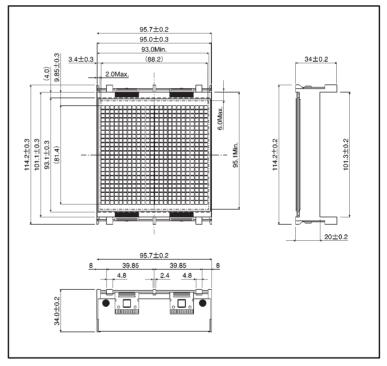
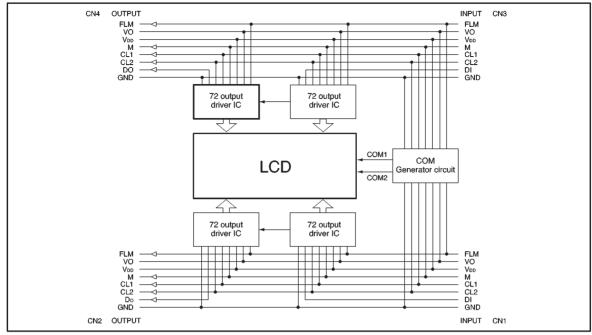
24 × 24 dots transmissive large-sized liquid crystal display unit RCU1383U-A

Thanks to the high contrast and wide viewing angle of the RCU1383U-A, which is provided by its unique design technology, this module brings forth new applications in brand new LCD fields. ROHM large-sized LCD units are perfect displays for information or sign boards. As a media for informational display, large-sized LCD units must possess high visibility, wide viewing angles, and other such superior qualities. ROHM large-sized LCDs boast an excellent track record and possess guaranteed functionality for assured satisfaction in a variety of situations.


Applications

Public displays such as airport displays, train station displays, information boards, and billboards.


Features

- 1) Wide viewing angle, high contrast, and fast response.
- Compact and light weight for easy assembly.
- Supports negative or positive display.
- 4) Low power consumption.

External dimensions (Units: mm)

Block diagram

Pin functions

(1) Upper board

N3)	
	INO)

Pin no.	Symbol	IN / OUT	Function
1	GND	_	Ground potential
2	DI	IN	Display data signal (1: On, 0: Off)
3	CL2	IN	Shift register shift signal, reads data at rise / fall
4	CL1	IN	Data latch signal, displays at rise / fall edge
5	М	IN	AC conversion signal for liquid crystal drive output
6	VDD	_	5 volts
7	VO	_	Liquid crystal drive power supply
8	FLM	IN	Frame start signal

Output (CN4)

Pin no.	Symbol	IN / OUT	Function
1	GND	_	Ground potential
2	DO	OUT	Display data signal
3	CL2	OUT	Shift register shift signal
4	CL1	OUT	Data latch signal
5	M	OUT	AC conversion signal
6	VDD	_	5 volts
7	VO	_	Liquid crystal drive power supply
8	FLM	OUT	Frame start signal

(2) Lower board Input (CN1)

Pin no.	Symbol	IN / OUT	Function
1	FLM	IN	Frame start signal
2	VO	_	Liquid crystal drive power supply
3	V _{DD}	_	5 volts
4	М	IN	AC conversion signal for liquid crystal drive output
5	CL1	IN	Data latch signal, displays at rise / fall edge
6	CL2	IN	Shift register shift signal, reads data at rise / fall
7	DI	IN	Display data signal (1: On, 0: Off)
8	GND	_	Ground potential

Output (CN2)

Pin no.	Symbol	IN / OUT	Function
1	FLM	OUT	Frame start signal
2	VO	_	Liquid crystal drive power supply
3	V _{DD}	_	5 volts
4	М	OUT	AC conversion signal
5	CL1	OUT	Data latch signal
6	CL2	OUT	Shift register shift signal
7	DO	OUT	Display data signal
8	GND	_	Ground potential

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limics	Unit
Logic power supply voltage	V _{DD}	− 0.3∼ + 7.0	V
LCD drive voltage	V _{DD} -V _O	−0.3∼+7.0	V
Input voltage	VIN	-0.3~V _{DD} +0.3	V
Operating temperature	Topr	0~+50	°C
Storage temperature	Tstg	−10~ +60	°C

• Electrical characteristics ($V_{DD} = 5.0 \text{ V} \pm 0.25 \text{ V}$, Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input high level voltage	Vıн	3.5	_	_	٧	
Input low level voltage	VIL	_	_	1.5	٧	
Output high level voltage	Vон	4.6	_	_	٧	lон=−0.4mA
Output low level voltage	Vol	_	_	0.4	٧	IoL=+0.4mA
Power supply current	loo	_	3.0	10	mA	FcL=1MHz, F _M =70Hz

●AC characteristics (V_{DD} = 5.0 V, GND = 0 V, Ta = 25°C)

Parameter	Symbol	Applicable terminal	Min.	Тур.	Max.	Unit
Shift frequency	fcL	CL2	_	_	1	MHz
High level lock width	tсwн	CL1, CL2	470	_	_	ns
Low level lock width	towL	CL2	470	_	_	ns
Data setup time	tsu	DI	120	_	_	ns
Clock setup time 1	tsL	CL2	220	_	_	ns
Clock setup time 2	tus	CL1	220	_	_	ns
Data hold time	tон	DI	120	_	_	ns
Clock rise / fall time	tct	CL1, CL2	_	_	50	ns
FLM setup time	tros	FLM	120	_	_	ns
FLM hold time	t FDH	FLM	120	_	_	ns
Output delay time	tpd	Do	_	_	250	ns
AC conversion signal	fм	M	_	70	_	Hz

Timing characteristics

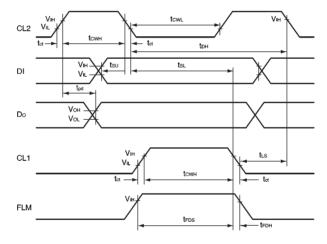
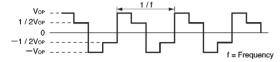
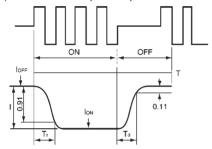



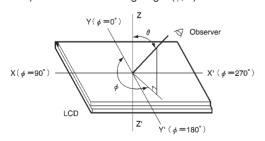
Fig.1


●Optical characteristics (Ta = 25°C)

NO.	Parame	ter	Symbol	Temperature (℃)	Min.	Тур.	Max.	Unit	Note	
1 Pagnanag angad			Tr	25	-	65	130	mo	(Note O)	
'	1 Response speed			25	_	45	100	ms	(Note 2)	
	Viewing angle	Front-back	θ	25	0	_	60	daa	K≧3	
2	Right-le		φ	25	90	_	270	deg	(Note 3)	
3	Contrast	ratio		25	20	_	_	_	(Note 4)	

(Note 1) Drive waveform Static drive

(Note 2) Definition of response speed


Tr: Time for segment to darken 90% after selective waveform switches to non-selective waveform.

$$\phi = 180^{\circ}$$
 , $\theta = 10^{\circ}$

Td: Time for segment to darken 90% after selective waveform switches to non-selective waveform.

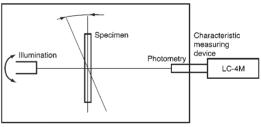
$$\phi = 180^{\circ}$$
 , $\theta = 10^{\circ}$

(Note 3) Definition of viewing angle (ϕ, θ)

- \(\phi \): Angle subtended by the Y-Y'-axis and the observer's position projected onto the XY-plane.
- θ: Angle subtended by observer and the normal
 Z-Z'-axis (X-axis and Y-axis are positive)

(3) Maximum viewing angle: The direction with highest contrast expressed at the time axis (refer to above table).

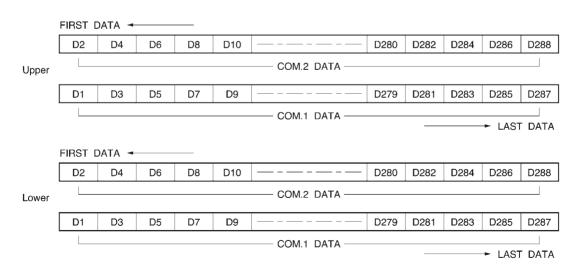
(Note 4) Definition of contrast ratio

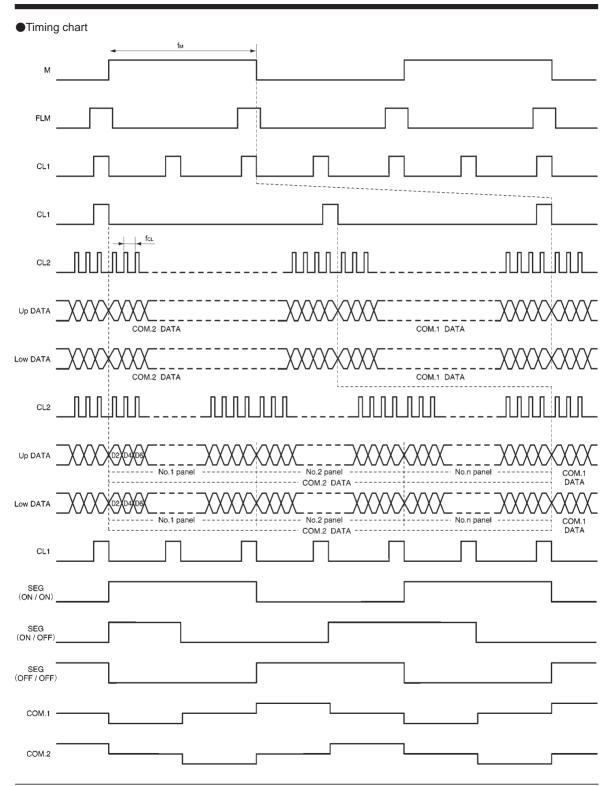

(Definition)

Except, n = 1 with positive display and n = -1 with negative display.

(Measurement conditions)

Drive conditions: As per specifications Viewing angle: $\phi = 180^{\circ}$, $\theta = 10^{\circ}$


(Note 5) Principles of optical measuring equipment



Constant temperature chamber

Data format (data and display mapping)

Upper						 				
	D1	D13	D25		 	 	 	D253	D265	D277
	D2	D14	D26		 	 	 	D254	D266	D278
*	D3	D15	D27		 	 	 	D255	D267	D279
	D4	D16	D28		 	 	 	D256	D268	D280
	D5	D17	D29		 <u> </u>	 	 	D257	D269	D281
	D6	D18	D30		 <u> </u>	 	 	D258	D270	D282
	D7	D19	D31		 	 	 	D259	D271	D283
	D8	D20	D32		 	 	 	D260	D272	D284
	D9	D21	D33					D261	D273	D285
	D10	D22	D34		 	 	 	D262	D274	D286
	D11	D23	D35		 	 	 	D263	D275	D287
Lower	D12	D24	D36		 	 	 	D264	D276	D288
	D1	D13	D25		 <u> </u>	 	 	D253	D265	D277
	D2	D14	D26		 	 	 	D254	D266	D278
*	D3	D15	D27		 	 	 	D255	D267	D279
	D4	D16	D28		 	 	 - —	D256	D268	D280
	D5	D17	D29		 	 	 	D257	D269	D281
	D6	D18	D30		 <u> </u>	 	 	D258	D270	D282
	D7	D19	D31		 	 	 	D259	D271	D283
	D8	D20	D32		 	 	 	D260	D272	D284
	D9	D21	D33		 <u> </u>	 	 	D261	D273	D285
	D10	D22	D34		 <u> </u>	 	 	D262	D274	D286
	D11	D23	D35		 <u> </u>	 	 -	D263	D275	D287
	D12	D24	D36		 <u> </u>	 	 	D264	D276	D288

Operation notes

- (1) Attention points in handling
- Protect the module from strong shocks as they can cause damage or defective operation.
- The polarizing plate on the surface of the module is soft and can easily be scratched. Wipe away dirt and dust using an alcohol-based cleanser.
- If the liquid crystal panel is damaged and liquid crystal contacts your clothing or body, wash immediately with soap and water.
- If the module is to be used for long periods subjected to direct sunlight, employ a filter to block the ultraviolet rays.
- Do not store the module in areas of high temperature or high humidity. Do not store the module in locations exposed to direct sunlight or fluorescent light.
- (2) Precautions during operation
- Do not connect or disconnect the module while the power supply is turned on.
- Input the input signal after the module power supply is turned on. When turning it off, turn off the input signal first. Otherwise the IC may be damaged by the latchup phenomenon.
- (3) Precautions during installation
- Be careful to avoid damage from static electricity. A CMOS-IC is used in the modules circuitry that can be easily damaged by static electricity.
- Do not remove the liquid crystal panel from the unit.
- Do not touch the back side of the liquid crystal panel.
- (4) Precautions during unit assembly
- In order to protect the polarizing plate from dirt or scratches, it is recommended to use a protective cover on the front surface.