RadHard-by-Design RHD5958 8-Channel Multiplexed 14-Bit Analog-to-Digital Converter

www.aeroflex.com/RHDseries March 6, 2014

FEATURES

- ☐ Single power supply operation 5.0V or Dual power supply for 3.3V I/O
- □ Radiation performance
 - Total dose: > 1 Mrad(Si); Dose rate = 50 300 rads(Si)/s
 - ELDRS Immune
 - SEL Immune > 100 MeV-cm²/mg - Neutron Displacement Damage > 10¹⁴ neutrons/cm²
- □ 8-Channel Input Multiplexer
- □ Successive Approximation A-to-D
- □ Level Shifting Digital Output Drivers allow interfaces to 5.0 or 3.3 volt logic
- □ Tri-State digital outputs
- □ Power Down (Sleep) mode
- □ Single or continuous conversion
- □ 20us conversion period (20 clocks @ 1MHz Clock rate)
- □ Multiplexer address is latched on first clock rising edge of a cycle
- □ Busy and End-of-Conversion status outputs
- □ 2000V Input/Output ESD protection
- □ Full military temperature range
- □ Designed for aerospace and high reliability space applications
- □ Packaging Hermetic Ceramic
 - 40 leads, 0.600"Sq x 0.120"Ht quad flat pack
 - Weight 6 grams max
- ☐ Aeroflex Plainview's Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

GENERAL DESCRIPTION

Aeroflex's RHD5958 is a radiation hardened, single supply, 8-Channel Multiplexed Analog-to-Digital converter in a 48-pin Ceramic Quad Flat Package. The RHD5958 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5958 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5958 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION

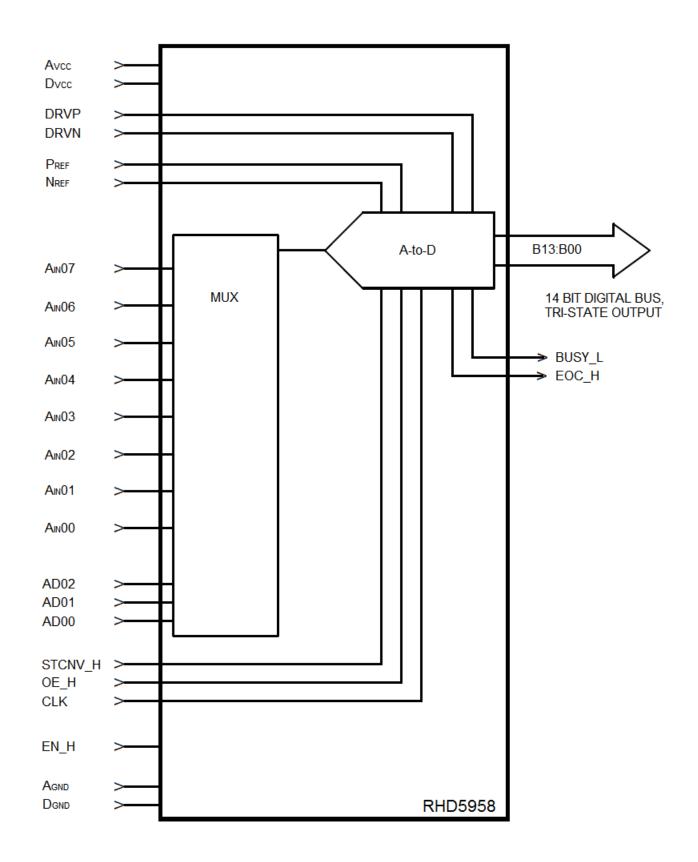
The RHD5958 takes 8 analog sensor signals and using 3 address inputs and an enable input, selects one of the 8 analog inputs and performs a 14-bit successive approximation analog-to-digital conversion in a nominal period of 20uS. The 14-bit digital output has a tri-state control allowing the connection of multiple RHD5958s. This provides the ability to interface many sensor voltage readings to the digital processor data bus. The full-scale range is determined by reference input voltages. The input impedance of the reference/span terminals is typically a constant 4K ohms.

Gain compression will occur near either power supply extremes but can be avoided if the references are more than 200mV away from the respective supply terminals. The input span can be less than 4 volts at the expense of ultimate resolution

The analog channels input impedance is primary capacitance (20pF typical). The input voltage charges a track-and-hold hold capacitor through transmission gates. The input bandwidth is determined by the slew rate of the hold amplifier and is adequate to allow input sampling in three clock periods (3uS nominal). The ultimate bandwidth is determined by the aperture uncertainty associated with the closing of the sample gate (approximately 5nS). The converter bandwidth is then determined by the sampling Nyquist frequency rather than the input signal; change rate (dv/dt) and the LSB weight in volts as would be the case if there were no sample and hold.

Start-Convert (STCNV_H), Busy (BUSY_L) and End-Of-Convert (EOC_H) status and control line are provided. The converter will operate in either continuous or single conversion modes. To operate in continuous mode, STCNV_H should be tied to BUSY_L. The digital output register changes at the end of a conversion and is available when EOC_H is asserted High. The output circuitry operates from a voltage independent of the remainder of the chip such that I/O is compatible with digital systems from, less than 3.3 volts, to 5 volts.

The converter divides the reference voltage into 16 segments with a linear weighted resistor network. The voltage on any segment is passed to a linear 10-bit DAC for interpolation. The architecture is inherently capable of monotonic operation. Typically INL is 0.12% FSR and DNL is < 0.03% FSR. The sampled input voltage is compared to the output of the two stage DAC for a 14-bit successive approximation conversion.


All inputs are protected to both power supply rails by semiconductor diodes. Inputs should be constrained to VCC +0.4 and GND-0.4 to avoid forward biasing protection paths.

The devices will not latch with SEU events to above 100 MeV-cm²/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

Notes: - The STCNV H is a dynamic input (positive edge triggered) and should not be tied to a static voltage.

- The input signals should be low pass filtered to reduce high frequency noise
- If Sleep mode is enabled (EN_H=0), when waking up (EN_H=1), the unit has to complete an entire conversion cycle so the digital logic is in the proper state.

Ex. If using a 1MHz clock; after EN H=1 and 20us after STCNV H is applied.

FIGURE 1: BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage Vcc - GND	+6.0	V
Input Voltage, PREF, NREF	Vcc +0.4 GND -0.4	V
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, ⊝jc	3.5	°C/W
ESD Rating (per MIL-STD-883, Method 3015, Class 2)	2,000 - 3,999	V

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Typical	Units
+Avcc	Analog Power Supply Voltage	5.0	V
+Dvcc	Digital Power Supply Voltage	5.0	V
DRVP	Digital Output High Reference Level	3.3 to 5.0	V
DRVN	Digital Output Low Reference Level	0	V
PREF	High Analog Reference Voltage	4.5	V
NREF	Low Analog Reference Voltage	0.5	V

ELECTRICAL PERFORMANCE CHARACTERISTICS

 $(Tc = -55^{\circ}C \text{ TO } +125^{\circ}C, +Avcc = +5.0V, +Dvcc = +5.0V, +DRVP = +5.0V)$

Parameter	Symbol	Conditions	Min	Max	Units	
Analog Supply Current Quiescent	Alccq	VEN = DVCC, CLK = 0V	-	10	mA	
Analog Supply Current Active	Alcca	VEN = DVCC	-	10	mA	
Analog Supply Current Sleep	Alccs	VEN = DGND	-	4	mA	
Digital Supply Current Quiescent	DICCQ	VEN = DVCC, CLK = 0V	-	1	mA	
Digital Supply Current Active	DICCA	VEN = DVCC	-	2	mA	
Digital Supply Current Sleep	Diccs	VEN = DGND	-	1	mA	
Digital Output Supply Current Quiescent	IDRVPQ	VEN = DVCC, CL = 50pF, CLK = 0V	-	0.1	mA	
Digital Output Supply Current Active	IDRVPA	VEN = DVCC, CL = 50pF	-	1	mA	
Digital Output Supply Current Sleep	IDRVPS	VEN = DGND, CL = 50pF	-	1	mA	
Full-scale Input Range	Vin		Vnref	VPREF	V	
Input Capacitance 2/	Cin	Tc = +25°C	-	50	pF	
Analog Reference Impedance	ZREF	PREF to NREF	2	6	ΚΩ	
High Analog Reference Current	IPREF	PREF - NREF = 4V	0.67	2	mA	
High Analog Reference Voltage	VPREF	DVRP = 5.0 V	VNREF	5.0		
Trigit Arialog Neterefice Voltage	VPREF	DVRP = 3.3 V	VNREF	5.0	V	
Low Analog Reference Voltage	VNREF	DVRP = 5.0 V	0	VPREF		
Low Analog Nelerence Voltage	VINKEF	DVRP = 3.3 V	0	VPREF		

ELECTRICAL PERFORMANCE CHARACTERISTICS

 $(Tc = -55^{\circ}C \text{ TO } +125^{\circ}C, +Avcc = +5.0V, +Dvcc = +5.0V, +DRVP = +5.0V)$

Parameter	Symbol	Conditions	Min	Max	Units	
Integral Nonlinearity	INL	PREF-NREF = 4.5V	-	0.25	%FSR	
Differential Nonlinearity	DNL	PREF-NREF = 4.5V	-	0.05	%FSR	
Offset Error	OE	PREF-NREF = 4.5V		-	0.012	%FSR
Gain Error	AE	PREF-NREF = 4.5V		-0.006	0.006	%FSR
Channel Isolation 2/	ISO	Tc = +25°C		80	-	dB
Clock Frequency	fC	PREF-NREF = 4.5V		-	1	MHz
Maximum Sampling Rate	fSAMPLE (MAX)	fc = 1 MHz, 20 clocks per convers	sion	-	50	kSPS
High Input Leakage Current	linlk _{hi}	Input under test = Avcc,	+25°C	-5	5	
(AIN00-AIN07) <u>3</u> /	IIIVENHI	VEN = DVCC	+125°C	-50	50	nA
Low Input Leakage Current	IINLK _{LO}	Input under test = AGND,	+25°C	-5	5	IIA
(AIN00-AIN07) <u>3</u> /	IIIVERLO	VEN = DVCC	+125°C	-50	50	
Digital High Level Input Voltage	Y (DVRP = 5.0 V		3.0	-	
EN_H, STCNV_H, OE_H, CLK, (AD00-AD02)	VIH	DVRP = 3.3 V		2.2	-	V
Digital Low Level Input Voltage	.,	DVRP = 5.0 V		-	2.0	
EN_H, STCNV_H, OE_H, CLK, (AD00-AD02)	VIL	DVRP = 3.3 V		-	1.2	
Digital High Level Input Current		DVRP = 5.0 V Digital input under test = 5.0 V All other digital inputs = DGND	+25°C	-5	5	nA
EN_H, STCNV_H, OE_H, CLK, (AD00-AD02) <u>3</u> /	lін		+125°C	-50	50	
Digital Low Level Input Current		DVRP = 5.0 V	+25°C	-5	5	
EN_H, STCNV_H, OE_H, CLK, (AD00-AD02) <u>3</u> /	lıL	All digital inputs = DGND +125°C		-50	50	1
		DVRP = 5.0 V, VEN = DVCC, IOH =	4.6	-	V	
Digital High Level Output Voltage	1/	DVRP = 5.0 V, VEN = DVCC, IOH =	4.2	-		
(B00-B13)	Voн	DVRP = 3.3 V, VEN = DVCC, IOH =	3.0	-		
		DVRP = 3.3 V, VEN = DVCC, IOH =	2.7	-		
		DVRP = 5.0 V, VEN = DVCC, IOH =	-	0.4		
Digital Low Level Output Voltage	Mou	DVRP = 5.0 V, VEN = DVCC, IOH =		0.6		
(B00-B13)	Vol	DVRP = 3.3 V, VEN = DVCC, IOH =		0.4		
		DVRP = 3.3 V, VEN = DVCC, IOH =		0.6		
Digital High Level Output Current	Іон	DVRP = 5.0 V, VEN ≥ 3.0 V	-	-4.0		
(B00-B13)	(SOURCE)	DVRP = 3.3 V, VEN ≥ 2.2 V		-	-4.0	mA
Digital Low Level Output Current	loL	DVRP = 5.0 V, VEN ≥ 3.0 V		-	4.0	
(B00-B13)	(SINK)	DVRP = 3.3 V, VEN ≥ 2.2 V	-	4.0		
High Output Leakage Current	IOUTLK _{HI}	Voe = Dgnd	+25°C	-5	5	nA
(B00-B13) <u>3</u> /			+125°C	-50	50	
Low Output Leakage Current		VOE = DGND	+25°C	-5	5	
(B00-B13) <u>3</u> /		+12		-50	50	

Notes:

- 1/ Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C.
- 2/ Not tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.
- 3/ These parameters for Tc = -55°C are guaranteed by design, characterization, or correlation to other test parameters.

Pin#	Signal	Definition	Pin#	Signal	Definition
1	Avcc	Analog Supply Voltage	21	B10	Digital Output 10
2	Dvcc	Digital Supply Voltage	22	B11	Digital Output 11
3	AD02	Multiplexer Address 02	23	B12	Digital Output 12
4	AD01	Multiplexer Address 01	24	B13	Digital Output 13
5	AD00	Multiplexer Address 00	25	EOC_H	End of Convert
6	CASE	Case Ground	26	BUSY_L	Busy
7	STCNV_H	Start Conversion	27	DRVN	Digital Output Low Reference Level
8	EN_H	Multiplexer Enable	28	DRVP	Digital Output High Reference Level
9	OE_H	Output Enable	29	DGND	Digital Supply Return
10	CLK	Clock Input	30	AGND	Analog Supply Return
11	B00	Digital Output 00	31	PREF	High Analog Reference Voltage
12	B01	Digital Output 01	32	AIN07	Analog Multiplexer Input 07
13	B02	Digital Output 02	33	AIN06	Analog Multiplexer Input 06
14	B03	Digital Output 03	34	AIN05	Analog Multiplexer Input 05
15	B04	Digital Output 04	35	AIN04	Analog Multiplexer Input 04
16	B05	Digital Output 05	36	AIN03	Analog Multiplexer Input 03
17	B06	Digital Output 06	37	AIN02	Analog Multiplexer Input 02
18	B07	Digital Output 07	38	AIN01	Analog Multiplexer Input 01
19	B08	Digital Output 08	39	AIN00	Analog Multiplexer Input 00
20	B09	Digital Output 09	40	NREF	Low Analog Reference Voltage

FIGURE 2: PACKAGE PIN-OUT AND SIGNAL DEFINITION

TRUTH TABLE (AIN00 – AIN07)

AD02	AD01	AD00	EN_H	"ON" CHANNEL
Х	X	Χ	L	NONE
L	L	L	Н	AIN00
L	L	Н	Н	AIN01
L	Н	L	Н	AIN02
L	Н	Н	Н	AIN03
Н	L	L	Н	AIN04
Н	L	Н	Н	AIN05
Н	Н	L	Н	AIN06
Н	Н	Н	Н	AIN07

FIGURE 3: TRUTH TABLE

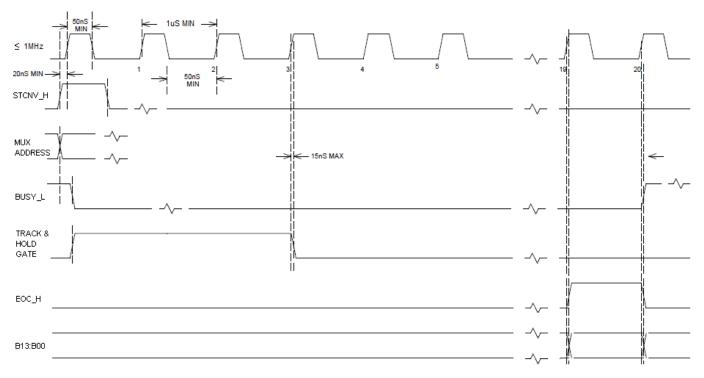
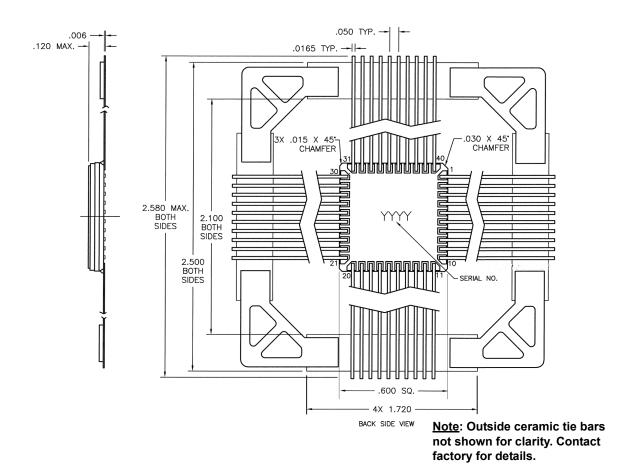



FIGURE 4: BASIC TIMING DIAGRAM

FIGURE 5: PACKAGE OUTLINE

ORDERING INFORMATION

Model	DLA SMD#	Screening	Package
RHD5958-7	-	Commercial Flow, +25°C testing only	
RHD5958-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	40-lead CQFP
RHD5958-201-1S 5962-1221101KXC		In accordance with DLA SMD	
RHD5958-901-1S	5962H1221101KXC	DLA SMD and Radiation Certification Pending	

EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

EXPORT WARNING:

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

PLAINVIEW, NEW YORK INTERNATIONAL NORTHEAST Toll Free: 800-THE-1553 Tel: 805-778-9229 Tel: 603-888-3975 Fax: 516-694-6715 Fax: 805-778-1980 Fax: 603-888-4585

SE AND MID-ATLANTIC WEST COAST CENTRAL Tel: 321-951-4164 Tel: 949-362-2260 Tel: 719-594-8017 Fax: 321-951-4254 Fax: 949-362-2266 Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

A passion for performance.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused