUT} < 0.4V$) as shown in Figure 2. It limits IC case temperature under 100°C and provides maximum safety to customer while output short circuit occurring.



Figure 2. Short Circuit Thermal Folded Back Protection when Output Short Circuit Occurs (Patent)

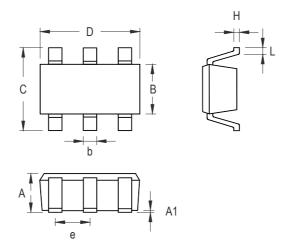
For continuous operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$P_D = (V_{IN}-V_{OUT}) \times I_{OUT} + V_{IN} \times I_Q$$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$

Where $T_{J(MAX)}$ is the maximum operation junction temperature, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.


For recommended operating conditions specification of RP1230, the maximum junction temperature is 125°C. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23-6 is 250°C/W on the standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by following formula :

 $P_{D(MAX)}$ = ($125^{\circ}C-25^{\circ}C$) / (250°C/W) = 0.4W for SOT-23-6 packages

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA} .

Outline Dimension

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-6 Surface Mount Package

RICHPOWER MICROELECTRONICS CORP.

Headquarter

Room 2102, 1077 ZuChongZhi Road, Zhang Jiang Hi-TechPark, Pudong New Area, Shanghai, China

Tel: (8621)50277077 Fax: (8621)50276966

Information that is provided by Richpower Technology Corporation is believed to be accurate and reliable. Richpower reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richpower products into any application. No legal responsibility for any said applications is assumed by Richpower.