RC6303 Triple Video Amplifier with Separate Enable Inputs

Features

- · Triple video amplifier
- Independently enabled amplifiers
- 90 MHz -3 dB Bandwidth (Ay = 2)
- 20 MHz ±0.1 dB gain flatness
- Stable at $AV \ge 2$
- 0.06% differential gain (Av = 2, $R_L = 150\Omega$)
- 0.06° differential phase (Av = 2, RL = 150 Ω)
- High CMRR (100dB), High PSRR (80 dB)
- Dual ±5V power supply
- Low offset 1.0 mV
- 16-pin narrow SO package
- 300 V/µs slew rate
- Fast settling time: 0.1% in 35 ns
- TTL or CMOS compatible enable inputs

Description

The RC6303 consists of three low power, wide band voltage feedback operational amplifiers. Each channel is capable of delivering a load current of at least 35mA. Each amplifier can be independently enabled or disabled with a TTL or CMOS signal. When disabled, the amplifier is in a high impedance output state, presenting a very high input to output isolation.

The amplifiers are optimized for video applications with gain ≥ 2 where low differential gain and low phase distortion are significant requirements.

The layout is optimized for minimal crosstalk between amplifiers.

Applications

- RGB amplifier
- 3:1 crosspoint switch
- RGB switch
- Video instrumentation amplifier
- Selectable gain amplifier
- Active filter

Block Diagram

Pin Assignments

Pin Definitions

Pin Name	Pin Number	Pin Function Description			
EN1	14	Enables amplifier 1 when low			
EN2	12	Enables amplifier 2 when low			
EN3	10	Enables amplifier 3 when low			
IN1–	1	Amplifier 1 inverting input			
IN1+	2	Amplifier 1 non-inverting input			
IN2-	4	Amplifier 2 inverting input			
IN2+	5	Amplifier 2 non-inverting input			
IN3–	7	Amplifier 3 inverting input			
IN3+	8	Amplifier 3 non-inverting input			
OUT1	15	Amplifier 1 output			
OUT2	13	Amplifier 2 output			
OUT3	11	Amplifier 3 output			
Vcc	3	Analog positive supply			
Vcco	16	Positive supply for output stages			
VEE	6	Analog negative supply			
VEEO	9	Negative supply for output stages			

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Parameter	Min	Тур	Max	Units			
Positive power supply, VCC			7	V			
Negative power supply, VEE			-7	V			
Differential input voltage			10	V			
Operating Temperature	0		+70	°C			
Storage Temperature	-40		+125	°C			
Junction Temperature 1				°C			
Lead Soldering Temperature (10 seconds)			300	°C			
Short circuit tolerance: No more than one output can be shorted to ground.							

Note:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

Operating Conditions

Parameter		Min	Тур	Max	Units
Vcc	Power Supply Voltage	4.75	5.0	5.25	V
VEE	Negative Supply Voltage	-4.75	-5.0	-5.25	V
θJA	SO16 thermal resistance		105		°C/W

 $V_{CC} = 5V$, $V_{EE} = -5V$, $A_V = 2$, $R_{LOAD} = 150\Omega$, $T_A = 0^{\circ}C$ to $70^{\circ}C$, unless otherwise specified. Open Loop.

Parameter		Conditions	Min	Тур	Max	Units
Vos	Input Offset Voltage	No Load		1.0	±5	mV
ΔVos/ΔT	Offset Voltage Drift ¹			6.0	±50	μV/°C
lв	Input Bias Current			±1.0	±5	μA
ΔΙΒ/ΔΤ	Input Bias Current Drift ¹			±8.0	±50	nA/°C
Rin	Input Resistance ¹		1			MΩ
Cin	Input Capacitance ¹			0.5	2	pF
CMIR	Common Mode Input Range		±2.5			V
CMRR	Common Mode Rejection Ratio	No Load	70	100		dB
PSRR	Power Supply Rejection Ratio	No Load	60	80		dB
ls	Quiescent Supply Current	No Load, Whole IC		25	33	mA
Isd	Supply Current Disabled			3	4	mA
ROUT	Output Impedance (Closed Loop) ¹	Enabled, At DC		0.2		Ω
		Disabled, $V_O = \pm 2V$	10	200		kΩ
Соит	Output Capacitance ¹	Disabled		0.5	2	pF
Ιουτ	Output Current		35			mA
Vout	Output Voltage Swing	No Load	±2.5	±3.0		V
		RL = 150Ω	±2.5	±3.0		V
AVOL	Open-loop Gain		58	68		dB
Venh	Enable High Voltage		2.4			V
Venl	Enable Low Voltage				0.8	V
len	Enable Input Current			3	10	μΑ
toff	Disable Time ¹			200		ns
ton	Enable Time ¹	Settling to 1%		160		ns
Iso	Off Isolation (Input to Output) ¹	@ 5 MHz		60		dB

Note:

1. Guaranteed by design.

AC Characteristics

 $V_{CC} = 5V$, $V_{EE} = -5V$, $A_V = 2$, $T_A = 0$ to 70° C, $R_{LOAD} = 150\Omega$, $R_G = R_F = 250\Omega$, $C_L = 10$ pF, $C_F = 3$ pF unless otherwise specified. Closed Loop. See Typical Test Circuit.

Parameter		Conditions	Min	Тур	Max	Units		
Frequen	Frequency Response							
BW	-3 dB Bandwidth $(A \lor = 2)^1$	VOUT = 0.4 Vpp		90		MHz		
		VOUT = 0.8 Vpp	70	85		MHz		
Flat	±0.1 dB Bandwidth ¹		15	20		MHz		
Peak	Maximum Small Signal AC Peaking ¹			0.3		dB		
XTALK	Crosstalk Isolation ¹	@ 5 MHz		60		dB		
Time Do	main Response		·					
tr1, tf1	Rise and Fall Time 10% to 90% ¹	2V Output Step		6	8	ns		
ts	Settling Time to 0.1 % ¹	2V Output Step		35		ns		
OS	Overshoot ¹	2V Output Step		13		%		
US	Undershoot ¹	2V Output Step		4		%		
SR	Slew Rate ¹	$V_{OUT} = \pm 2.0 V$	200	300		V/μs		
Distortion								
HD ₂	2nd Harmonic Dist. @ 20 MHz ¹	VOUT = 0.8 Vpp		-50		dB		
HD3	3nd Harmonic Dist. @ 20 MHz ¹	VOUT = 0.8 Vpp		-50		dB		
Equivale	nt Input Noise							
NF	Noise Floor > 100 KHz ¹			-140		dBm		
SND	Spectral Noise Density ¹	100 kHz to 200 MHz		10		nV/√Hz		
Video Performance								
DG	Diff. Gain (p-p), NTSC & PAL ¹	RL = 150Ω, VOUT = ±1.5V		0.06		%		
DP	Diff. Phase (p-p), NTSC & PAL ¹	$R_L = 150\Omega$, $V_{OUT} = \pm 1.5V$		0.06		Deg.		

Note:

1. Guaranteed by design.

Test Circuit

65-3399-02

Each of the three sections of the RC6303 is provided with an Enable input, thus the part is useful for selecting and multiplexing. A three-channel video multiplexer can be built with just one RC6303 and a decoder, as shown in Figure 1.

Note that RC6303 enable time is shorter than its disable time, hence a make-before-break action is provided, minimizing switching transients on the signal output.

An RGB switch is shown in Figure 2.

Capacitive Load

The RC6303 can drive a capacitive load from 10 to over 100 pF. In back terminated video applications, bandwidth will only be limited by the RC time constants of the external output components. A minimum 10 pF capacitive load is required. When driving a 75 Ω cable, place the 75 Ω source termination resistor as close to the amplifier output as possible.

Enable/Disable

The enable pins (10, 12, 14), when pulled to a TTL or CMOS logic low or when tied to ground, activate each amplifier individually. When pulled to a TTL or CMOS logic high, the amplifier is tri-stated and presents a high impedance at its output. When disabled the amplifier's power consumption drops, and the non-inverting input signal is isolated from its respective output.

DC Accuracy

Since the RC6303 is a voltage-feedback amplifier, the inverting and non-inverting inputs have similar impedances and bias currents. To minimize offset voltage, match the source resistances seen by inverting and non-inverting inputs.

Feedback Components

Because the RC6303 is a voltage-feedback amplifier, it facilitates using reactive (capacitive and inductive) feedback components for implementing filters, integrators, sample/ hold circuits, etc. The feedback network and the parasitic capacitance at the inverting (summing junction) input create a pole and affect the transfer function of the circuit. For stable operation, minimize the parasitic capacitance and equivalent resistance of the components used in the feedback circuit.

Circuit Board

High-frequency applications require good grounding, power supply decoupling, low parasitic capacitance and inductance, and good isolation between the inputs to minimize their crosstalk. Avoid coupling from output to input to prevent positive feedback.

Notes:

Mechanical DImensions – 16-Lead SOIC Package

Symbol	Inches		Millim	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes
А	.053	.069	1.35	1.75	
A1	.004	.010	0.10	0.25	
В	.013	.020	0.33	0.51	
С	.008	.010	0.19	0.25	5
D	.386	.394	9.80	10.00	2
E	.150	.158	3.81	4.00	2
е	.050 BSC		1.27 BSC		
Н	.228	.244	5.80	6.20	
h	.010	.020	0.25	0.50	
L	.016	.050	0.40	1.27	3
Ν	16		16		6
α	0°	8°	0°	8°	
CCC	—	.004	_	0.10	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "C" dimension does not include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.

Ordering Information

Product Number	Temperature Range	Screening Package		Package Marking
RC6303M	0° to 70°C	Commercial	16 Pin Narrow SOIC	RC6303M

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com