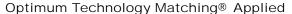


Preliminary

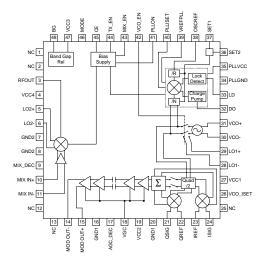
RF2668

CDMA/FM TRANSMIT MODULATOR, IF AGC, AND UPCONVERTER WITH INTEGRATED PLL

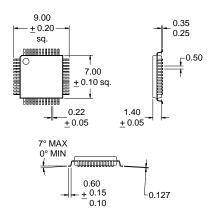

Typical Applications

- CDMA/FM Cellular and PCS Systems
- Tri-Mode/Dual-Band CDMA Applications
- W-CDMA Systems

- Wireless Local Loop Systems
- Spread-Spectrum Cordless Phones
- High Speed Data Modems


Product Description

The RF2668 is an integrated complete quadrature modulator, IF AGC amplifier, upconverter, and PLL, designed for the transmit section of dual-mode CDMA/FM cellular, PCS, and tri-mode CDMA applications. It is designed to modulate baseband I and Q signals, amplify the resulting IF signals while providing 95dB of gain control range, and perform the final upconversion to UHF. Noise Figure, IP $_3$, and other specifications are designed to be compatible with the IS-98 Interim Standard. This circuit is designed as part of RFMD's newest CDMA chipset, which also includes the RF2667 CDMA/FM Receive IF AGC and Demodulator. The IC is manufactured on an advanced 18GHz F $_T$ Silicon Bipolar process, and is supplied in a 48-lead plastic LQFP package.



☐ Si BJT ☐ GaAs HBT ☐ GaAs MESFET

✓ Si Bi-CMOS ☐ SiGe HBT ☐ Si CMOS

Functional Block Diagram

Package Style: LQFP-48_7x7

Features

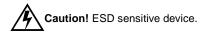
- Supports Tri-Mode Operation
- Digitally Controlled Power Down Modes
- 2.7V to 3.3V Operation
- Digital First LO Quadrature Divider
- Double-Balanced UHF Upconvert Mixer
- IF AGC Amp with 95dB Gain Control

Ordering Information

RF2668 CDMA/FM Transmit Modulator, IF AGC, and

Upconverter with Integrated PLL

RF2668 PCBA-PCS/CEL Fully Assembled Evaluation Boards
RF2668 PCBA-DO Fully Assembled Evaluation Boards


 RF Micro Devices, Inc.
 Tel (336) 664 1233

 7625 Thorndike Road
 Fax (336) 664 0454

 Greensboro, NC 27409, USA
 http://www.rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit		
Supply Voltage	-0.5 to +5	V_{DC}		
Power Down Voltage (V _{PD})	-0.5 to V _{CC} +0.7	V		
I and Q Levels, per pin	1	V_{PP}		
LO1 Level, balanced	+6	dBm		
Operating Ambient Temperature	-40 to +85	°C		
Storage Temperature	-40 to +150	°C		

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Doromotor	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
I/Q Modulator & AGC					T=25 °C, V _{CC} =3.0 V, Z _{LOAD} =200Ω, LO1=-10dBm @ 260MHz, IF=130MHz, I SIG=Q SIG=300mV _{PP} ,	
I/Q Input Frequency Range		0 to 20		MHz	RF Output externally matched Balanced	
I/Q Input Impedance		80		kΩ	Balanced	
I/Q Input Reference Level		1.3		V _{DC}	Per Pin	
· ·		1.5	800	MHz	rei riii	
LO1/FM Frequency Range LO1/FM Input Level	0 -15	-10	-5	dBm		
LO1/FM Input Level	-15	200	-5	Ω	Balanced	
Sideband Suppression	35	40		dBc	I/Q Amplitude adjusted to within ±20mV	
Sidebarid Suppression	33	27		dBc	Unadjusted	
Carrier Suppression	40	50		dBc	I/Q DC Offset adjusted to within ±20 mV	
Carrier Suppression	40	30		dBc	Unadjusted	
Max Output, FM Mode	+2.5	+5		dBm	V _{GC} =2.4V _{DC} , T=-20°C to +85°C	
Max Output, CDMA Mode	-3	0		dBm	$V_{GC} = 2.4 V_{DC}$, $T = 20 ^{\circ} C$ to +85 $^{\circ} C$,	
Wax Output, CDIVIA Widde	-5	0		ubiii	IS-95A CDMA Modulation	
	-2	0		dBm	ISIG=QSIQ=300mVpp@100kHz	
Min Output, CDMA Mode	_	-95	-89	dBm	V _{GC} =0.3V _{DC} , T=-20°C to +85°C,	
Will Galpat, Oblin Wood			00	GDIII	IS-95A CDMA Modulation	
Output Power Accuracy	-3		+3	dB	T=-20 to +85 °C, Ref=25 °C	
	-2		+2	dB	1.4V <gc<2.5< td=""></gc<2.5<>	
Adjacent Channel Power Rejec-	_	-60		dBc	IS-95A CDMA Modulation	
tion @ 885kHz					$P_{OUT} = -5dBm$	
Adjacent Channel Power Rejec-		-69		dBc	IS-95A CDMA Modulation	
tion @ 1.98MHz					$P_{OUT} = -5dBm$	
Output Noise Power		-117	-111	dBm/Hz	P _{OUT} = -1 dBm, T=-20 °C to +85 °C	
Output Impedance		200		Ω	Balanced	
Current Consumption		40		mA	I/Q modulator and AGC only.	

5-72 Rev B4 010423

Win	Parameter	Specification		Unit	Condition	
Use December Company Compan	Parameter	Min.	Тур.	Max.	Unit	Condition
Seneral Finput Impedance 200 400 MHz Single Ended	UHF Upconverter					Output externally matched
Finput Frequency Range	<u> </u>					
Finput Frequency Range			200		Ω	Balanced
LO2 Input Level -6 -3 0 0 dBm		0		400		
LOZ Input Level			50			Single Ended
LO2 Input Frequency Range RF to LO2 Isolation LO Input VSWR Current Consumption 24		-6	-3	0	dBm	
RF to LO2 Isolation				2.5	GHz	
LO Input VSWR 24 mA 50Ω Current Consumption 24 mA UHF upconverter only. Cellular -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure (SSB) 15 dB RF _{OUT} =830MHz Output IP3 +13 dBm P _N =15dBm per tone, 200kHz cone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF _{OUT} = 830MHz W-CDMA Conversion Gain -1.5 dB RF _{OUT} = 930MHz W-CDMA TBD dB RF _{OUT} = 1950MHz Output IP3 10 dB P _N =15dBm per tone, 200kHz tone separation, RF _{OUT} =1950MHz, LO2=1570MHz, 23dBm RF Output VSWR <2:1			30		dB	
Current Consumption 24 mA UHF upconverter only. Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz RF _{OUT} =830MHz Conversion Gain -1.5 15 dBm RF _{OUT} =830MHz RF _{OUT} =830MHz -1.5 dBm per tone, 200Hz tone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF Output VSWR -2:1 dB RF _{OUT} =1950MHz W-CDMA Conversion Gain -1.5 dB RF _{OUT} =1950MHz Output IP3 10 dBm P _{IN} =15dBm per tone, 200Hz tone separation, RF _{OUT} =1950MHz, 200Hz tone separation, RF _{OUT} =1950MHz, 3chematic Dual Output Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz RF _{OUT} =830MHz Noise Figure 15 dBm RF _{OUT} =830MHz RF _{OUT} =830MHz RF _{OUT} =830MHz 200Hz tone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF _{OUT} =830MHz PCS Conversion Gain -1.5 -1.0 dB RF _{OUT} =830MHz RF _{OUT} =830MHz PCS Conversion Gain -1.5 -1.0 dB RF _{OUT} =1880MHz RF _{OUT} =1880MHz PCS Conversion Gain -1.5 -1.0 dB RF			<2:1			50Ω
Celular Conversion Gain -1.5 -0.5 dB dB dB mode of the procession of the processio					mA	UHF upconverter only.
Noise Figure (SSB)						·
Noise Figure (SSB)	Conversion Gain	-1.5	-0.5		dB	RF _{OUT} =830MHz
Output IP3 +13 dBm 200 kHz from separation, RF _{OUT} =830MHz, LO2=960MHz @ -3dBm RF _{OUT} =830MHz, LO2=960MHz @ -3dBm RF _{OUT} =830MHz W-CDMA Conversion Gain Noise Figure Output IP3 1-1.5 dB B RF _{OUT} =1950MHz RF _{OUT} =1950MHz RF Output VSWR Protection Gain Noise Figure Output USWR -2:1 dB RF _{OUT} =1950MHz, LO2=1570MHz, 2-3dBm RF _{OUT} =1950MHz, LO2=1570MHz, 2-3dBm RF _{OUT} =1950MHz, See note on eval board schematic. Dual Output Cellular Conversion Gain Noise Figure Output IP3 -1.5 -0.5 dB RF _{OUT} =830MHz RF _{OUT} =830MHz RF _{OUT} =830MHz RF Output VSWR Protection Gain Noise Figure Output IP3 -1.5 -1.0 dB RF _{OUT} =830MHz RF _{OUT} =830MHz RF Output VSWR RF Output VSWR Protection Gain Noise Figure Displayed Protection Gain Noise Figure Displayed RF _{OUT} =830MHz RF _{OUT} =830MHz RF _{OUT} =830MHz RF _{OUT} =830MHz RCO Conversion Gain Noise Figure Displayed Protection Gain RF _{OUT} =180MHz RF _{OUT} =	Noise Figure (SSB)		15		dB	
RF Output VSWR -2:1	= : :					
RF Output VSWR	Output ii o		113		d d d d	
RF Output VSWR September RFOUT = 830MHz						
W-CDMA	RE Output VSWR		∠ 2·1			
Conversion Gain -1.5 dB RF _{OUT} =1950MHz Noise Figure 10 dB dB H _{IN} =-15dBm per tone, 200kHz cone separation, RF _{OUT} =1950MHz, LO2=1570MHz @-3dBm RF _{OUT} =1950MHz, LO2=1570MHz @-3dBm RF _{OUT} =1950MHz. See note on eval board schematic. Dual Output Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dB RF _{OUT} =830MHz Output IP3 12.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF Output VSWR <1.5:1	·		\2.1			1(1 00) = 030 WHZ
Noise Figure Output IP3			1.5		٩D	DE _1050MU-7
Output IP3 10 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =1950MHz, LO2=1570MHz @-3dBm RF _{OUT} =1950MHz. See note on eval board schematic. Dual Output Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dBm RF _{OUT} =830MHz Output IP3 12.5 dBm RF _{OUT} =830MHz RF Output VSWR <1.5:1						KF _{OUT} = 1930WHZ
RF Output VSWR						D. A.F. dDeep man tage
RF Output VSWR < 2:1	Output IP3		10		aBm	
RF Output VSWR						
Dual Output Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dB RF _{OUT} =830MHz Output IP3 12.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz @-3dBm RF _{OUT} =830MHz RF Output VSWR <1.5:1	DE Outsid MOMB		0.4			
Dual Output Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dB RF _{OUT} =830MHz Output IP3 12.5 dBm PIN=-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz @-3dBm RF _{OUT} =830MHz RF Output VSWR <1.5:1	RF Output VSVVR		<2:1			
Cellular Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dB RF _{OUT} =830MHz Output IP3 12.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF Output VSWR <1.5:1	Dual Outrut					scnematic.
Conversion Gain -1.5 -0.5 dB RF _{OUT} =830MHz Noise Figure 15 dB RF _{OUT} =830MHz Output IP3 12.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz@-3dBm RF _{OUT} =830MHz RF Output VSWR <1.5:1	_					
Noise Figure		1.5	0.5		dB	PE _830MH ₇
Output IP3 12.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =830MHz, LO2=960MHz @-3dBm RF Output VSWR <1.5:1		-1.5				·
RF Output VSWR PCS Conversion Gain Noise Figure Output IP3 RF Output VSWR RF Output VSWR Pos Conversion Gain -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.0	_					
Conversion Gain Conversio	Output IP3		12.5		dBm	
RF Output VSWR PCS RFOUT=830MHz Conversion Gain -1.5 -1.0 dB RFOUT=1880MHz Noise Figure 15 dB RFOUT=1880MHz Output IP3 10.5 dBm PIN=-15dBm per tone, 200kHz tone separation, RFOUT=1880MHz, LO2=1750MHz@-3dBm RFOUT=1880MHz RF Output VSWR <1.5:2						
PCS Conversion Gain -1.5 -1.0 dB RF _{OUT} =1880MHz Noise Figure 15 dB RF _{OUT} =1880MHz Output IP3 10.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =1880MHz, LO2=1750MHz @-3dBm RF _{OUT} =1880MHz RF Output VSWR <1.5:2	DE 0					
Conversion Gain -1.5 -1.0 dB RF _{OUT} =1880MHz Noise Figure 15 dB RF _{OUT} =1880MHz Output IP3 10.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =1880MHz, LO2=1750MHz @-3dBm RF _{OUT} =1880MHz RF Output VSWR <1.5:2	•		<1.5:1			RF _{OUT} =830MHz
Noise Figure 15 dB RF _{OUT} =1880MHz Output IP3 10.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =1880MHz, LO2=1750MHz@-3dBm RF _{OUT} =1880MHz RF Output VSWR <1.5:2						
Output IP3 10.5 dBm P _{IN} =-15dBm per tone, 200kHz tone separation, RF _{OUT} =1880MHz, LO2=1750MHz@-3dBm RF _{OUT} =1880MHz VCO PLL locked with Loop BW=5kHz, Tank Values: 39nH and SMV1234 varactor. Phase Noise @ 100kHz Current Consumption 1 dBc/Hz MA PLL Charge Pump Current TCXO Input Level 0.8 V _{PP} V _{PP} PLL Lock Time 4/Loop BW s	Conversion Gain	-1.5			dB	
Contract	Noise Figure		15		dB	
CO2=1750 MHz @-3dBm RF Output VSWR <1.5:2 CO2=1750 MHz @-3dBm RF OUTput 2 @-3dBm	Output IP3		10.5		dBm	P _{IN} =-15dBm per tone,
CO2=1750 MHz @-3dBm RF Output VSWR <1.5:2 CO2=1750 MHz @-3dBm RF OUTput 2 @-3dBm						200kHz tone separation, RF _{OUT} =1880MHz,
VCO PLL locked with Loop BW=5kHz, Tank Values: 39nH and SMV1234 varactor. Phase Noise @ 100kHz -110 dBc/Hz ues: 39nH and SMV1234 varactor. Current Consumption 1 mA PLL Charge Pump Current 100 μA TCXO Input Level 0.8 V _{PP} PLL Lock Time 4/Loop BW s						LO2=1750MHz@-3dBm
Phase Noise @ 100kHz -110 dBc/Hz Current Consumption 1 mA PLL (Arge Pump Current TCXO Input Level PLL Lock Time) 0.8 VPP PLL Lock Time 4/Loop BW s	RF Output VSWR		<1.5:2			RF _{OUT} =1880MHz
Phase Noise @ 100kHz -110 dBc/Hz Current Consumption 1 mA PLL 100 μA Charge Pump Current 100 μA TCXO Input Level 0.8 V _{PP} PLL Lock Time 4/Loop BW s	vco					
Current Consumption 1 mA PLL 100 μA Charge Pump Current 100 μA TCXO Input Level 0.8 V _{PP} PLL Lock Time 4/Loop BW s	Phase Noise @ 100kHz		-110		dBc/Hz	and and an income
PLL 100 μA Charge Pump Current 0.8 V _{PP} PLL Lock Time 4/Loop BW s						
$ \begin{array}{c ccccc} Charge Pump Current & & 100 & \mu A \\ TCXO Input Level & 0.8 & & V_{PP} \\ PLL Lock Time & 4/Loop BW & s & \\ \end{array} $			1		1	
TCXO Input Level 0.8 V _{PP} PLL Lock Time 4/Loop BW s				100	пА	
PLL Lock Time 4/Loop BW s			0.8			
	Current Consumption		4/2009 BVV		mA	PLL only.

Preliminary

Doromotor	Specification		11:4	O a malitia m	
Parameter	Min.	Тур.	Max.	Unit	Condition
Power Supply					
Supply Voltage	2.7	3.0	3.3	V	
Current Consumption		69		mA	Total device current.
Power Down Current		<10		μΑ	
VPD HIGH Voltage	V _{CC} -0.3			V	
VPD LOW Voltage			0.3	V	
PLL Settings					
Application	Japan	Japan	US/Korea		
LO Frequency, MHz	333.7	333.7	260.76		IF Frequency=LO Frequency/2
Crystal, MHz	19.2	19.8	19.68		
Reference Divider	192	198	252		
Phase Detector Frequency, kHz	100	100	78.09524		
Prescaler	32/33	32/33	32/33		
Swallow Counter (A)	9	9	11		
Fixed Divider (N)	104	104	104		
Net N in VCO Path	3337	3337	3339		
SET1	VCC	GND	GND		
SET2	GND	VCC	GND		

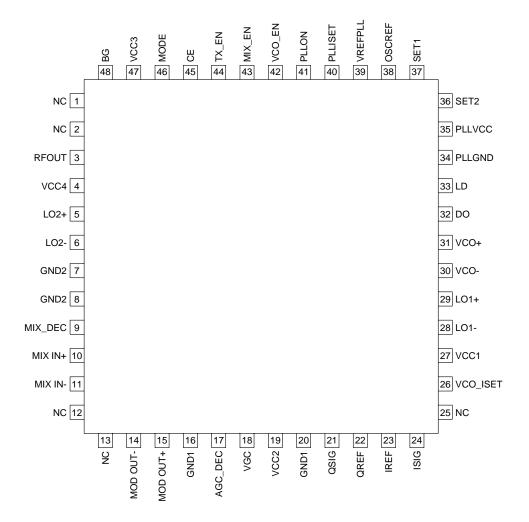
5-74 Rev B4 010423

Pin	Function	Description	Interface Schematic
1	NC	Not connected.	
2	NC	Not connected.	
3	RF OUT	RF output pin. An external shunt inductor to V_{CC} plus a series blocking/matching capacitor are required for 50Ω output.	V _{CCs} 300 Ω O RF OUT
4	VCC4	Supply for the mixer stage only. The supply for the mixer is separated to maximize IF to RF isolations and reduce the carrier leakage. A 10nF external bypass capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
5	LO2+	One half of the balanced mixer LO2 input. In single-ended applications, the other half of the input, LO2- is AC grounded. This is a 50Ω impedance port. This pin is NOT internally DC-blocked. An external blocking capacitor (100pF recommended) must be provided if the pin is connected to a device with DC present.	BIAS BIAS 50 Ω LO2+ LO2-
6	LO2-	One half of the balance mixer LO2 input. In single ended applications, this pin is AC grounded with a 100pF capacitor.	See pin 5.
7	GND2	Ground connection for the mixer stage. For best performance, keep traces physically short and connect immediately to ground plane.	
8	GND2	Same as pin 7.	
9	MIX_DEC	Current Mirror decoupling pin. A 1000pF external capacitor is required to bypass this pin. The ground side of the bypass capacitors should connect immediately to ground plane.	
10	MIX IN+	Same as pin 11, except complementary input.	See pin 11.
11	MIX IN-	One half of the 200Ω balanced impedance input to the mixer stage. This pin is NOT internally DC-blocked. An external blocking capacitor (1000pF recommended) must be provided if the pin is connected to a device with DC present. If no IF filter is needed this pin may be connected to MOD OUT+ through a DC blocking capacitor. An appropriate matching network may be needed if an IF filter is used.	BIAS BIAS \$100 Ω MIX IN- MIX IN-
12	NC	Not connected.	
13	NC	Not connected.	
14	MOD OUT-	One half of the balanced AGC output port. The impedance of this port is 200Ω balanced. If no filtering is required, this pin can be connected to the MIX IN- pin through a DC blocking capacitor. This pin requires an inductor to V_{CC} to achieve full dynamic range. In order to maximize gain, this inductor should be a high-Q type and should be parallel resonated out with a capacitor (see application schematic). This pin is NOT DC-blocked. A blocking capacitor of 2200 pF is needed when this pin is connected to a DC path. An appropriate matching network may be needed if an IF filter is used.	V_{CC3} V_{C
15	MOD OUT+	Same as pin 14, except complementary output.	See pin 14.
16	GND1	Ground connection for all baseband circuits including bandgap, AGC, flip-flop, modulator and FM amp. For best performance, keep traces physically short and connect immediately to ground plane.	

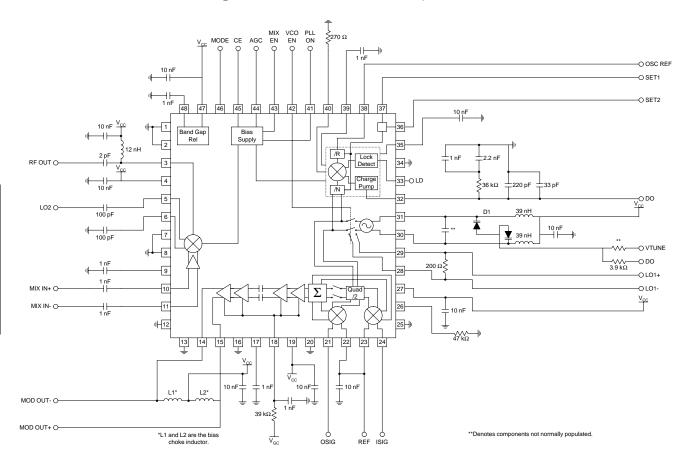
Preliminary

Pin	Function	Description	Interface Schematic
17	AGC_DEC	AGC decoupling pin. An external bypass capacitor of 1 nF capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
18	VGC	Analog gain control for AGC amplifiers. Valid control voltage ranges are from $0.3V_{DC}$ to $2.4V_{DC}$. The gain range for the AGC is 95dB. These voltages are valid ONLY for a $39k\Omega$ source impedance. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	BIAS
19	VCC2	Supply for the modulator stage only. A 10nF external bypass capacitor is required and an additional $0.1\mu F$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
20	GND1	Same as pin 16.	
21	Q SIG	Baseband input to the Q mixer. This pin is DC-coupled. The DC level of 1.3V must be supplied to this pin to bias the transistor. Input impedance of this pin is $50 \text{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	Q SIG Q REF
22	Q REF	Reference voltage for the Q mixer. This voltage should be the same as the DC voltage supplied to the Q SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the Q SIG DC voltage may be adjusted. Input impedance of this pin is $50 \mathrm{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	See pin 21.
23	IREF	Reference voltage for the I mixer. This voltage should be the same as the DC voltage supplied to the I SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the I SIG DC voltage may be adjusted. Input impedance of this pin is $50\mathrm{k}\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	See pin 24.
24	I SIG	Baseband input to the I mixer. This pin is DC coupled. The DC level of $1.3 V$ must be supplied to this pin to bias the transistor. Input impedance of this pin is $50 k\Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	I SIG———I REF
25	NC	Not connected.	
26	VCO_ISET	An external resistor of $47\text{k}\Omega$ is used to set the VCO current for minimum phase noise.	
27	VCC1	Supply Voltage for the LO1 flip-flop and limiting amp only. This supply is isolated to minimize the carrier leakage. A 1nF external bypass capacitor is required, and an additional 0.1 μ F will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
28	LO1-	External LO input to modulator. Controlled by VCO_EN signal. Logic low is internal VCO, while logic high is external VCO.	See pin 29.

5-76 Rev B4 010423

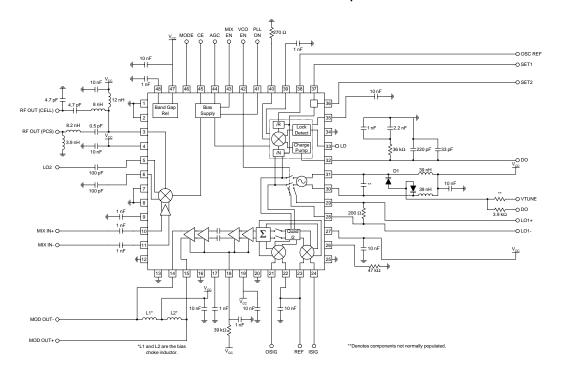

Pin	Function	Description	Interface Schematic
29	LO1+	External LO input to modulator. Controlled by VCO_EN signal. Logic low is internal VCO, while logic high is external VCO.	1 kΩ \(\) LO1+, FM+
30	VCO-	See VCO+ description.	
31	VCO+	This port is used to supply DC voltage to the VCO as well as to tune the center frequency of the VCO. Equal value inductors should be connected to this pin and pin 30 although a small imbalance can be used to tune in the proper frequency range.	
32	DO	Output of the charge pump, and input to the VCO control. An RC network from this pin to ground is used to establish the PLL bandwidth.	
33	LD	Lock detector output for synthesizer. Requires external transistor to provide hysteresis and inversion of signal. See Application circuit.	
34	PLLGND	Ground for synthesizer. For best performance, keep traces physically short and connect immediately to ground plane.	
35	PLLVCC	Supply for the PLLVCC only. A 10nF external bypass capacitor is required and an additional 0.1µF will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
36	SET2	PLL Setting (Divider) pin. See the PLL settings table.	
37	SET1	Same as pin 36.	
38	OSCREF	TCXO reference input for synthesizer.	
39	VREFPLL	Bypass pin for the synthesizer reference voltage.	
40	PLLISET	Current setting pin for synthesizer charge pump. For normal operation, a 390Ω resistor to ground should be used to set the current.	
41	PLLON	Synthesizer Enable pin.	See pin 45.
42	VCO_EN	VCO Enable pin. Switches between internal and external VCO.	See pin 45.
43	MIX_EN	Power down control for mixer only. When connected to logic "high" (>V $_{CC}$ -0.3) the mixer circuits are operating; when connected to ground (\leq 0.3V), the mixer is turned off but all other circuits are operating. A DC voltage less than or equal to the maximum allowable V $_{CC}$ may be applied to this pin when no voltage is applied to the V $_{CC}$ pins.	MIX EN Ο 1 kΩ
44	TX_EN	Shuts down the entire TX path. VCO is still active when TX disabled. Logic high (>V _{CC} -0.3) for TX Enable.	
45	CE	Power down control for overall circuit. When logic "high" (\ge V _{CC} -0.3V), all circuits are operating; when logic "low" (\le 0.3V), all circuits are turned off. The input impedance of this pin is >10k Ω . A DC voltage less than or equal to the maximum allowable Vcc may be applied to this pin when no voltage is applied to the V _{CC} pins.	CE O—ΛΥΛ
46	MODE	Selects between CDMA and FM mode. This is a digitally controlled input. A logic "high" (\geq V $_{CC}$ -0.3 V $_{DC}$) selects CDMA mode. A logic "low" ($<$ 0.3 V $_{DC}$) selects FM mode. In FM mode, this switch enables the FM amplifier and turns off the I&Q modulator. The impedance on this pin is 30 k Ω . A DC voltage less than or equal to the maximum allowable V $_{CC}$ may be applied to this pin when no voltage is applied to the V $_{CC}$ pins.	$\begin{array}{c} \text{BIAS} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

RF2668 Preliminary

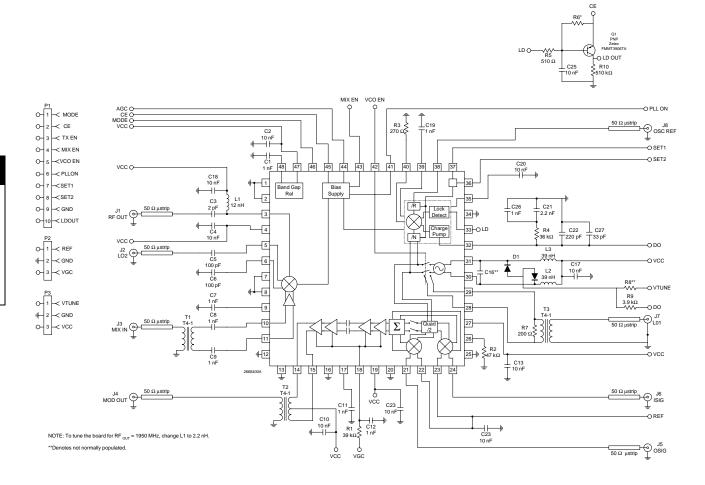

Pin	Function	Description	Interface Schematic
47	VCC3	Supply voltage for the AGC and the Bandgap circuitry. A 1nF external bypass capacitor is required and an additional $0.1\mu F$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
48	BG OUT	Bandgap voltage reference. This voltage, constant over temperature and supply variation, is used to bias internal circuits. A 1nF external bypass capacitor is required.	

5-78 Rev B4 010423

Pin-Out

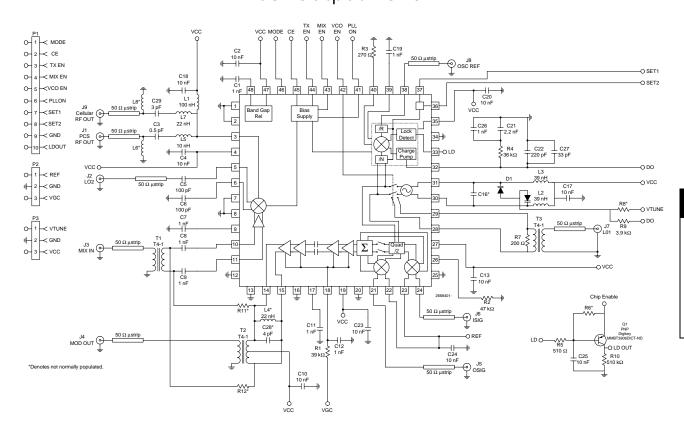

Application Schematic Single- or Dual-Mode Operation

5-80 Rev B4 010423

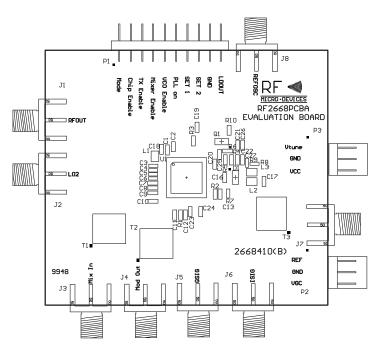

Preliminary RF2668

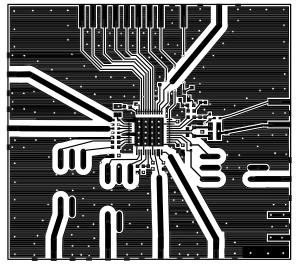
Application Schematic Tri-Mode/Dual-Band Operation

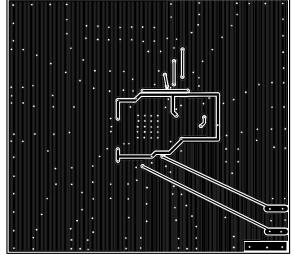
Evaluation Board Schematic RF_{OUT}=830MHz


(Download Bill of Materials from www.rfmd.com.)

5-82 Rev B4 010423

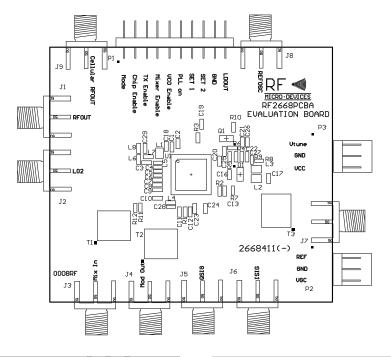

Preliminary RF2668

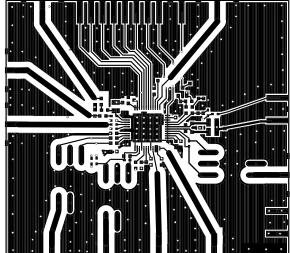

Evaluation Board Schematic Dual Output Band

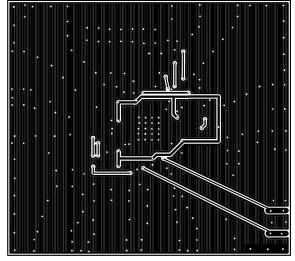


Evaluation Board Layout 2.500" X 2.250"

Board Thickness 0.031", Board Material FR-4




5-84 Rev B4 010423


5

MODULATORS AND UPCONVERTERS

Evaluation Board Layout - Dual Band Output

5

MODULATORS AND UPCONVERTERS

5-86 Rev B4 010423