RadHard-by-Design RHD8540 64-Channel Analog Multiplexer 32-Channel Kelvin Measurement Configured

www.aeroflex.com/RHDseries April 1, 2015

FEATURES

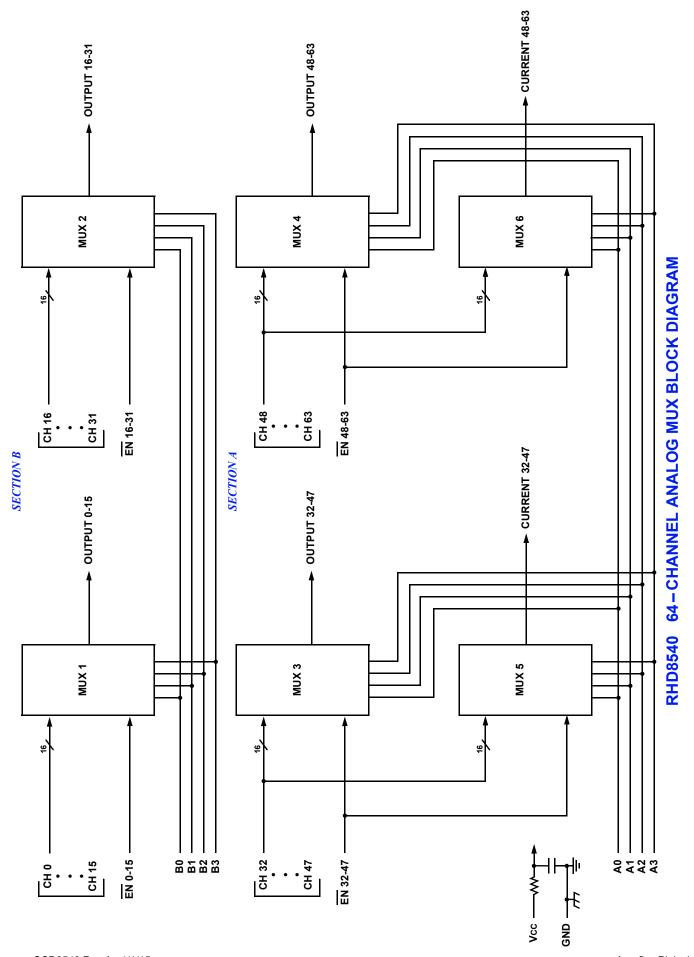
- □ 64 channels (32 Kelvin measurement channels) provided by six 16-channel multiplexers
- \Box Single power supply operation at +3.3V to +5V
- □ Radiation performance
 - Total dose: >1Mrad(Si), Dose rate = 50 300 rads(Si)/s
 - ELDRS Immune
 - SEL Immune: >100 MeV-cm²/mg - Neutron Displacement Damage: >10¹⁴ neutrons/cm²
- □ Full military temperature range
- □ Low power consumption < 33.6 mW
- □ CMOS analog switching allows rail to rail operation and low switch impedance
- \Box Two address busses A(0-3) & B(0-3) and four enable lines afford flexible organization
- □ Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic
 - 96 leads, 1.320"Sq x 0.200"Ht quad flat pack
 - Weight 15 grams max
- ☐ Aeroflex Plainview's Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

GENERAL DESCRIPTION

Aeroflex's RHD8540 is a radiation hardened, single supply, 64-Channel Multiplexer MCM (multi-chip module). The RHD8540 design uses specific circuit topology and layout methods to mitigate total ionization dose effects and single event latchup. These characteristics make the RHD8540 especially suited for the harsh environment encountered in Deep Space missions. It is available in a 96 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD8540 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION

The RHD8540 consists of four, single supply, 16-Channel Multiplexers arranged as shown in the Block Diagram. The RHD8540 design is inherently radiation tolerant.


The device will not latch with SEU events to above 100MeV-cm²/mg. Total dose degradation is minimal to above 1Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

A SECTION

Thirty-two (32) Kelvin measurement channels addressable by bus $A_0 \sim A_3$, in two 16 channel blocks, each block enabled separately. Each block connects the addressed channel to two outputs, "Output" and "Current". This technique enables selecting and reading a remote resistive sensor without the multiplexer resistance being part of the measurement. For grounded sensors, this is done by passing current to the sensor by means of the "Current" pin and reading the resultant voltage (proportional to the sensor resistance) at the "Output" pin.

B SECTION

Thirty-two (32) channels addressable by bus $B_0 \sim B_3$, in two 16 channel blocks, each block enabled separately. Each block connects the addressed channel to one output. By paralleling the channel inputs and enables, this section can be converted to act like one of the 16 channel blocks of the A section.

ABSOLUTE MAXIMUM RATINGS 1/

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Supply Voltage +Vcc (Pin 44)	+3.0 to +7.0	V
Digital Input Overvoltage VEN (Pins 5, 6, 91, 92), VA (Pins 1, 3, 93, 95), VB (Pins 2, 4, 94, 96)	< Vcc +0.4 > GND -0.4	V
Analog Input Over Voltage Vin (CH0-CH63)	< Vcc +0.4 > GND -0.4	V

Notes:

NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. These are stress rating only; functional operation beyond the 'Operation Conditions' is not recommended and extended exposure beyond the 'Operation Conditions' may affect device reliability.

RECOMMENDED OPERATING CONDITIONS 1/

Symbol	Parameter	Typical	Units
+Vcc	Power Supply Voltage	3.3 to 5.0	V
VENL, VAL	Logic Low Level	30% Vcc	V
VENH, VAH	Logic High Level	70% Vcc	V

DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/

(Tc = -55°C to +125°C, +Vcc = +5V - Unless otherwise specified)

Parameter	Symbol	Conditions		Min	Max	Units
Supply Current	+lcc	EN = 30% Vcc		0	4.8	mA
+Vcc	+ISBY	EN = 70% Vcc		0	1.2	mA
	IAL(0-3)A	VA = 30% VCC	+25°C	-20	20	nA
	IAL(U-U)A	VA = 30 / VCC	+125°C	-200	200	nA
	IAL(0-3)B	VA = 30% VCC	+25°C	-10	10	nA
Address Input Current	IAL(U-3)B	VA - 30% VCC	+125°C	-100	100	nA
A(0-3)	Іан(0-3)а	VA = 70% VCC	+25°C	-20	20	nA
		VA = 70% VCC	+125°C	-200	200	nA
	Іан(0-3)в	VA = 70% VCC	+25°C	-10	10	nA
		VA = 70% VCC	+125°C	-100	100	nA
	IENL(0-15) IENL(16-31)	Ven = 30% Vcc	+25°C	-5	5	nA
		VEN - 30% VCC	+125°C	-50	50	nA
	IENL(32-47)	VEN = 30% VCC	+25°C	-10	10	nA
Enable Input Current	IENL(48-63)	VEN = 30% VCC	+125°C	-100	100	nA
EN	IENH(0-15)	Ven = 70% Vcc	+25°C	-5	5	nA
	IENH(16-31)	VEN = 70% VCC	+125°C	-50	50	nA
	IENH(32-47) IENH(48-63)	VEN = 70% VCC	+25°C	-10	10	nA
		VEN - 7070 VCC	+125°C	-100	100	nA

^{1/} All measurements are made with respect to ground.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/ (continued)

(Tc = -55° C to $+125^{\circ}$ C, +Vcc = +5V - Unless otherwise specified)

Parameter	Symbol	Conditions		Min	Max	Units
High Input	liviriz	Vin = +5V, Ven = 70% Vcc.	+25°C	-5	5	nA
Leakage Current (CH0-CH63)	linlk ₅	Output and all unused MUX inputs under test = 0V	+125°C	-50	50	nA
Low Input Leakage Current	linlk ₀	Vin = 0V, Ven = 70% Vcc,		-5	5	nA
(CH0-CH63)	IIIVEIX()	Output and all unused MUX inputs under test = +5V	+125°C	-50	50	nA
Output Leakage Current		Vout = +5V, Ven = 70% Vcc.	+25°C	-5	5	nA
VOUT (pins 25,26, 68 & 70) CURRENTS (pins 67 & 69)	Ioutlk	All inputs grounded except channel being tested. $\underline{3}/, \underline{4}/$	+125°C	-50	50	nA
Switch ON Resistance OUTPUTS		Vin = 0V, Ven = 30% Vcc, Iout = +1mA	-55°C		500	Ω
(pins 25,26, 68 & 70)	RDS(ON)	Vin = +2.5V, Ven = 30% Vcc, Iout = -0.6mA Vin = +5V. Ven = 30% Vcc. Iout = -1mA	+25°C	-	750	Ω
CURRENTS (pins 67 & 69)		2/, 3/, 5/, 6/	+125°C	-	1000	Ω

Notes:

- 1/ Measure inputs sequentially. Ground all unused inputs of the device under test. VA is the applied input voltage to the address lines A(0-3). VB is the applied input voltage to the address lines B(0-3).
- 2/ VIN is the applied input voltage to the input channels (CH0-CH63).
- 3/ VEN is the applied input voltage to the enable lines \overline{EN} (0-15), \overline{EN} (16-31), \overline{EN} (32-47) and \overline{EN} (48-63).
- 4/ Vout is the applied input voltage to the output lines OUTPUT1(0-15), OUTPUT2(16-31), OUTPUT3(32-47) and OUTPUT4(48-63), CURRENT(32-47) and CURRENT(48-63).
- 5/ Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6/ The RHD8540 cannot be operated with analog inputs below 0 volts.

SWITCHING CHARACTERISTICS

(Tc = -55°C to +125°C, +Vcc = +5V - Unless otherwise specified)

Parameter	Symbol	Conditions	Temp	Min	Max	Units
			-55°C	10	150	ns
	t _A HL	VOUT High to Low Transition	+25°C	10	150	ns
Address to Output Dolov			+125°C	10	200	ns
Address to Output Delay	t _A LH		-55°C	10	150	ns
		VOUT Low to High Transition	+25°C	10	150	ns
			+125°C	10	200	ns
			-55°C	10	150	ns
Enable to Output Delay	t _{ON} EN	VEN = 30% VCC (Enabled)	+25°C	10	150	ns
			+125°C	10	200	ns
	t _{OFF} EN	VEN = 70% VCC (Disabled)	ALL	10	200	ns

TRUTH TABLE (CH0 – CH15)

В3	B2	B1	В0	EN(0-15)	"ON" CHANNEL 1/
Х	Χ	Χ	Х	Н	NONE
L	L	L	L	L	CH0
L	L	L	Η	L	CH1
L	L	Ι	L	L	CH2
L	L	Ι	Η	L	CH3
L	Н	L	L	L	CH4
L	Н	L	Н	L	CH5
L	Н	Н	L	L	CH6
L	Н	Н	Н	L	CH7
Н	L	L	L	L	CH8
Н	L	L	Н	L	CH9
Н	L	Н	L	L	CH10
Н	L	Н	Н	L	CH11
Н	Н	L	L	L	CH12
Н	Н	L	Н	L	CH13
Н	Н	Н	L	L	CH14
Н	Н	Н	Н	L	CH15

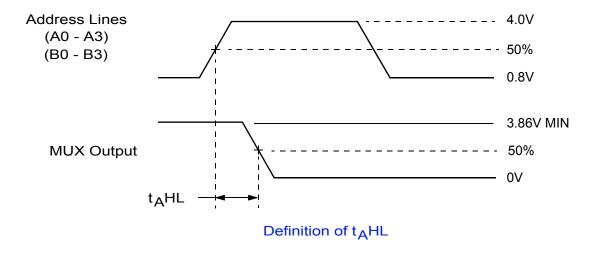
^{1/} Between (CH0-CH15) and OUTPUT1(0-15)

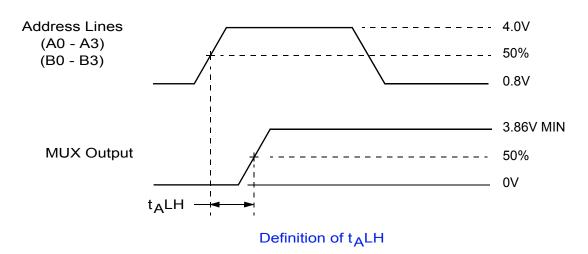
TRUTH TABLE (CH16 – CH31)

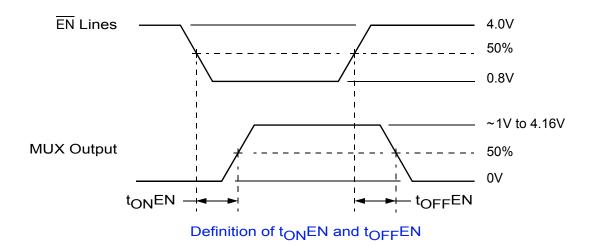
В3	B2	B 1	В0	EN(16-31)	"ON" CHANNEL 2/
Х	Χ	Χ	Χ	Н	NONE
L	L	L	L	L	CH16
L	L	L	Н	L	CH17
L	L	Н	L	L	CH18
L	L	Н	Н	L	CH19
L	Н	L	L	L	CH20
L	Н	L	Н	L	CH21
L	Н	Н	L	L	CH22
L	Н	Н	Н	L	CH23
Н	L	L	L	L	CH24
Н	L	L	Н	L	CH25
Н	L	Н	L	L	CH26
Н	L	Н	Н	L	CH27
Н	Н	L	L	L	CH28
Н	Н	L	Н	L	CH29
Н	Н	Н	L	L	CH30
Н	Н	Н	Н	L	CH31

^{2/} Between (CH16-CH31) and OUTPUT2 (16-31)

TRUTH TABLE (CH32 - CH47)


A3	A2	A1	A0	EN(32-47)	"ON" CHANNEL 3/
Х	Χ	Χ	Χ	Н	NONE
L	L	L	L	L	CH32
L	L	L	Н	L	CH33
L	L	Н	L	L	CH34
L	L	Н	Η	L	CH35
L	Ι	L	L	L	CH36
L	Н	L	Н	L	CH37
L	Н	Н	L	L	CH38
L	Ι	Ι	Ι	L	CH39
Н	L	L	L	L	CH40
Н	L	L	Η	L	CH41
Н	L	Н	L	L	CH42
Н	L	Н	Н	L	CH43
Н	Н	L	L	L	CH44
Н	Н	L	Н	L	CH45
Н	Н	Н	L	L	CH46
Н	Н	Н	Н	L	CH47

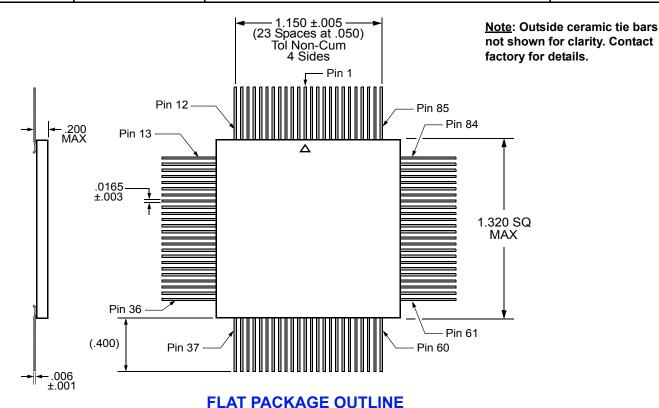

^{3/} Between (CH32-CH47) and OUTPUT3 (32-47)


TRUTH TABLE (CH48 - CH63)

A3	A2	A1	A0	EN(48-63)	"ON" CHANNEL 4/
Х	Х	Х	Χ	Н	NONE
L	L	L	L	L	CH48
L	L	L	Н	L	CH49
L	L	Н	L	L	CH50
L	L	Н	Н	L	CH51
L	Н	L	L	L	CH52
L	Н	L	Н	L	CH53
L	Н	Н	L	L	CH54
L	Н	Н	Н	L	CH55
Н	L	L	L	L	CH56
Н	L	L	Н	L	CH57
Н	L	Н	L	L	CH58
Н	L	Н	Н	L	CH59
Н	Н	L	L	L	CH60
Н	Н	L	Н	L	CH61
Н	Н	Н	L	L	CH62
Н	Н	Н	Н	L	CH63

 $[\]underline{4}\!\!/$ Between (CH48-CH63) and OUTPUT4 (48-63)

NOTE: f = 10KHz, Duty cycle = 50%.


PIN NUMBERS & FUNCTIONS

RHD8540 – 96 Leads Ceramic QUAD Flat Pack					
Pin#	Function	Pin#	Function	Pin#	Function
1	A2	33	CH11	65	CH49
2	B2	34	CH27	66	CH48
3	A3	35	CH12	67	Output I(48-63)
4	В3	36	CH28	68	Output V(48-63)
5	EN (0-15)	37	CH13	69	Output I(32-47)
6	EN (16-31)	38	CH29	70	Output V(32-47)
7	CH0	39	CH14	71	GND
8	CH16	40	CH30	72	GND
9	CH1	41	CH15	73	CH47
10	CH17	42	CH31	74	CH46
11	CH2	43	NC	75	CH45
12	CH18	44	+Vcc	76	CH44
13	CH3	45	NC	77	CH43
14	CH19	46	NC	78	CH42
15	CH4	47	NC	79	CH41
16	CH20	48	NC	80	CH40
17	CH5	49	NC	81	CH39
18	CH21	50	CASE GND	82	CH38
19	CH6	51	CH63	83	CH37
20	CH22	52	CH62	84	CH36
21	CH7	53	CH61	85	CH35
22	CH23	54	CH60	86	CH34
23	GND	55	CH59	87	CH33
24	GND	56	CH58	88	CH32
25	Output1 (0-15)	57	CH57	89	GND
26	Output2 (16-31)	58	CH56	90	GND
27	CH8	59	CH55	91	EN (48-63)
28	CH24	60	CH54	92	EN (32-47)
29	CH9	61	CH53	93	A0
30	CH25	62	CH52	94	В0
31	CH10	63	CH51	95	A1
32	CH26	64	CH50	96	B1

NOTE: It is recommended that all "NC" or "no connect" pins be grounded. This eliminates or minimizes any ESD or static buildup.

ORDERING INFORMATION

Model Number	DLA SMD #	A SMD # Screening	
RHD8540-7	-	Commercial Flow, +25°C testing only	
RHD8540-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	QUAD Flat Pack
RHD8540-201-1S	5962-1124001KXC	In accordance with DLA SMD	Flat Pack
RHD8540-901-1S	5962H1124001KXC	In accordance with DLA Certified RHA Program Plan to RHA Level "H", 1Mrads(Si)	

EXPORT CONTROL:

This product is controlled for export under the U.S. Department of Commerce (DoC). A license may be required prior to the export of this product from the United States.

www.aeroflex.com/HiRel info-ams@aeroflex.com

Datasheet Definitions:

Advanced Product in Development
Preliminary Shipping Non-Flight Prototypes
Datasheet Shipping QML and Reduced HiRel

Aeroflex Plainview, Inc. reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex, nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Our passion for performance is defined by three attributes.

Solution-Minded

Performance-Driven

Customer-Focused