

RFVC1839

12.44GHz to 13.76GHz MMIC VCO with Fo/2 and Fo/4 Outputs

RFMD's RFVC1839 is a 5V InGaP MMIC VCO with an integrated frequency divider providing additional Fo/2 and Fo/4 outputs. With an Fo frequency range of 12.44GHz to 13.76GHz its monolithic structure provides excellent temperature, shock, and vibration performance. Output power (Fo) is +8dBm and is flat across the tuning voltage range of 1.5V to 14.5V. Phase noise is typically -112dBc/Hz at 100kHz offset. The device operates from a low supply current of 270mA which can be further reduced to 210mA by disabling the divider functions if not required. The RFVC1839 is available in a low cost 5mm x 5mm surface mount plastic overmolded QFN outline.

Functional Block Diagram

Ordering Information

RFVC1839S2	Sample bag with 2 pieces
RFVC1839SB	Sample bag with 5 pieces
RFVC1839SQ	Bag with 25 pieces
RFVC1839SR	Bag with 100 pieces
RFVC1839TR7	7" Reel with 750 pieces
RFVC1839PCBA-410	Evaluation Board

Package: Plastic QFN, 32-pin, 5mm x 5mm x 0.85mm

Features

- Multiple Frequency Outputs
 - Fo: 12.44GHz to 13.76GHz
 - Fo/2: 6.22GHz to 6.88GHz
 - Fo/4: 3.11GHz to 3.44GHz
- No External Resonator Required
- Integrated Frequency Divider
- Phase Noise: -112dBc/Hz at 100kHz Offset
- Flat Output Power Over Frequency Tuning Range 1.5V to 14.5V
 - Fo: 8dBm
 - Fo/2: 8dBm
 - Fo/4: -2dBm
- Low Power Consumption
 - 5V/270mA (Divider On)
 - 5V/210mA (Divider Off)

32-Lead 5mm x 5mm Plastic Overmolded QFN

DS140428

Applications

- Point-to-Point Radio
- Point-to-Multipoint Radio
- Satellite Communications
- Test Equipment
- Military
- Aerospace

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Absolute Maximum Ratings

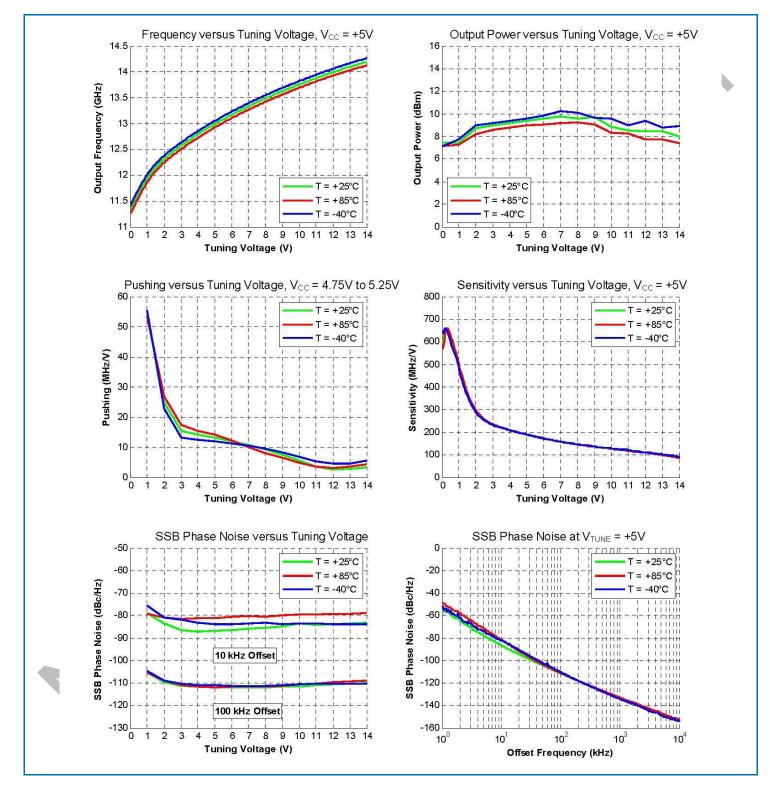
Parameter	Rating	Unit
V _{CC_OSC} , V _{CC_DIG}	+5.5	V
V _{TUNE}	0 to +15	V
Junction Temperature (T _J)	135	°C
Continuous P_{DISS} ($T_A = 85^{\circ}C$) (derate 37mW/°C above $T_A = 85^{\circ}C$)	1.65	W
Junction to Case, Thermal Resistance $(R_{\theta(j-a)})$	30	°C/W
Storage Temperature	-65 to +150	°C
Operating Temperature	-40 to +85	°C
ESD Sensitivity (HBM)	Class 1A	

RFMD Green: RoHS compliant per EU Directive 2011/65/EU, halogen free per IEC 61249-2-21, <1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony solder.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

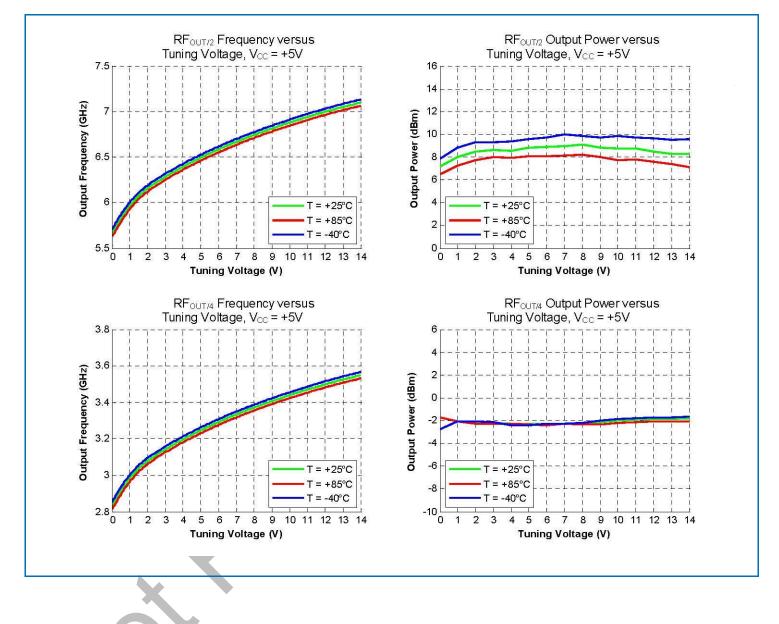

Devenuetor	Specification		Unit	Condition	
Parameter	Min	Тур	Max	Unit	Condition
Electrical Specifications					$V_{CC} = 5V, T_A = +25^{\circ}C$
Operating Frequency					
Fo	12.44		13.76	GHz	
Fo/2	6.22		6.88	GHz	
Fo/4	3.11		3.44	GHz	
Output Power					
Fo		8		dBm	
Fo/2		8		dBm	
Fo/4		-2		dBm	
SSB Phase Noise					
10kHz offset at RF _{OUT}		-87		dBc/Hz	$V_{TUNE} = 5V$
100kHz offset at RF _{out}		-112		dBc/Hz	
Tune Voltage	1.5		14.5	V	
Supply Current					
V _{cc_osc}	Ť	210		mA	
V _{CC_DIG}		60		mA	
Tune Port Leakage Current		10		μA	
Output Return Loss		7		dB	

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Sp	Specification		Unit	Condition	
Farameter	Min	Тур	Max	Unit		
Electrical Specifications (continued)					V _{CC} = 5V, T _A = +25°C	
Harmonics/Sub-harmonics					Measured with RF probes at package, not at SMA connections on EVB	
1/2		40		dBc		
3/2		35		dBc	•	
2 nd		8.5		dBc		
3 rd		18		dBc		
Pulling (into a 2.0:1 VSWR)		5		MHz pp		
Pushing		30		MHz/V		
Frequency Drift Rate		1.1		MHz/°C		

3 of 10

Typical Performance



RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140428

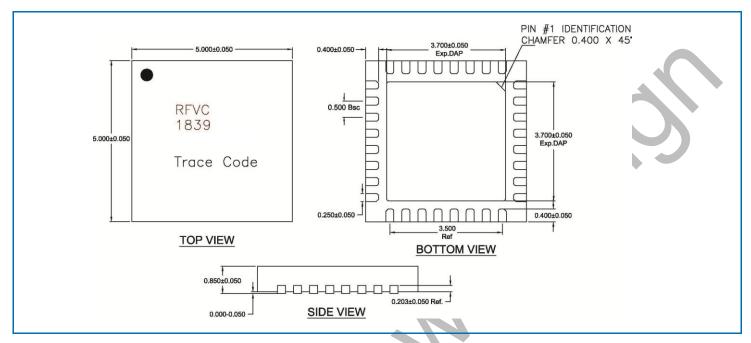
For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical Performance (continued)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140428

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

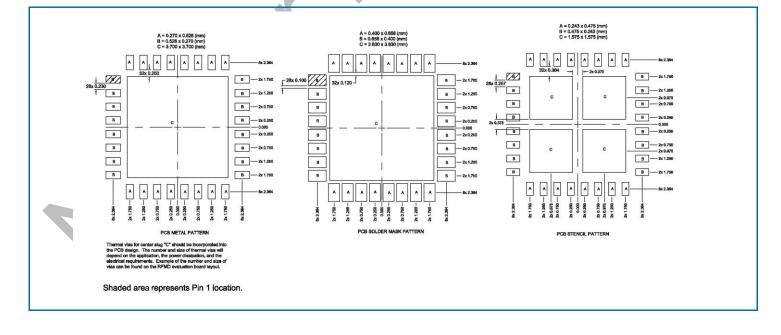

Pin Names and Descriptions

Pin	Name	Description	Interface Schematic
1-3	N/C	No internal connection.	
4	RFOUT/4	VCO RF output at Fo/4. Externally DC-blocked.	° RFOUT/4
5	GND	Connect to PCB ground.	
6	VCC_DIG	Supply voltage input for the integrated frequency divider. Typical +5 V. Ground this pin to disable digital divider and reduce current consumption by 60mA.	VCC_DIG
7-10	N/C	No internal connection.	
11	GND	Connect to PCB ground.	See Pin 5 interface schematic
12	RFOUT/2	VCO RF output at Fo/2. Internally DC-blocked.	
13-18	N/C	No internal connection.	
19	RFOUT	VCO RF output at Fo. Internally DC-blocked.	RFOUT •
20	N/C	No internal connection.	
21	VCC_OSC	Supply voltage input for the VCO. Typical +5V.	

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS140428 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

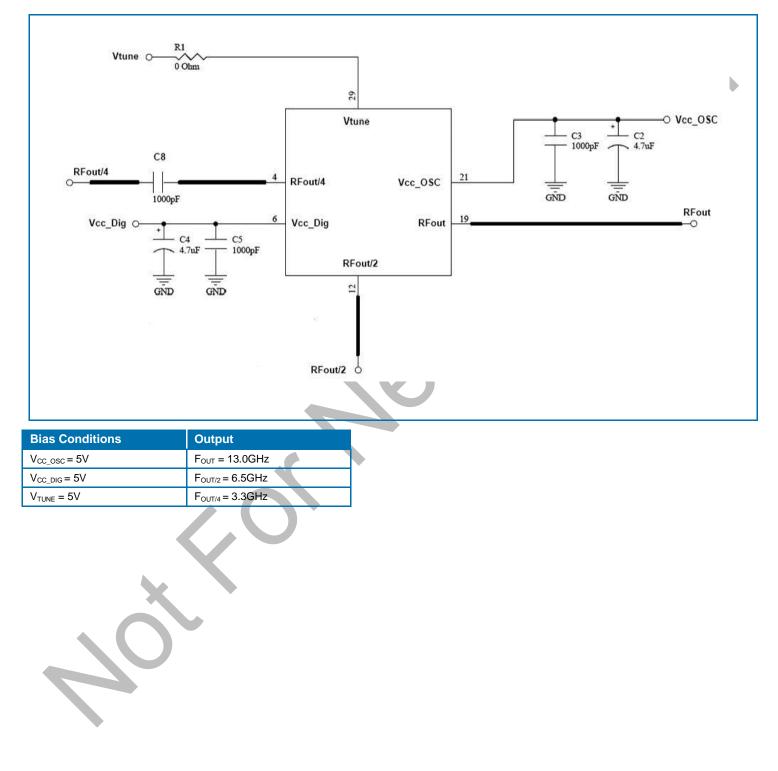
Pin	Name	Description	Interface Schematic
22-28	N/C	No internal connection.	
29	VTUNE	VCO control voltage input.	
30-32	N/C	No internal connection.	
PKG BASE	GND	Connect to PCB ground.	See Pin 5 interface schematic

Pin Names and Descriptions (continued)

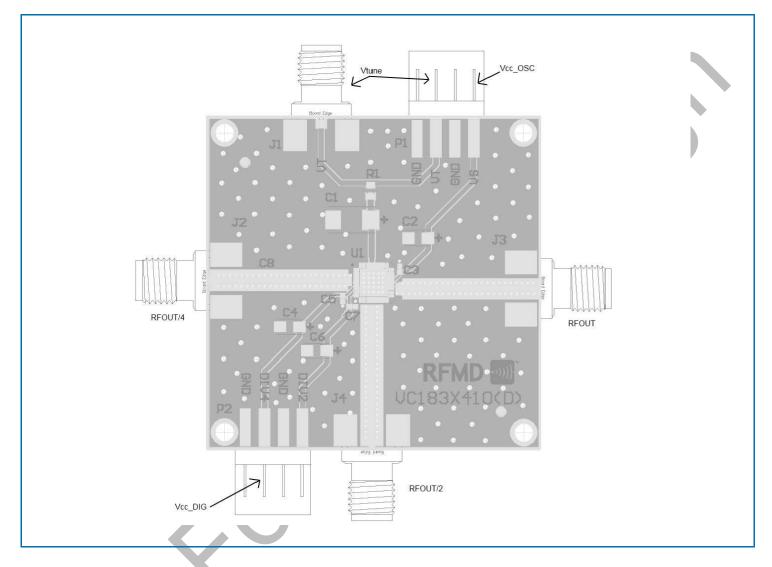


Package Drawing (all dimensions in mm)

Notes:


- 1. Dimensions are for reference only.
- 2. Package body material: Plastic.
- 3. Lead and paddle plating: 8µm minimum of Sn over Cu leadframe.

Recommended PCB Layout


DS140428

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Sample Application Circuit Schematic

Evaluation Board Layout

Evaluation Board Bill of Materials (BOM)

Item	Description
U1	RFVC1839 VCO
C3, C5, C7, C8	1000pF Capacitor, 0402 Package
C2, C4, C6	4.7µF Tantalum Capacitor
C1	68µF Tantalum Capacitor
R1	0Ω Resistor, 0603 Package
P1, P2	4-PIN DC connector
J1, J2, J3, J4	PCB mount SMA connector
РСВ	VC183x410(D)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140428

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.