RGC80TSX8R

1800V 40A Field Stop Trench IGBT

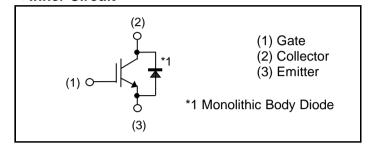
Datasheet

V _{CES}	1800V
I _{C (100°C)}	40A
V _{CE(sat) (Typ.)}	2.2V
P_D	535W

Outline TO-247N

Features

- 1) Low Collector Emitter Saturation Voltage
- 2) High Speed Switching
- 3) Low Switching Loss & Soft Switching
- 4) Monolithic Body Diode


with Low Forward Voltage

5) Pb - free Lead Plating; RoHS Compliant

Application

Voltage - resonance Inverter ΙH

●Inner Circuit

Packaging Specifications

	Packaging	Tube			
	Reel Size (mm)	-			
Type	Tape Width (mm)	-			
Туре	Basic Ordering Unit (pcs)	450			
	Packing Code	C11			
	Marking	RGC80TSX8R			

● Absolute Maximum Ratings (at T_C = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Collector - Emitter Voltage		V _{CES}	1800	V
Gate - Emitter Voltage		V _{GES}	±30	V
Callagton Cummant	T _C = 25°C	I _C	80	Α
Collector Current	T _C = 100°C	I _C	40	Α
Pulsed Collector Current	I _{CP} *1	120	Α	
D: 1 5 10 1	T _C = 25°C	I _F	80	Α
Diode Forward Current	T _C = 100°C	l _F	40	Α
Diode Pulsed Forward Current		I _{FP} *1	80	Α
$T_C = 25^{\circ}C$		P _D	535	W
Power Dissipation	T _C = 100°C	P _D	267	W
Operating Junction Temperature		T _j	-40 to +175	°C
Storage Temperature		T _{stg}	-55 to +175	°C

^{*1} Pulse width limited by T_{imax.}

●Thermal Resistance

Parameter	Symbol	Values			Unit
raiailielei	Symbol	Min.	Тур.	Max.	Offic
Thermal Resistance IGBT Junction - Case	$R_{\theta(j-c)}$	-	-	0.28	°C/W
Thermal Resistance Diode Junction - Case	$R_{\theta(j-c)}$	-	-	0.28	°C/W

●IGBT Electrical Characteristics (at T_i = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	oditions		Values		
r arameter	Symbol Conditions -		Min.	Тур.	Max.	Unit	
Collector - Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu A, V_{GE} = 0 V$	1800	ı	ı	V	
Collector Cut - off Current	I _{CES}	V _{CE} = 1860V, V _{GE} = 0V	ı	ı	10	μΑ	
Gate - Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 30V, V_{CE} = 0V$	ı	ı	±200	nA	
Gate - Emitter Threshold Voltage	$V_{GE(th)}$	$V_{CE} = 5V, I_{C} = 120.7 \text{mA}$	5.0	6.0	7.0	V	
Collector - Emitter Saturation Voltage	V _{CE(sat)}	$I_{C} = 40A, V_{GE} = 15V$ $T_{j} = 25^{\circ}C$ $T_{j} = 175^{\circ}C$		2.2 2.9	5.0 -	V	

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Values			Unit	
- Farameter	Symbol	Symbol		Тур.	Max.	Offic	
Input Capacitance	C _{ies}	$V_{CE} = 30V$	-	9550	-		
Output Capacitance	C _{oes}	$V_{GE} = 0V$	-	115	-	pF	
Reverse transfer Capacitance	C _{res}	f = 1MHz	-	102	-		
Total Gate Charge	Q_g	V _{CE} = 600V	-	468	-		
Gate - Emitter Charge	Q_ge	I _C = 40A	-	93	-	nC	
Gate - Collector Charge	Q_{gc}	V _{GE} = 15V	-	155	-		
Turn - on Delay Time	t _{d(on)}	$I_C = 40A$, $V_{CC} = 600V$, $V_{GE} = 15V$, $R_G = 10\Omega$, $T_j = 25^{\circ}C$ Inductive Load *E _{on} include diode reverse recovery	-	80	-		
Rise Time	t _r		-	53	-	ns	
Turn - off Delay Time	t _{d(off)}		-	565	-		
Fall Time	t _f		-	55	-		
Turn - on Switching Loss	E _{on}		-	1.85	-		
Turn - off Switching Loss	E _{off}		-	1.60	2.15	mJ	
Turn - on Delay Time	t _{d(on)}		-	68	-		
Rise Time	t _r	$I_C = 40A, V_{CC} = 600V,$ $V_{GE} = 15V, R_G = 10\Omega,$ $T_i = 175^{\circ}C$	-	52	-	20	
Turn - off Delay Time	t _{d(off)}		-	670	-	ns	
Fall Time	t _f	Inductive Load	-	55	-		
Turn - on Switching Loss	E _{on}	*E _{on} include diode reverse recovery	-	1.95	-	m l	
Turn - off Switching Loss	E _{off}		-	2.00	-	mJ	

●FRD Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Doromotor	Symbol	Conditions	Values			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
		$I_F = 40A, V_{GE} = 0V$				
Diode Forward Voltage	V_{F}	T _j = 25°C	-	1.8	2.3	V
		T _j = 175°C	-	2.4	-	

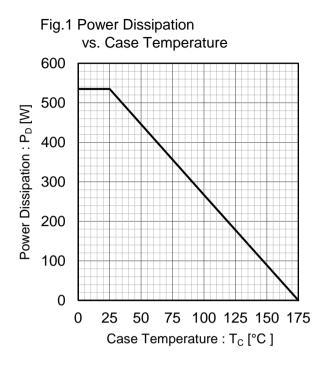


Fig.2 Collector Current vs. Case Temperature 90 80 70 Collector Current : Ic [A] 60 50 40 30 20 T_j ≤ 175°C V_{GE} ≥ 15V 10 0 25 50 75 100 125 150 175 Case Temperature : T_C [°C]

Fig.3 Forward Bias Safe Operating Area 1000 100 Collector Current : I_C [A] 10µs 100µs 10 1 0.1 $T_{\rm C} = 25^{\rm o}{\rm C}$ Single Pulse 0.01 10 100 1000 10000 Collector To Emitter Voltage: V_{CE} [V]

Fig.4 Reverse Bias Safe Operating Area

Fig.5 Typical Output Characteristics

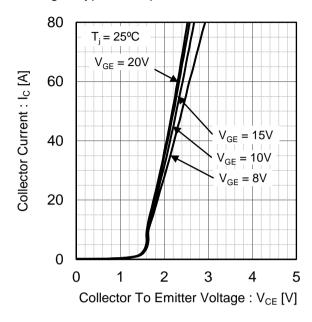


Fig.6 Typical Output Characteristics

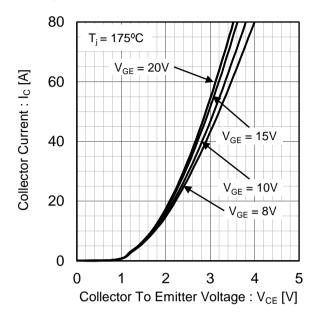


Fig.7 Typical Transfer Characteristics

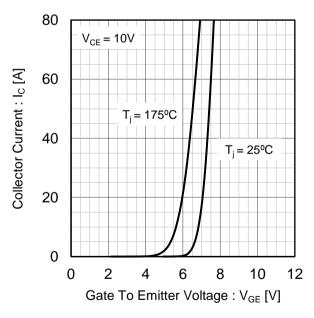
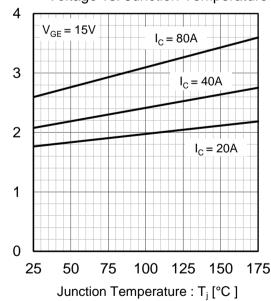



Fig.8 Typical Collector to Emitter Saturation Voltage vs. Junction Temperature

Collector To Emitter Saturation

Voltage: V_{CE(sat)} [V]

Fig.9 Typical Collector to Emitter Saturation Voltage vs. Gate to Emitter Voltage

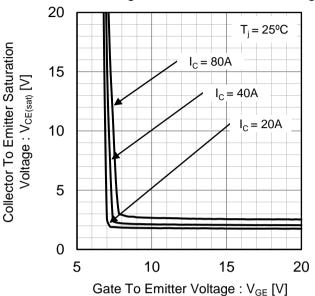
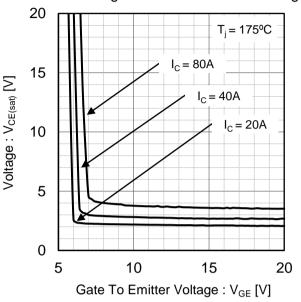
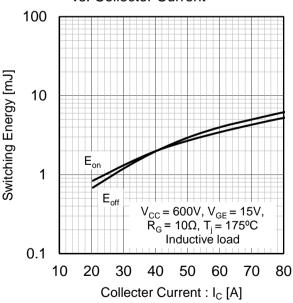



Fig.10 Typical Collector to Emitter Saturation Voltage vs. Gate to Emitter Voltage



vs. Collector Current 1000 $t_{d(off)}$ 100

Fig.11 Typical Switching Time

Switching Time [ns] 10 V_{CC} = 600V, V_{GE} = 15V, R_G = 10 Ω , T_j = 175°C Inductive load 1 30 10 20 40 50 60 70 80 Collecter Current : I_C [A]

Fig.12 Typical Switching Energy Losses vs. Collector Current

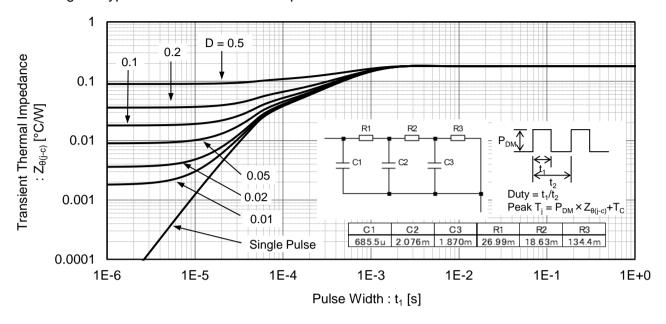

Collector To Emitter Saturation

Fig.13 Typical Capacitance vs. Collector to Emitter Voltage 100000 C_{ies} 10000 Capacitance [pF] $\mathsf{C}_{\mathsf{res}}$ Coes 100 f = 1MHz $V_{GE} = 0V$ $T_j = 25^{\circ}C$ 10 0.01 0.1 1 10 100 Collector To Emitter Voltage : V_{CE} [V]

Fig.14 Typical Gate Charge

Fig.15 Typical Diode Forward Current vs. Forward Voltage 80 Forward Current : I_F [A] 60 $T_i = 25^{\circ}C$ $T_i = 175^{\circ}C$ 40 20 $V_{GE} = 0V$ 0 2 5 0 3 4 Forward Voltage: V_F [V]

Fig.16 Typical Transient Thermal Impedance

●Inductive Load Switching Circuit and Waveform

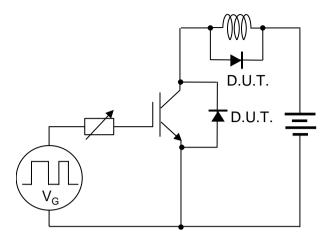


Fig.17 Inductive Load Circuit

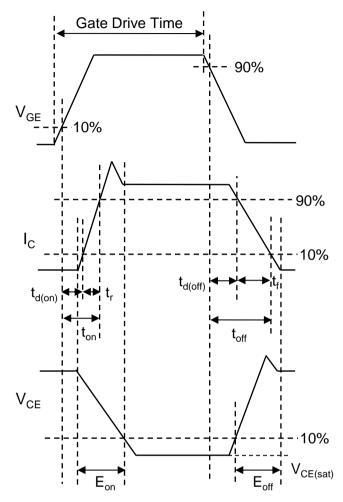


Fig.18 Inductive Load Waveform

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

RGC80TSX8R - Web Page

Part Number	RGC80TSX8R
Package	TO-247N
Unit Quantity	450
Minimum Package Quantity	30
Packing Type	Tube
Constitution Materials List	inquiry
RoHS	Yes