

RH1086M

0.5A and 1.5A Low Dropout Positive Adjustable Regulators

DESCRIPTION

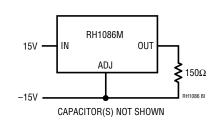
The RH1086M positive adjustable regulator is designed to provide 0.5A for the H package and 1.5A for the K package with higher efficiency than currently available devices. All internal circuitry is designed to operate down to 1V inputoutput differential and the dropout voltage is fully specified as a function of load current. Dropout is guaranteed at a maximum of 1.5V at maximum output current, decreasing at lower load currents. On-chip trimming adjusts the output voltage to 1%. Current limit is also trimmed, minimizing the stress on both the regulator and power source circuitry under overload conditions.

The RH1086M is pin compatible with older 3-terminal regulators. A 10μ F output capacitor is required on this new device. However, this is usually included in most regulator designs.

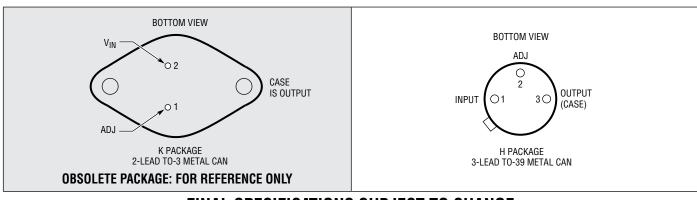
The wafer lots are processed to Analog Devices' in-house Class S flow-to-yield circuits usable in stringent military applications.

ABSOLUTE MAXIMUM RATINGS

(Note 1)


Power Dissipation	Internally Limited
Input-to-Output Voltage Differential	25V
Operating Junction Temperature Rang	е
Control Section	– 55°C to 150°C
Power Transistor	55°C to 200°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec).	300°C

PRECONDITIONING


100% Thermal Limit Burn-In

All registered trademarks and trademarks are the property of their respective owners.

PACKAGE INFORMATION

FINAL SPECIFICATIONS SUBJECT TO CHANGE

Note: For ordering information contact Analog Devices.

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation) Device is characterized at the TID levels below. Device is production tested at 100kRad(si).

PARAMETER	CONDITIONS	NOTES	MIN	(_A = 25° TYP	C Max	SUB- Group	–55°C Min	≤ T _A ≤ ' TYP	125°C Max	SUB- Group	UNITS
Reference Voltage	$I_{OUT} = 10 \text{mA}, (V_{IN} - V_{OUT}) = 3 \text{V} (\text{K})$		1.238		1.262	1					V
	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 25V \end{array}$	6	1.225		1.270		1.225		1.270	2,3	V
Line Regulation	$I_{LOAD} = 10 \text{mA}, \ 1.5 \text{V} \le (\text{V}_{\text{IN}} - \text{V}_{\text{OUT}}) \le 15 \text{V}$	2, 3			0.2	1			0.2	2,3	%
Load Regulation	$(V_{IN} - V_{OUT}) = 3V,$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$	2, 3, 6			0.3	1			0.4	2,3	%
Dropout Voltage	$\Delta V_{\text{REF}} = 1\%, I_{\text{OUT}} = 1.5\text{A (K)}$ $\Delta V_{\text{REF}} = 1\%, I_{\text{OUT}} = 0.5\text{A (H)}$	4 4			1.5 1.25	1 1			1.5 1.25	2,3 2,3	V V
Current Limit	$(V_{IN} - V_{OUT}) = 5V (K)$ $(V_{IN} - V_{OUT}) = 5V (H)$ $(V_{IN} - V_{OUT}) = 25V (K)$ $(V_{IN} - V_{OUT}) = 25V (H)$		1.5 0.5 0.05 0.020			1 1 1 1	1.5 0.5 0.05 0.020			2,3 2,3 2,3 2,3 2,3	A A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$				10	1			10	2,3	mA
Thermal Regulation	T _A = 25°C, 30ms Pulse				0.04	4					%/W
Ripple Rejection	$ f = 120Hz, C_{ADJ} = 25\mu F, C_{OUT} = 25\mu F Tantalum, I_{OUT} = I_{FULL LOAD}, (V_{IN} - V_{OUT}) = 3V $	6	60			4	60			5,6	dB
Adjust Pin Current	$T_J = 25^{\circ}C$			55	120	1			120	2,3	μA
Adjust Pin Current Change	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	6			5	1			5	2,3	μA
Temperature Stability				0.5				0.5			%
Long Term Stability	T _A = 125°C, 1000 Hours	5		0.3							%
RMS Output Noise (% of V _{OUT})	$10Hz \le f \le 10kHz$			0.003							%
Thermal Resistance Junction-to-Case	Control Circuitry (K) Control Circuitry (H) Power Transistor (K) Power Transistor (H)	5 5 5 5		1.7 15.0 4.0 20.0							°C/W °C/W °C/W °C/W

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) $T_A = 25^{\circ}C$, unless otherwise noted. Device is characterized at the TID levels below. Device is production tested at 100kRad(si).

PARAMETER	CONDITIONS	10KRA Min	ND (Si) Max	20KRA Min	ND (Si) Max	50KRA Min	ND (Si) Max	100KR Min	AD (Si) Max	200KR Min	AD (Si) Max	UNITS
Reference Voltage	$I_{OUT} = 10 \text{mA} (V_{IN} - V_{OUT}) = 3 \text{V} (\text{K})$	1.234	1.262	1.230	1.262	1.225	1.262	1.220	1.262	1.205	1.262	V
(Note 6)	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD} \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$	1.220	1.275	1.219	1.275	1.215	1.275	1.210	1.275	1.20	1.275	V
Line Regulation (Notes 2, 3)	$\begin{array}{l} I_{OUT} = 10 mA \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$		0.2		0.21		0.23		0.25		0.3	%
Load Regulation (Notes 2, 3, 6)	$(V_{IN} - V_{OUT}) = 3V$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$		0.3		0.3		0.3		0.3		0.3	%
Dropout Voltage (Note 4)	$\Delta V_{REF} = 1\%$, $I_{OUT} = 1.5A$ (K) $\Delta V_{REF} = 1\%$, $I_{OUT} = 0.5A$ (H)		1.5 1.25		1.51 1.26		1.52 1.27		1.55 1.29		1.575 1.32	V V
Current Limit		1.5 0.05 0.5 0.020		1.5 0.049 0.5 0.019		1.5 0.048 0.5 0.019		1.5 0.047 0.5 0.018		1.5 0.045 0.5 0.017		A A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$		10		10		10		10		10	mA
Adjust Pin Current			120		120		120		120		120	μA
Adjust Pin Current Change (Note 6)	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD} \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$		5		5		5		5		5	μA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing.

Note 3: Line and load regulation are guaranteed up to the maximum power dissipation of 15W for RH1086MK and 3W for the RH1086MH. Power dissipation is determined by the input/output differential voltage and the output current. Guaranteed maximum power dissipation will not be available over the full input/output voltage range.

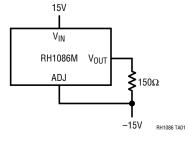
Note 4: Dropout voltage is specified over the full output current range of the device. Test points and limits are shown on the Dropout Voltage curve in the LT®1086 data sheet.

Note 5: Guaranteed by design, characterization, or correlation to other tested parameters.

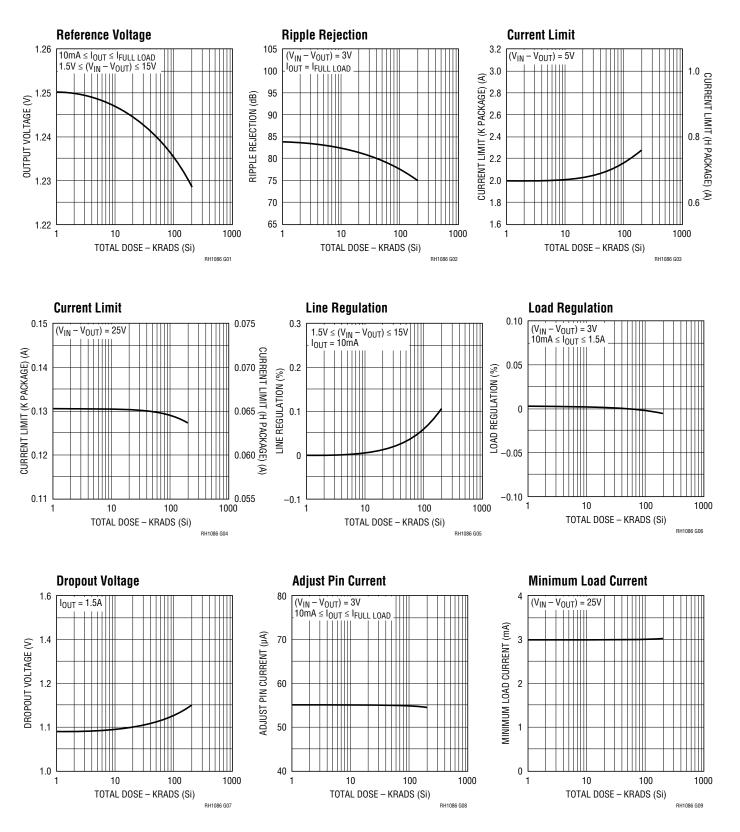
Note 6: IFULL LOAD is defined in the Current Limit curves in the standard data sheet. For compliance with 883 revision C current density specifications, the RH1086MK is derated to 1A.

TABLE 2: ELECTRICAL TEST REQUIREMENTS

MIL-PRF-38535 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements	1*, 2, 3, 4, 5, 6
Group A Test Requirements	1, 2, 3, 4, 5, 6
Group C End Point Electrical Parameters	1
Group D End Point Electrical Parameters	1
Group E End Point Electrical Parameters	1
*PDA applies to subgroup 1. See PDA Test Notes.	-


PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.


Analog Devices, Inc., reserves the right to test to tighter limits than those given.

ihh yyı uμ

TOTAL DOSE BIAS CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Rev.F

REVISION HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
В	10/10	Updated Reference Voltage vs Postirradiation Limits in Table 1A: Electrical Characteristics	3
С	4/11	Updated Dropout Voltage in Table 1 and Table 1A	2, 3
D	1/19	Obsolete K Package	1
Е	7/23	Updated art title in the Electrical Characteristics section	2, 3
F	7/24	Updated Table 2: Electrical Test Regirements	4

