
300mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator

General Description

The RP1202 is designed for portable RF and wireless applications with demanding performance and space requirements. The RP1202 performance is optimized for battery-powered systems to deliver ultra low noise and low quiescent current. A noise bypass pin is available for further reduction of output noise. Regulator ground current increases only slightly in dropout, further prolonging the battery life. The RP1202 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The RP1202 consumes less than $0.01\mu A$ in shutdown mode and has fast turn-on time less than $50\mu s$. The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. Available in the 5-lead of SOT-23 packages.

Ordering Information

Note:

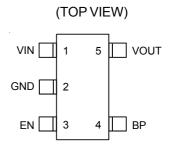
- RichPower Pb-free products are :
 - RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

2H: 2.85V

- -Suitable for use in SnPb or Pb-free soldering processes.
- -100%matte tin (Sn) plating.

Features

- Ultra-Low-Noise for RF Application
- Ultra-Fast Response in Line/Load Transient
- Quick Start-Up (Typically 50μs)
- < 0.01µA Standby Current When Shutdown
- Low Dropout: 220mV @ 300mA
- Wide Operating Voltage Ranges: 2.5V to 5.5V
- TTL-Logic-Controlled Shutdown Input
- Low Temperature Coefficient
- Current Limiting Protection
- Thermal Shutdown Protection
- Only 1µF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- Custom Voltage Available
- RoHS Compliant and 100% Lead (Pb)-Free


Applications

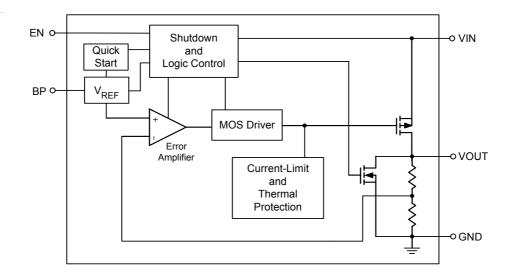
- CDMA/GSM Cellular Handsets
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- PCMCIA Cards
- Portable Information Appliances

Marking Information

For marking information, contact our sales representative directly or through a RichPower distributor located in your area.

Pin Configurations

SOT-23-5


Typical Application Circuit

Functional Pin Description

Pin Name	Pin Function		
VIN	Power Input Voltage		
GND	Ground		
EN	Chip Enable (Active High)		
ВР	Reference Noise Bypass		
VOUT	Output Voltage		

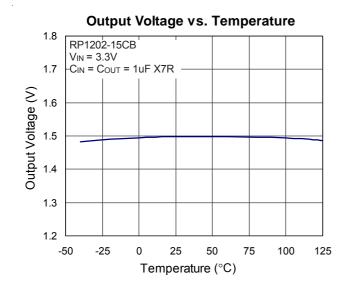
Function Block Diagram

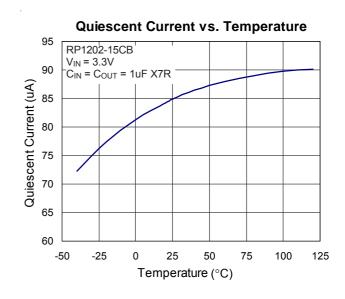
Absolute Maximum Ratings (Note 1)

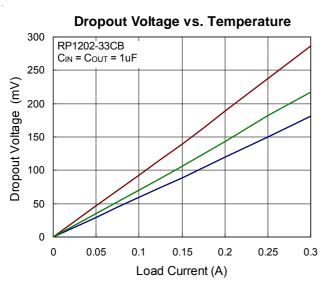
• Supply Input Voltage	6V
 Power Dissipation, P_D @ T_A = 25°C 	
SOT-23-5	400mW
Package Thermal Resistance (Note 4)	
SOT-23-5, θ_{JA}	250°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	
Operation Temperature Range	40°C to 85°C
ESD Susceptibility (Note 2)	
HBM (Human Body Mode)	2kV
MM (Machine Mode)	200V

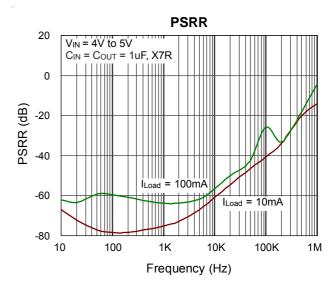
Recommended Operating Conditions (Note 3)

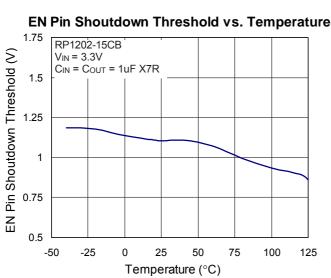
• Supply Input Voltage ------ 2.5V to 5.5V

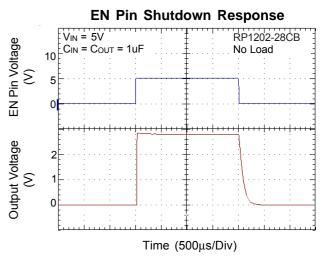

Electrical Characteristics

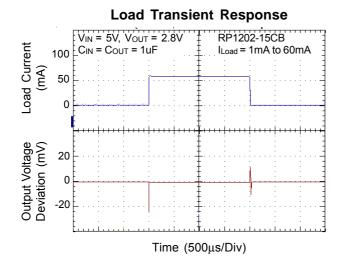

 $(V_{IN} = V_{OUT} + 1V, C_{IN} = C_{OUT} = 1\mu F, C_{BP} = 10nF, T_A = 25^{\circ} C$, unless otherwise specified)

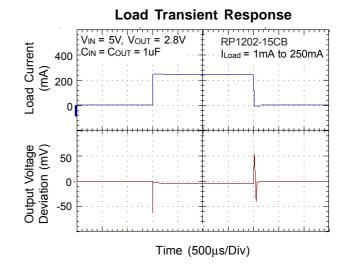

Parameter		Symbol	Test Conditions	Min	Тур	Max	Units		
Output Voltage Accuracy		ΔV_{OUT}	I _{OUT} = 1mA	-2	1	+2	%		
Current Limit		I _{LIM}	$R_{LOAD} = 1\Omega$	360	400		mA		
Quiescent Current	t		IQ	$V_{EN} \ge 1.2V$, $I_{OUT} = 0mA$		90	130	μΑ	
2 ()///		`	.,	I _{OUT} = 200mA		170	200		
Dropout Voltage	(Note 5))	V_{DROP}	I _{OUT} = 300mA		220	300	mV	
Line Regulation		ΔV_{LINE}	$V_{IN} = (V_{OUT} + 0.3V)$ to 5.5V, $I_{OUT} = 1$ mA			0.3	%		
Load Regulation		ΔV_{LOAD}	1mA < I _{OUT} < 300mA			0.6	%		
Standby Current		I _{STBY}	V _{EN} = GND, Shutdown		0.01	1	μΑ		
EN Input Bias Current		I _{IBSD}	V _{EN} = GND or VIN		0	100	nA		
ENI Thus also let	Logic-Low Voltage		V_{IL}	V _{IN} = 3V to 5.5V, Shutdown		-	0.4	- v	
EN Threshold	Logic-Hi	₋ogic-High Voltage		V _{IN} = 3V to 5.5V, Start-Up	1.2	1	I		
Output Noise Voltage		e _{NO}	10Hz to 100kHz, I_{OUT} = 200mA C_{OUT} = 1 μ F		100		μV_{RMS}		
Power Supply f = 100Hz		PSRR	C_{OUT} = 1 μ F, I_{OUT} = 10mA		-70		dB		
Rejection Rate f = 10kHz					-50				
Thermal Shutdown Temperature		T _{SD}			165		°C		
Thermal Shutdown Temperature Hysteresis		ΔT _{SD}			30		°C		

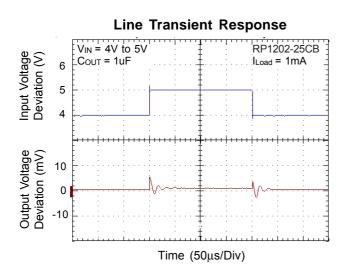

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution recommended.
- **Note 3.** The device is not guaranteed to function outside its operating conditions.
- Note 4. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board (Single Layer, 1S) of JEDEC 51-3 thermal measurement standard.
- Note 5. The dropout voltage is defined as V_{IN} -V_{OUT}, which is measured when V_{OUT} is V_{OUT(NORMAL)} 100mV.

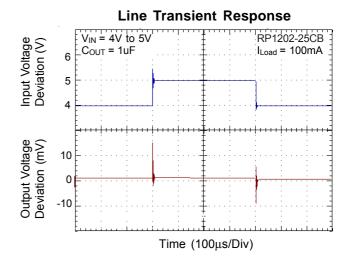

Typical Operating Characteristics

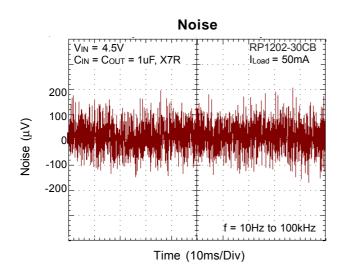


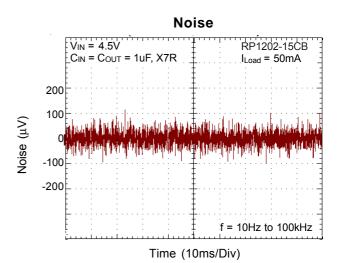


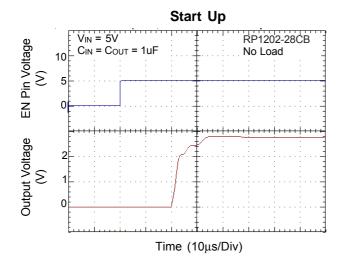












Applications Information

Like any low-dropout regulator, the external capacitors used with the RP1202 must be carefully selected for regulator stability and performance. Using a capacitor whose value is $> 1\mu$ F on the RP1202 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RP1202 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1µF with ESR is > $25m\Omega$ on the RP1202 output ensures stability. The RP1202 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1 shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the V_{OUT} pin of the RP1202 and returned to a clean analog ground.

Region of Stable Cour ESR vs. Load Current

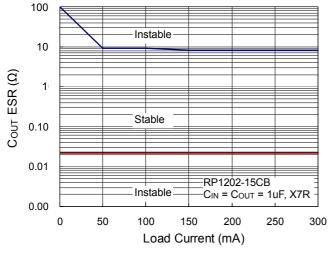


Figure 1

Bypass Capacitor and Low Noise

Connecting a 22nF between the BP pin and GND pin significantly reduces noise on the regulator output, it is critical that the capacitor connection between the BP pin and GND pin be direct and PCB traces should be as short as possible. There is a relationship between the bypass capacitor value and the LDO regulator turn on time. DC leakage on this pin can affect the LDO regulator output noise and voltage regulation performance.

Enable Function

The RP1202 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on, the EN turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protecting the system, the RP1202 have a quick-discharge function. If the enable function is not needed in a specific application, it may be tied to V_{IN} to keep the LDO regulator in a continuously on state.

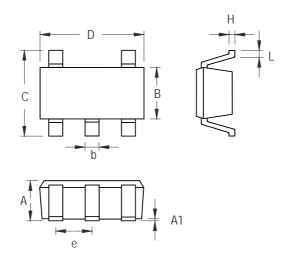
Thermal Considerations

Thermal protection limits power dissipation in RP1202. When the operation junction temperature exceeds 165°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turn on again after the junction temperature cools by 30°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_Q$$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:


$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$

Where $T_{J(MAX)}$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RP1202, where $T_{J(MAX)}$ is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-23-5 package is 250°C/W on standard JEDEC 51-3 thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / 250 = 400 \text{mW (SOT-23-5)}$

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA} .

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5 Surface Mount Package

RICHPOWER MICROELECTRONICS CORP.

Headquarter

Room 1102-1103, Building 1, No. 3000, Long Dong Road,

Shanghai, China

Tel: (021)68798688 Fax: (021)68798699