

Coreless Coil Current Transducer RH 100 .. 1000-S

For the electronic measurement of currents: AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 100 ... 1000 A$

Electrical data					
Primary nominal r.m.s. current		Туре			
I _{PN} (A)					
100 200 500 1000		RH 100-S RH 200-S RH 500-S RH 1000-S			
\mathbf{V}_{OUT}	Output voltage(r.m.s) @ $\pm I_{PN}$, $R_1 = 10 \text{ k}\Omega$, $T_{\Delta} = 25^{\circ}\text{C}$	4	V		
V _c	Supply voltage (± 5 %)	±15	V		
V _d	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn	> 2.5	kV		
Ic	Current consumption	15	mΑ		
R _{IS}	Isolation resistance@ 500 V DC	> 500	$M\Omega$		
R_{\perp}	Load resistance	≥ 100	$K\Omega$		

Accuracy-Dynamic performance data

$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity (0 ± I _{PN})	≤ ±0.5	% of I _{PN}
V _{OE}	Electrical offset voltage, T _A = 25°C	±5	mV
V _{OT}	Thermal drift of V _{OE}	$\leq \pm 0.3$	mV/K
TCe _G	Thermal drift of the gain (% of reading)	±0.03	%/K
t,	Response time @ 90% of I _P	1	μs
f	Frequency bandwidth (±3 dB)	20Hz	100KHz

General data

T _A T _S	Ambient operating temperature Ambient storage temperature	-10 +75 -15 +80	°C
m	Mass Min. internal creepage distance/clearance	45 ø20±0.5	g m m

Features

- No magnetic core
- Rogowski Coil principle
- · Highly accurate integration circuit
- Voltage output

Advantages

- Wide sensing range
- Wide frequency range
- Quick response
- No hysteresis error
- No insertion impedance
- Small size and lightweight

Applications

- Observing complicated current waveforms
- High speed and high current sensing such as IGBT
- Welding
- Power unit
- Electric power regulator
- Discharge tube
- Antenna
- Monitoring for irruptive current

Notes:

RH 100 .. 1000-S (in mm)

Terminal Pin Identification

1 · · · + Vcc 2 · · · - Vcc 3 · · · OUTPUT 4 · · · GND

Specifications subject to change without notice.