RICOH

150mA LDO REGULATOR

RP104 SERIES

Preliminary

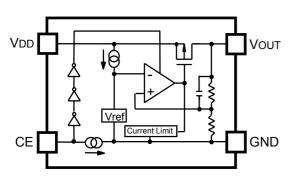
OUTLINE

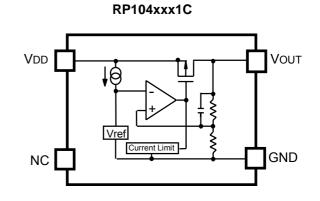
The RP104 Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the RP104 Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

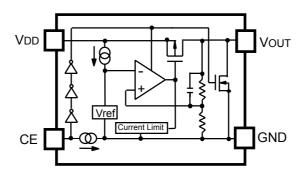
The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are PLP1010-4, SOT-23-5 and SC-82AB, therefore high density mounting of the ICs on boards is possible.

FEATURES


Low Supply Current	Тур. 1μА
	(Except the current through CE pull down circuit)
Standby Mode	Τyp. 0.1μA
Low Dropout Voltage	Typ. 0.28V (Iout=150mA 2.5V Output type)
Low Temperature-Drift Coefficient of Output Voltage	_Typ. ±40ppm/°C
Good Line Regulation	Typ. 0.05%/V
High Output Voltage Accuracy	±1.0%
Small Packages	PLP1010-4, SOT-23-5, SC-82AB
Output Voltage	1.2V, 1.3V,1.5V, 1.8V, 1.85V, 1.9V, 2.0V, 2.5V,
	2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.3V
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
Ceramic capacitors are recommended to be used with this IC	CIN=COUT=0.1µF or more


APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.


BLOCK DIAGRAMS

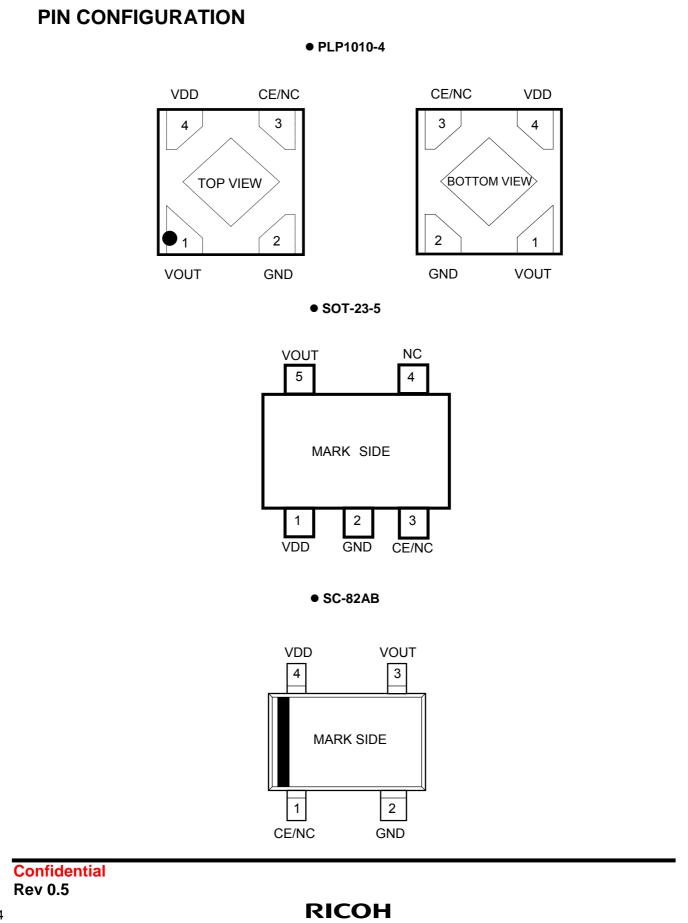
RP104xxx1B

RP104xxx1D

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;

RP104x<u>xx</u>1x-<u>xx</u>


∠Part Number

Ŷ	Ŷ	\uparrow	ſ
а	b	С	d

←r	an	Induniper	

Code	Contents
а	Designation of Package Type: K: PLP1010-4 N: SOT-23-5 Q: SC82-AB
b	Setting Output Voltage (Vout): 1.2V, 1.3V, 1.5V, 1.8V, 1.85V, 1.9V, 2.0V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.3V Exception: 1.85V=RP104x181x5, 2.85V=RP104x281x5
с	Designation of Active Type: B: active high type* C: without chip enable circuit D: active high, with auto discharge*
d	Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.)

*When the mode is into standby with CE signal, auto-discharge transistor turns on, and it makes the turn-off speed faster than normal type.

PIN DESCRIPTIONS

• RP104K

Symbol	Description
Vout	Output Pin
GND	Ground Pin
CE or NC	Chip Enable Pin ("H" Active) or No Connection
Vdd	Input Pin
	Vout GND CE or NC

Tab is GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns.

• RP104N

Pin No.	Symbol	Description
1	Vdd	Input Pin
2	GND	Ground Pin
3	CE or NC	Chip Enable Pin ("H" Active) or No Connection
4	NC	No Connection
5	Vout	Output Pin

• RP104Q

Pin No.	Symbol	Description
1	CE or NC	Chip Enable Pin ("H" Active)
2	GND	Ground Pin
3	Vout	Output Pin
4	Vdd	Input Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating		Unit
VIN	Input Voltage	6.0		V
VCE	Input Voltage (CE Pin)	6.0		V
Vout	Output Voltage	-0.3~Vin+0.3	-0.3~VIN+0.3	
Іоит	Output Current	200		mA
		PLP1010-4	400	
PD	Power Dissipation	SOT-23-5 (Free Air)	250	mW
		SC-82AB	380	
Topt	Operating Temperature Range -40~85		°C	
Tstg	Storage Temperature Range -55~125		°C	

For Power Dissipation, please refer to PACKAGE INFORMATION (p.9 ~) to be described

ELECTRICAL CHARACTERISTICS

• RP104xxx

• V_{IN} = Set V_{OUT} + 1V for V_{OUT} options greater than 1.5V. V_{IN} =2.5V for $V_{OUT} \le 1.5V$. I_{OUT} =1mA, C_{IN} = C_{OUT} =0.1µF, unless otherwise noted.

				-	T	opt=25°C
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	(*1)	Vout ×0.99 (-20mV)		V _{OUT} ×1.01 (20mV)	V
Іоит	Output Current		150			mA
ΔV out/ ΔI out	Load Regulation	$1\text{mA} \leq I_{\text{OUT}} \leq 150\text{mA}$		20	40	mV
VDIF	Dropout Voltage	Please see the	e data she	et below		
lss	Supply Current	louτ = 0mA		1	1.5	μA
Istandby	Supply Current (Standby)	V _{CE} = 0V		0.1	1.0	μA
ΔV out/ ΔV in	Line Regulation	Set Vou⊤+0.5V≤Viℕ≤5.0V		0.05	0.20	%/V
VIN	Input Voltage	(*2)	1.7		5.25	V
ΔVουτ/ΔΤ	Output Voltage Temperature Coefficient	$-40^{\circ}C \leq Topt \leq 85^{\circ}C$		±40		ppm /°C
LIM	Short Current Limit	Vout = 0V		40		mA
PD	CE Pull-down Current	B/D version only		0.3		μA
VCEH	CE Input Voltage "H"	B/D version only	1.5			V
VCEL	CE Input Voltage "L"	B/D version only			0.3	V
Rlow	Nch On Resistance For auto discharge (D version)	VIN=4.0V VCE=0V		30		Ω

(*1) Vout $\leq 2.0V \pm 20mV$ accuracy

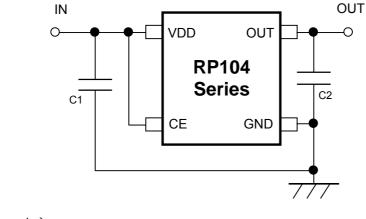
(*2) Max. Input Voltage is 5.5V during 500hours

Dropout Voltage

	Dropout Voltage (V)			
Vout (V)	Condition	TYP.	MAX.	
$1.2V \leq V_{\text{OUT}} < 1.5V$		0.76	0.98	
$1.5V \leq V_{OUT} < 1.7V$	450	0.53	0.67	
$1.7V \leq V_{OUT} < 2.0V$		0.44	0.55	
$2.0V \leq V_{OUT} < 2.5V$	Ιουτ=150mA	0.34	0.42	
$2.5V \leq V_{\text{OUT}} < 2.8V$		0.28	0.33	
$2.8V \leq V_{\text{OUT}} \leq 3.3V$		0.24	0.29	

TECHNICAL NOTES

When using these ICs, consider the following points:


Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

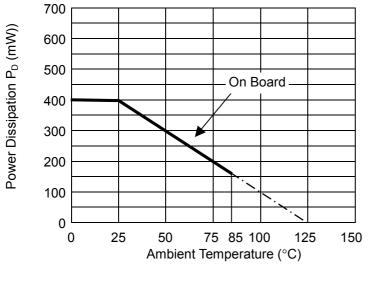
Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 0.1μ F or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

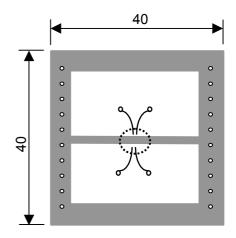
(External Components) Output Capacitor 0.1µF MURATA : GRM155B31C104KA87B

Confidential Rev 0.5

POWER DISSIPATION (PLP1010-4)


This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions


	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm*40mm*1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	∲ 0.54mm * 24pcs	

Measurement Result: (Topt=25°C, Tjmax=125°C)

	Standard Test Land Pattern
Power Dissipation	400mW
Thermal Resistance	θja = (125-25°C)/0.4W= 250°C/W
mermai Resistance	jc = 67 °C/W

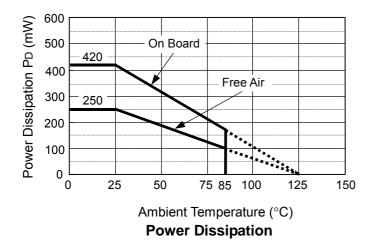
Powert Dissipation

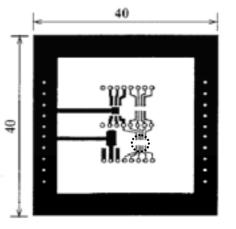
Measurent Board Pattern

IC Mount Area Unit : mm

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)


Measurement Conditions

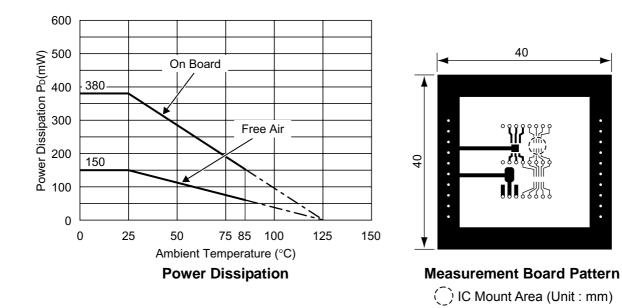

	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm*40mm*1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.5mm * 44pcs	

Measurement Result

(Topt=25°C, Tjmax=125°C)

	Standard Test Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja = (125-25°C)/0.42W= 263°C/W	400°C/W

Measurement Board Pattern


Confidential Rev 0.5

POWER DISSIPATION (SC-82AB)

This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%	
Through-hole	$\phi 0.5 mm imes 44 pcs$	

Measurement Result	(Topt=25°C,Tjmax=125°C)	
	Standard Land Pattern	Free Air
Power Dissipation	380mW	150mW
Thermal Resistance	θja=(125–25°C)/0.38W=263°C/W	667°C/W

