

3V GENERAL PURPOSE AMPLIFIER

RF2326

Typical Applications

- Broadband Gain Blocks
- Final PA for Low-Power Applications
- IF or RF Buffer Amplifiers

- Driver Stage for Power Amplifiers
- Oscillator Loop Amplifiers

Product Description

The RF2326 is a general purpose, low-cost silicon amplifier designed for operation from a 3V supply. The Darlington circuit configuration with resistive feedback allows for broadband cascadable amplification. The device is unconditionally stable and internally matched to 50Ω . The only external components required for specified performance are bypass and DC blocking capacitors and two bias elements (as shown in application schematic). The RF2326 is available in a very small industry-standard SOT-23 5-lead surface mount package, enabling compact designs which conserve board space.

Optimum Technology Matching® Applied

GaAs HBT

SiGe HBT

GaAs MESFET

Si CMOS

Package Style: SOT 5-Lead

Features

- DC to >2000MHz Operation
- 2.7V to 3.3V Single Supply
- +18dBm Output IP3
- 12dB Gain at 900MHz
- 10dB Gain at 1900MHz
- Internally 50Ω Matched Input and Output

Ordering Information RF2326 3V General Purpose Amplifier RF2326 PCBA Fully Assembled Evaluation Board RF Micro Devices, Inc. Tel (336) 664 1233 7628 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.fmd.com

GND 1 GND 2 RF IN 3 4 GND

Functional Block Diagram

Si BJT

Si Bi-CMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	4.0	V
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification		Unit	Condition		
Falameter	Min.	Тур.	Max.	Unit	Condition	
Overall					T=27 °C, V _{CC} =3.0V	
Frequency Range		DC to >2000		MHz		
100MHz Performance					T=27 °C, V _{CC} =3.0V	
Gain		12		dB		
Noise Figure		5.9		dB		
Output IP3		19		dBm		
Output P _{1dB}		7		dBm		
Input Return Loss		13		dB		
Output Return Loss		13		dB		
Isolation		18		dB		
500MHz Performance					T=27 °C, V _{CC} =3.0V	
Gain		13		dB		
Noise Figure		5.9		dB		
Output IP3		19		dBm		
Output P _{1dB}		8		dBm		
Input Return Loss		15		dB		
Output Return Loss		27		dB		
Isolation		17		dB		
900MHz Performance					T=27 °C, V _{CC} =3.0V	
Gain	10.6	12	13.5	dB		
Noise Figure		5.7		dB		
Output IP3		18		dBm		
Output P _{1dB}		7		dBm		
Input Return Loss		12		dB		
Output Return Loss		21		dB		
Isolation		18		dB		
1000 MHz Performance					T=27 °C, V _{CC} =3.0V	
Gain		12		dB		
Noise Figure		5.8		dB		
Output IP3		17		dBm		
Output P _{1dB}		6		dBm		
Input Return Loss		11		dB		
Output Return Loss		20		dB		
Isolation		18		dB		
2000 MHz Performance					T=27 °C, V _{CC} =3.0V	
Gain		10		dB		
Noise Figure		5.8		dB		
Output IP3		13		dBm		
Output P _{1dB}		4		dBm		
Input Return Loss		9		dB		
Output Return Loss		16		dB		
Isolation		18		dB		
Power Supply						
Operating Voltage	• • •	3.0±10%	ac -	V		
Operating Current	24.6	25	28.7	mA	V _{CC} =3.0V	

4

Pin	Function	Description	Interface Schematic
1	GND	Ground connection. Keep traces physically short and connect immedi- ately to ground plane for best performance.	
2	GND	Same as pin 1.	
3	RF IN	RF input pin. This pin is not externally DC blocked and thus requires an external blocking capacitor suitable for the frequency of operation. The input impedance of this pin is internally matched to 50Ω using resistive feedback.	
4	GND	Same as pin 1.	
5	RF OUT	RF output and bias pin. The input impedance of this pin is internally matched to 50Ω using resistive feedback. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well-bypassed.	See pin 3 schematic.

Application Schematic

Evaluation Board Schematic (Download <u>Bill of Materials</u> from www.rfmd.com.)

4

RF2326

Evaluation Board Layout 1" x 1"

RF2326

4

GENERAL PURPOSE AMPLIFIERS

RF2326

Preliminary

4

Rev A4 010720

GENERAL PURPOSE AMPLIFIERS

4

RF2326